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Abstract

We discuss intrinsic aspects of Krupka’s approach to finite–order variational se-
quences. We give intrinsic isomorphisms of the quotient subsheaves of the short finite–
order variational sequence with sheaves of forms on jet spaces of suitable order, ob-
taining a new finite–order (short exact) variational sequence which is made by sheaves
of polynomial differential operators. Moreover, we present an intrinsic formulation for
the Helmholtz condition of local variationality using a technique introduced by Kolář
that we have adapted to our context. Finally, we provide the minimal order solution to
the inverse problem of the calculus of variations and a solution of the problem of the
variationally trivial Lagrangian.

Key words: Fibred manifold, jet space, variational sequence, Euler–Lagrange mor-
phism, Helmholtz morphism.
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Introduction

It is known that there exist several geometric formulations of the variational calculus.
They are inspired by a geometrical version of the Hamilton’s principle of least action,
stated on a fibred manifold. See, for example, [Gar74, GoSt73, Kru73, Tul75], and for
further developments [Cos94, Cra81, Fer83, FeFr82, GaMu82, Kol83, Kru83, MaMo83b,
Sau89]. In these papers the leading idea is that one can introduce the variational
calculus in a purely differential context. See the Appendix for an introduction to this
formalism.

Variational sequences go a step forward according to this guideline [AnDu80, Kup80,
OlSh78, Tak79, Tul77, Tul80, Vin77, Vin78]. The basic idea is to interpret the passages
from a Lagrangian to its Euler–Lagrange morphism and from an Euler–Lagrange mor-
phism to its conditions of local variationality (Helmholtz’ conditions) as morphisms of
an exact sequence, namely the variational sequence. This is the framework where a lot
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Introduction 2

of problems and ambiguities of geometrical formulations of Lagrangian field theories
and mechanics can be solved. See [Tra96] for a discussion of these problems.

But in [Kup80, OlSh78, Tak79, Tul77, Tul80, Vin77, Vin78] the variational sequence
is built over the space of infinite jets of a fibred manifold. This procedure is suggested
by the relatively simple structure of such spaces. Only in [AnDu80] there is a partial
construction on finite order jets.

This paper deals with Krupka’s setting of variational sequence on finite–order jet
spaces [Kru90] (for further developments, see [Kru93, Kru95a, Kru95b, KrMu99]). The
finite–order variational sequence is produced when one quotients the de Rham sequence
on a finite–order jet space by means of an intrinsically defined subsequence. The choice
of this subsequence is inspired by the variational calculus; it is made by forms which
do not contribute to action–like integrals.

Several papers investigated problems arising from the above construction [Gri99a,
Gri99b, Kas99, Mus95, MuKr99, Ste95]. But all of them are not concerned with the
intrinsic aspects of the problems that they face.

In this paper (and in [FrPaVi99, FrPaVi99b, Vit95, Vit96a, Vit98a, Vit98b, Vit99a,
Vit99b]) our leading idea is to analyse Krupka’s variational sequence by means of in-
trinsic techniques on jet spaces. Namely, we will use the structure form on jet spaces
[MaMo83a] and the geometric version of the first variation formula by [Kol83].

In [Vit95, Vit96a], we analysed the particular case of the first–order variational
sequence on a fibred manifold whose base is 1–dimensional. This was done in order to
reduce technical difficulties. Here, we analyse the most general situation, i.e. the r–th
order variational sequence based on a fibred manifold, without any restriction on the
dimension of the base. We give isomorphisms of the quotient sheaves of the variational
sequence with subsheaves of the sheaves of forms on a jet space of suitable order. This
order is always found as the minimal among all possible candidates; this aspect is not
present in the infinite jet formalism.

We give a characterisation of the local conditions of local variationality. More pre-
cisely, it is known [Bau82, Kru90] that there exists a locally defined geometric object,
namely the Helmholtz morphism, whose vanishing is equivalent to the local condi-
tions of local variationality [And86, GiMa90, LaTu77, Kru90, Ton69]. We show that
the Helmholtz morphism is intrinsically characterised by means of the Euler–Lagrange
morphism. This issue is also present in [Gri99a], with a slightly different proof. In this
way, we obtain that the variationality conditions are global and intrinsic. This fact is
also due to the intrinsic nature of the variational sequence. Moreover, we obtain an
intrinsic geometrical object which plays a role analogous to the role of the momentum
of a Lagrangian.

Finally, we obtain a finite–order (short and exact) variational sequence, whose
sheaves are constituted by polynomial differential operators. This allows us to give
a solution of the problem of the minimal order Lagrangian. Indeed, given a locally
variational Euler–Lagrange morphism ǫ of order s, the theory of infinite order varia-
tional sequences yields the existence of a (local) Lagrangian of order s inducing ǫ. But
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the finite order variational sequence provides the minimal order Lagrangian inducing ǫ.
The solution of this long–standing problem of the calculus of variations was announced
(but not given) by Anderson [And86, And92, AnTh92]. The finite order variational
sequence yields a proof of this condition which is of ‘structural’ nature, rather than of
‘computational’ nature. We also identify each minimal order variationally trivial La-
grangian by a very simple intrinsic technique. Our result agrees with local results from
[Gri99b, KrMu99].

We notice that a short version of this report has already been published in [Vit98a].
The results of this paper has been improved and completed ever since. Indeed, it has
been shown [Vit98b, Vit99a] that Krupka’s approach to variational sequences can be
equivalently reformulated in the context of C–spectral sequences [Vin77, Vin78, Vin84],
both in the finite and infinite order case. Also, C–spectral sequences allow to extend
the finite order formalism to jets of submanifolds and differential equations, and Green–
Vinogradov formula [Vin84] allows us to represent each quotient space of the variational
sequence in an intrinsic way [Vit99b]. Finally, symmetries has been fitted into Krupka’s
framework [FrPaVi99, FrPaVi99b], recovering old results and stating some new results.

We hope that our work could serve as a tool to both mathematical and theoretical
physicists for a deeper understanding of Lagrangian formalism.

Preliminaries

In this paper, manifolds and maps between manifolds are C∞. All morphisms of fibred
manifolds (and hence bundles) will be morphisms over the identity of the base manifold,
unless otherwise specified.

Let V be a vector space such that dimV = n. Suppose that V = W1 ⊕W2, with
p1 : V → W1 and p2 : V →W2 the related projections. Then, we have the splitting

m
∧ V =

⊕

k+h=m

k
∧W1 ∧

h
∧W2 ,(1)

where
k
∧W1 ∧

h
∧W2 is the subspace of

m
∧V generated by the wedge products of elements

of
k
∧W1 and

h
∧W2.

There exists a natural inclusion
k
⊙L(V, V ) ⊂ L(

k
∧V,

k
∧V ). Then, the projections pk,h

related to the above splitting turn out to be the maps

pk,h =

(
k

p

)
k
⊙ p1 ⊙

h
⊙p2 :

m
∧V →

k
∧W1 ∧

h
∧W2 .

Let V ′ ⊂ V be a vector subspace, and set W ′
1 := p1(V

′), W ′
2 := p2(V

′). Then we
have

V ′ ⊂W ′
1 ⊕W ′

2 ,(2)
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but the inclusion, in general, is not an equality.

As for sheaves, we will use the definitions and the main results given in [Wel80]. In
particular, we will be concerned only with sheaves of IR–vector spaces. Thus, by ‘sheaf
morphism’ we will mean morphism of sheaves of IR–vector spaces.

Let P be a presheaf over a topological space X. We will denote by P the sheaf
generated by P in the sense of [Wel80]. This means that P is a completion of P with
respect to the gluing axiom. We will denote by PU the set of sections of P defined on
the open subset U ⊂ X. The sum between two local sections α ∈ P and β ∈ P will be
defined on the intersection of their domain of definition. If A, B are two subpresheaves
of a presheaf P, then the wedge product A ∧ B is defined to be the subpresheaf of

sections of
2
∧P generated by wedge products of sections of A and B.

Let S be a sheaf. We recall that S is said to be soft if each section defined on a
closed subset C ⊂ X can be extended to a section defined on any open subset U such
that C ⊂ U . Moreover, S is said to be fine if it admits a partition of unity. A fine
sheaf is also a soft sheaf. We recall also that a sequence of sheaves over X is said to be
exact if it is locally exact (see [Wel80] for a more precise definition). Finally, we recall
that the sheaf of sections of a vector bundle is a fine sheaf, hence a soft sheaf.

Acknowledgements. I would like to thank I. Kolář, D. Krupka, M. Modugno, and
J. Štefánek for helpful suggestions.

The commutative diagrams are produced by Paul Taylor’s diagrams macro package,
available in CTAN in TeX/macros/generic/diagrams/taylor.



Chapter 1

Jet spaces

In this chapter we recall some facts on jet spaces. We start with the definition of jet
space, then we introduce the contact maps. We study the natural sheaves of forms on
jet spaces which arise from the fibring and the contact maps. Finally, we introduce the
horizontal and vertical differential of forms on jet spaces.

1.1 Jet spaces

Our framework is a fibred manifold

π : Y → X ,

with dim X = n and dim Y = n+m.
We deal with the tangent bundle TY → Y , the tangent prolongation Tπ : TY →

TX and the vertical bundle V Y → Y .
Moreover, for 0 ≤ r, we are concerned with the r–jet space JrY ; in particular, we

set J0Y ≡ Y . We recall the natural fibrings

πr
s : JrY → JsY , πr : JrY → X ,

and the affine bundle

πr
r−1 : JrY → Jr−1Y

associated with the vector bundle

⊙r T ∗
X ⊗

Jr−1Y

V Y → Jr−1Y ,

for 0 ≤ s ≤ r. A detailed account of the theory of jets can be found in [MaMo83a,
Kup80, Sau89].

Charts on Y adapted to the fibring are denoted by (xλ, yi). Greek indices λ, µ, . . .
run from 1 to n and label base coordinates, Latin indices i, j, . . . run from 1 to m and

5



Introduction 6

label fibre coordinates, unless otherwise specified. We denote by (∂λ, ∂i) and (dλ, di),
respectively, the local bases of vector fields and 1–forms on Y induced by an adapted
chart.

We denote multi–indices of dimension n by underlined latin letters such as p =
(p1, . . . , pn), with 0 ≤ p1, . . . , pn; by identifying the index λ with a multi–index according
to

λ ≃ (p1, . . . , pλ, . . . , pn) ≡ (0, . . . , 1, . . . , 0) ,

we can write

p+ λ = (p1, . . . , pλ + 1, . . . , pn) .

We also set |p| := p1 + · · · + pn and p! := p1! . . . pn!.
The charts induced on JrY are denoted by (x0, yi

p), with 0 ≤ |p| ≤ r; in particular,

if |p| = 0, then we set yi
0 ≡ yi. The local vector fields and forms of JrY induced by the

fibre coordinates are denoted by (∂
p

i ) and (di
p), 0 ≤ |p| ≤ r, 1 ≤ i ≤ m, respectively.

1.2 Contact maps

A fundamental role is played in the theory of variational sequences by the “contact
maps” on jet spaces (see [MaMo83a]). Namely, for 1 ≤ r, we consider the natural
injective fibred morphism over JrY → Jr−1Y

dr : JrY ×
X

TX → TJr−1Y ,

and the complementary surjective fibred morphism

ϑr : JrY ×
Jr−1Y

TJr−1Y → V Jr−1Y ,

whose coordinate expression are

dr = dλ⊗drλ = dλ⊗(∂λ + yj
p+λ∂

p

j ) , 0 ≤ |p| ≤ r − 1,

ϑr = ϑj
p⊗∂

p

j = (dj
p − yj

p+λd
λ)⊗∂

p

j , 0 ≤ |p| ≤ r − 1 .

We stress that

dr yϑr = ϑr y dr = 0(1.1)

(ϑr)
2 = ϑr (dr)

2 = dr(1.2)

The transpose of the map ϑr is the injective fibred morphism over JrY → Jr−1Y

ϑ∗r : JrY ×
Jr−1Y

V ∗Jr−1Y → T ∗JrY .
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We have the remarkable vector subbundle

imϑ∗r ⊂ JrY ×
Jr−1Y

T ∗Jr−1Y ⊂ T ∗JrY ,(1.3)

and, for 0 ≤ t ≤ s ≤ r, the fibred inclusions

JrY ×
JtY

imϑ∗t ⊂ JrY ×
JsY

imϑ∗s ⊂ imϑ∗r .(1.4)

The above vector subbundle imϑ∗r yields the splitting [MaMo83a]

JrY ×
Jr−1Y

T ∗Jr−1Y =

(
JrY ×

Jr−1Y

T ∗
X

)
⊕ imϑ∗r .(1.5)

1.3 Distinguished sheaves of forms

We are concerned with some distinguished sheaves of forms on jet spaces.

Remark 1.3.1. The manifold Y is a differentiable retract of JrY , hence the de
Rham cohomologies of Y and JrY are isomorphic. Therefore, we reduce sheaves on
JrY to sheaves on Y by considering for each sheaf S on JrY the sheaf induced by S
by restricting to the tube topology on JrY , i.e. , the topology generated by open sets
of the kind (πr

0)
−1 (U), with U ⊂ Y open in Y . So, from now on, the sheaves of forms

on JrY and the related subsheaves will be considered as sheaves over the topological
space Y of the above kind.

Let 0 ≤ k.

1. First of all, for 0 ≤ r, we consider the standard sheaf
k

Λr of k–forms on JrY

α : JrY →
k
∧T ∗JrY .

2. Then, for 0 ≤ s ≤ r, we consider the sheaves
k

H(r,s) and
k

Hr of horizontal forms,
i.e. of local fibred morphisms over JrY → JsY and JrY → X of the type

α : JrY →
k
∧T ∗JsY and β : JrY →

k
∧T ∗

X ,

respectively. In coordinates, if 0 < k ≤ n, then

α = α
p
1
...p

h
i1...ih λh+1...λk

di1
p
1
∧ . . . ∧ dih

p
h

∧ dλh+1 ∧ . . . ∧ dλk

β = βλ1...λk
dλ1 ∧ . . . ∧ dλk ;

if k > n, then

α = α
p
1
...p

k−n+l

i1...ik−n+l λl+1...λn
di1

p
1
∧ . . . ∧ dik−n+l

p
k−n+l

∧ dλl+1 ∧ . . . ∧ dλn ,
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Here, the coordinate functions are sections of
0

Λr, and the indices’ range is 0 ≤
|p

j
| ≤ s, 0 ≤ h ≤ k and 0 ≤ l ≤ n. We remark that, in the coordinate expression

of α, the indices λj are suppressed if h = k or l = n, and the indices
p

j

ij
are

suppressed if h = 0.

Clearly
k

H(r,r) =
k

Λr and
k

Hr = 0 for k > n.

If 0 ≤ q ≤ r, then pull–back by πr
q yields the sheaf inclusions

k

Hq ≃ πr
q
∗

k

Hq ⊂
k

Hr ⊂
k

H(r,t) ⊂
k

H(r,s) ⊂
k

Λr ,

k

Λs ≃ πr
s
∗

k

Λs ⊂
k

H(r,s) ⊂
k

Λr .

The above inclusions are proper inclusions if t < s < r and q < r. Indeed, not all
sections of the pull–back of a bundle (like JrY ×

JsY

T ∗JsY ) are the pull–back of

some section of the bundle itself. In fact, we deal with two different operations:
pull–back of bundles and pull–back of sections (forms).

3. For 0 ≤ s < r, we consider the subsheaf
k

C(r,s) ⊂
k

H(r,s) of contact forms, i.e. of
local fibred morphisms over JrY → JsY of the type

α : JrY →
k
∧ imϑ∗s+1 ⊂

k
∧T ∗JsY .

Due to the injectivity of ϑ∗s+1, the subsheaf
k

C(r,s) turns out to be the sheaf of

local fibred morphisms α ∈
k

H(r,s) which factorise as α =
k
∧ϑ∗s+1◦α̃, through the

composition

JrY
α̃- Js+1Y ×

JsY

k
∧V ∗JsY

k
∧ϑs+1- k

∧T ∗JsY .

Thus, α ∈
k

C(r,s) if and only if its coordinate expression is of the type

α = α
p
1
...p

k
i1...ik

ϑi1
p
1
∧ . . . ∧ ϑik

p
k

0 ≤ |p
1
|, . . . , |p

k
| ≤ s ,

with α
p
1
...p

k
i1...ik

∈
0

Λr.

If 0 ≤ s < r ≤ r′, s ≤ s′, then we have the inclusions (see (1.3) and (1.4))

k

C(r,s) ⊂
k

C(r′,s′) .

4. Furthermore, we consider the subsheaf
k

HP
r ⊂

k

Hr of local fibred morphisms α ∈
k

Hr

such that α is a polynomial fibred morphism over Jr−1Y → X of degree k. Thus,

in coordinates, α ∈
k

HP
r if and only if αλ1,...,λk

: JrY → IR is a polynomial map of
degree k with respect to the coordinates yi

p, with |p| = r.
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5. Finally, we consider the subsheaf
k

Cr ⊂
k

C(r+1,r) of local fibred morphisms α ∈
k

C(r+1,r) such that α̃ projects down on JrY . Thus, in coordinates, α ∈
k

Cr if and

only if α
p
1
...p

k

i1...ik
∈

0

Λr.

1.4 Main splitting

The maps dr and ϑr induce two important derivations of degree 0 (see [Sau89, Cos94]),
namely the interior products by dr and ϑr

ih ≡ idr+1 :
k

Λr →
k

Λr+1 , iv ≡ iϑr+1 :
k

Λr →
k

Λr+1 ,

which make sense taking into account the natural inclusions JrY ×
X

T ∗
X ⊂ T ∗JrY and

V JrY ⊂ TJrY .
The fibred splitting (1.5) yields a fundamental sheaf splitting.

Lemma 1.4.1. We have the splitting

1

H(r+1,r) =
1

Hr+1 ⊕
1

C(r+1,r) ,

where the projection on the first factor and on the second factor are given, respectively,
by

H :
1

H(r+1,r) →
1

Hr+1 : α 7→ ihα ,

V :
1

H(r+1,r) →
1

C(r+1,r) : α 7→ ivα .

If α ∈
1

H(r+1,r) has the coordinate expression α = αλd
λ + α

p

i d
i
p (0 ≤ p ≤ r), then

H(α) = (αλ + yi
pα

p

i ) d
λ , V (α) = α

p

iϑ
i
p .

Proposition 1.4.1. The above splitting of
1

H(r+1,r) induces the splitting

k

H(r+1,r) =
k⊕

l=0

k−l

C (r+1,r) ∧
l

Hr+1

(see Preliminaries).

We recall that, in the above splitting, direct summands with l > n vanish.
We set H to be the projection of the above splitting on the factor with the highest

degree of the horizontal factor.
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Proposition 1.4.2. If k ≤ n, then we have

H :
k

H(r+1,r) →
k

Hr+1 : α 7→
1

k!
�

k
dr+1(α) ;

if k > n, then we have

H :
k

H(r+1,r) →
k−n

C (r+1,r) ∧
n

Hr+1 : α 7→
1

(k − n)!n!

(
�

k−nϑr+1�
n
dr+1

)
(α) .

Proof. See Preliminaries. QED

We set also

V := Id−H

to be the projection complementary to H .

Remark 1.4.1. If k ≤ n, then we have the coordinate expression

H(α) = yi1
p
1
+λ1

. . . yih
p

h
+λh

α
p
1
...p

h
i1...ih λh+1...λk

dλ1 ∧ . . . ∧ dλk ,

with 0 ≤ h ≤ k. If k > n, then we have

H(α) =
∑

yj1
q
1
+λ1

. . . yjl

q
l
+λl
α

p
1
.̂..p

k−n+l
q
1
...q

l

i1 .̂.. ik−n+l j1...jl
λl+1...λn

ϑi1
p
1
∧ .̂ . . ∧ ϑik−n+l

p
k−n+l

∧ dλ1 ∧ . . . ∧ dλn ,

where 0 ≤ l ≤ n and the sum is over the subsets

{j1
q
1
. . . jl

q
l

} ⊂ {i1
p
1
. . . ik−n+l

p
k−n+l

} ,

and .̂ . . stands for suppressed indexes (and corresponding contact forms) belonging to
one of the above subsets.

Now, we apply the conclusion of inclusion (2) of Preliminaries to the subsheaf
k

Λr ⊂
k

H(r+1,r). To this aim, we want to find the image of
k

Λr under the projections of the
above splitting.

We denote the restrictions of H, V to
k

Λr by h, v.

Next theorem is devoted to a characterisation of the image of
k

Λr under H .

Theorem 1.4.1. Let 0 < k ≤ n, and denote

k

Hh
r+1 := h(

k

Λr) .

Then, we have the inclusion
k

Hh
r+1 ⊂

k

HP
r+1.
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Moreover, the sheaf
k

Hh
r+1 admits the following characterisation: a section α ∈

k

HP
r+1

is a section of the subsheaf
k

Hh
r+1 if and only if there exists a section β ∈

k

Λr such that

(jrs)
∗β = (jr+1s)

∗α

for each section s : X → Y .

Proof. If s : X → Y is a section, then the following identities

(jrs)
∗β = (jr+1s)

∗h(β) , (jr+1s)
∗v(β) = 0 ,

yield

α = h(β) ⇔ (jrs)
∗β = (jr+1s)

∗α

for all α ∈
k

HP
r+1 and β ∈

k

Λr. QED

Remark 1.4.2. It comes from the above Theorem that not any section of
k

HP
r+1 is

a section of
k

Hh
r+1; indeed, a section of

k

HP
r+1 in general contains ‘too many monomials’

with respect to a section of
k

Hh
r+1. This can be seen by means of the following example.

Consider a one–form β ∈
1

Λ0. Then we have the coordinate expressions

β = βλd
λ + βid

i , h(β) = (βλ + yi
λβi)d

λ .

If α ∈
1

HP
1 , then we have the coordinate expression

α = (αλ + yj
µα

µ
j λ)d

λ .

It is evident that, in general, there does not exists β ∈
1

Λr such that h(β) = α.

Corollary 1.4.1. Let dim X = 1. Then we have

1

Hh
r+1 =

1

HP
r+1 .

Proof. From the above coordinate expressions. See also [Kru95a, Vit95]. QED

Lemma 1.4.2. The sheaf morphisms H, V restrict on the sheaf
k

Λr to the surjective
sheaf morphisms

h :
1

Λr →
1

Hh
r+1 , v :

1

Λr →
1

Cr .
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Proof. The restriction of H has already been studied. As for the restriction of V ,

it is easy to see by means of a partition of the unity that it is surjective on
1

Cr. QED

Theorem 1.4.2. The splitting of proposition 1.4.1 yields the inclusion

k

Λr ⊂
k⊕

l=0

k−l

C r ∧
l

Hh
r+1 ,

and the splitting projections restrict to surjective maps.

Proof. In fact, for any i ≤ k the restriction of the projection

k

H(r+1,r) →
k−l

C (r+1,r) ∧
l

Hr+1

of the splitting of proposition 1.4.1 to the sheaf
k

Λr takes the form

k

Λr →
k−l

C r ∧
l

Hh
r+1 ⊂

k−l

C (r+1,r) ∧
l

Hr+1 .

The above inclusion can be tested in coordinates. For the sake of simplicity, let us

consider a global section α ∈
k−l

C r ∧
l

Hh
r+1 where 0 ≤ l ≤ n. We have the coordinate

expression

α = yj1
q
1
+λ1

. . . yjh

q
h
+λh

α
p
1
...p

k−l
q
1
...q

h

i1 ... ik−l j1...jhλh+1...λl

ϑi1
p
1
∧ . . . ∧ ϑik−l

p
k−l

∧ dλ1 ∧ . . . ∧ dλl ,

where 0 ≤ |p
i
|, |q

i
| ≤ r and 0 ≤ h ≤ n. If {ψi} is a partition of the unity on

0

Λr

subordinate to a coordinate atlas, let

α̃i := ψi α̃
s1...sr
t1...tr λr+1...λk

dt1
s1
∧ . . . ∧ dtr

p
r

∧ dλr+1 ∧ . . . ∧ dλk ,

where the set of pairs of indices {t1
s1
. . . trsr

} is a permutation of the set of pairs of indices

{i1
p
1
. . . ik−l

p
k−l

j1
q
1
. . . jl

q
l

}. Then

1.
∑

i α̃i is a global section of
k

Λr;

2. the projection of
∑

i α̃i on
k−l

C r ∧
l

Hh
r+1 is α.

The proof is analogous for k > n. QED

We remark that, in general, the above inclusion is a proper inclusion: in general, a

sum of elements of the direct summands is not an element of
k

Λr.

Corollary 1.4.2. The sheaf morphism H restricts on the sheaf
k

Λr to the surjective
sheaf morphisms

h :
k

Λr →
k

Hh
r+1 k ≤ n ,

h :
k

Λr →
k−n

C r ∧
n

Hh
r+1 k > n .
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1.5 Horizontal and vertical differential

The derivations ih, iv, and the exterior differential d yield two derivations of degree one
(see [Sau89, Cos94]). Namely, we define the horizontal and vertical differential to be
the sheaf morphisms

dh := ih◦d− d◦ih :
k

Λr →
k

Λr+1 ,

dv := iv◦d− d◦iv :
k

Λr →
k

Λr+1 ,

It can be proved (see [Sau89]) that dh and dv fulfill the properties

d2
h = d2

v = 0 , dh◦dv + dv◦dh = 0 ,

dh + dv = (πr+1
r )∗◦d ,

(jr+1s)
∗◦dv = 0 , d◦(jrs)

∗ = (jr+1s)
∗◦dh .

The action of dh and dv on functions f : JrY → IR and one–forms on JrY uniquely
characterises dh and dv. We have the coordinate expressions

dhf = (dr+1)λ.fd
λ = (∂λf + yi

p+λ∂
p

i f)dλ ,

dhd
λ = 0 , dhd

i
p = −di

p+λ ∧ dλ , dhϑ
i
p = −ϑi

p+λ ∧ d
λ ,

dvf = ∂
p

i fϑ
i
p ,

dvd
λ = 0 , dvd

i
p = di

p+λ ∧ dλ , dvϑ
i
p = 0 .

We note that

−di
p+λ ∧ d

λ = −ϑi
p+λ ∧ d

λ + yi
p+λ+µd

µ ∧ dλ = −ϑi
p+λ ∧ d

λ .

Finally, next Proposition analyses the relationship of dh and dv with the splitting of
Proposition 1.4.1.

Proposition 1.5.1. We have

dh

(
k

Hr

)
⊂

k+1

H r+1 , dv

(
k

Hr

)
⊂

1

Cr ∧
k

Hr ,

dh

(
k

C(r,r−1) ∧
h

Hr

)
⊂

k

C(r+1,r) ∧
h+1

H r+1 , dh

(
k

C(r,r−1) ∧
n

Hr

)
= {0} ,

dv

(
k

C(r,r−1)

)
⊂

k+1

C r , dv

(
k

Cr

)
⊂

k+1

C r ,

Proof. From the action of dh, dv on functions and local coordinate bases of forms.
QED



Chapter 2

Variational sequence

In this chapter, we recall the theory of variational sequences on finite order jet bundles,
as was developed by Krupka in [Kru90]. Our main aim is to present a concise summary
of the theory in order to introduce the reader to our notation.

Starting from the de Rham exact sheaf sequence on JrY , we find a natural exact
subsequence. This subsequence is not the unique exact and natural one that we might
consider; our choice is inspired by the calculus of variations, as it is shown in Appendix.
Then we will define the (r–th order) variational sequence to be the quotient of the de
Rham sequence on JrY by means of the above exact subsequence.

We start by considering the de Rham exact sequence of sheaves on JrY

0 - IR -
0

Λr

d -
1

Λr

d - . . .
d -

J

Λr

d - 0 ,

where J = dim JrY (see [Sau89]).

2.1 Contact subsequence

We are able to provide several natural subsequences of the de Rham sequence. For
example, natural subsequences of the de Rham sequence arise by considering the ideals

generated in
k

Λr by its natural subsheaves
1

H(r,s),
1

C(r,s), . . . Not all natural subsequences
of the de Rham sequence turn out to be exact. In this subsection, we study an exact
natural subsequence of the de Rham sequence, which is of particular importance in the
variational calculus, although being defined independently (see the Appendix).

We introduce a new subsheaf of
k

Λr. Namely, we set

C
k

Λr = {α ∈
k

Λr | (jrs)
∗α = 0 for every section s : X → Y } .

The definition of the above subsheaf is clearly inspired by the calculus of variations
(see [Kru90, Kru95a, Kru95b, Vit96a] and Appendix).

14
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Lemma 2.1.1. We have

C
k

Λr = ker h if 0 ≤ k ≤ n ,

C
k

Λr =
k

Λr if k > n .

Proof. Let α ∈
k

Λr. Then, for any section s : X → Y we have

(jrs)
∗α = (jr+1s)

∗h(α) ,

and α ∈ ker h implies α ∈ C
k

Λr. Conversely, suppose α ∈ C
k

Λr. Then we have

(jr+1s)
∗h(α) = h(α)λ1...λk

◦jr+1s d
λ
1 ∧ . . . ∧ d

λ
k ,

hence h(α) = 0.
The first assertion comes from the above identities and dim X = n. QED

We define the subsheaf
k

Θr ⊂
k

Λr to be the sheaf generated by the presheaf ker h +
d ker h, i.e.

k

Θr := ker h + d ker h .

Of course, ker h is a sheaf. We recall that d ker h consists of sections α ∈
k

Λr which are
of the local type α = dβ, with β ∈ d ker h.

Remark 2.1.1. If dim X = 1 we have two important facts

1. ker h =
k

C(r,r−1);

2. the above sum turns out to be a direct sum [Kru95a, Vit95].

Lemma 2.1.2. If 0 ≤ k ≤ n, then d ker h ⊂ ker h, so that
k

Θr = C
k

Λr.

Proof. By the above Lemma, if α ∈ ker h, then for any section s : X → Y we
have (jrs)

∗α = 0, hence (jrs)
∗dα = 0. So, dα ∈ ker h. QED

It is clear that
k

Θr is a subsheaf of
k

Λr. Thus, we say the following natural subsequence

0 -
1

Θr

d -
2

Θr

d - . . .
d -

I

Θr

d - 0

to be the contact subsequence of the de Rham sequence. We note that, in general, the

sheaves
k

Θr are not the sheaves of sections of a vector subbundle of T ∗JrY .

Remark 2.1.2. In general, I depends on the dimension of the fibers of JrY → X;
its value is given in [Kru90].
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The following theorem is proved in [Kru90] by means of a contact homotopy formula.

Theorem 2.1.1. The contact subsequence is exact [Kru90].

Proposition 2.1.1. The sheaves
k

Θr are soft sheaves [Kru90].

Proof. We rephrase the proof of Krupka for convenience of the reader by adapting
it to our notation.

It can be easily seen that the sheaves C
k

Λr are soft. Let us consider the short exact
sequence

0 → ker d→ C
1

Λr
d
→ im d→ 0 ,

From the above Theorem we have ker d = 0, and this is a soft sheaf. Hence im d =

d(C
1

Λr) is soft (see [Wel80]). By induction on k, the equality ker d = im d on k–forms,
and exactness of the sequence

0 → ker d→ C
k

Λr
d
→ im d→ 0

we obtain that each one of the sheaves d(C
k

Λr) is soft.
Now, let us take into account the exact sheaf sequence

0 → ker d
f
→ C

k−1

Λ r ⊕ C
k

Λr
g
→

k

Θr → 0 ,

where f , g are the sheaf morphisms given on each tubular neighbourhood π1
0
−1

(U)
(with U ⊂ Y open subset) as

fU : (ker d)U →

(
C

k−1

Λ r ⊕ C
k

Λr

)

U

: α 7→ (α,−dα) ,

gU :

(
C

k−1

Λ r ⊕ C
k

Λr

)

U

→ (
k

Θr)U : (α, β) 7→ dα + β .

ker d = im d (on (k−1)–forms) implies that ker d is a soft sheaf, and, being C
k−1

Λ r⊕C
k

Λr

soft, we obtain the result. QED

2.2 Variational bicomplex

Here, we introduce a bicomplex by quotienting the de Rham sequence on JrY by the
contact subsequence. We obtain a new sequence, the variational sequence, which turns
out to be exact. In the last part of the section, we describe the relationships between
bicomplexes on jet spaces of different orders.
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Proposition 2.2.1. The following diagram

0 0 0 0 0 0

0 - 0
?

- 0
?

-
1

Θr

?
d-

2

Θr

?
d- . . .

d-
I

Θr

?
d- 0

?
- . . . - 0

0 - IR
?

-
0

Λr

?
d-

1

Λr

?
d-

2

Λr

?
d- . . .

d-
I

Λr

?
d-

I+1

Λ r

?
d- . . .

d- 0

0 - IR
?

-
0

Λr

?
E0-

1

Λr/
1

Θr

?
E1-

2

Λr/
2

Θr

?
E2- . . .

EI−1-
I

Λr/
I

Θr

?
EI-

I+1

Λ r

?
d- . . .

d- 0

0
?

0
?

0
?

0
?

0
?

0
?

is a commutative diagram, where rows and columns are exact.

Proof. We have to prove only the exactness of the bottom row of the diagram.
But this follows from the exactness of the other rows and of the columns. QED

Definition 2.2.1. The above diagram is said to be the r–th order variational bi-
complex associated with the fibred manifold Y → X (see [Kru90]).

We say the bottom row of the above diagram to be the r–th order variational
sequence associated with the fibred manifold Y → X.

Proposition 2.2.2. The sheaves
k

Λr/
k

Θr are soft sheaves (see [Kru90]).

Proof. In fact, each column is a short exact sheaf sequence in which
k

Θr and
k

Λr

are soft sheaves (see [Wel80]). QED

Corollary 2.2.1. The variational sequence is a soft resolution of the constant sheaf
IR over Y [Kru90].

Proof. In fact, except IR, each one of the sheaves in the sequence is soft [Wel80].
QED

The most interesting consequence of the above corollary is the following one (for a
proof, see [Wel80]). Let us consider the cochain complex

0 - IRY
-

(
0

Λr

)

Y

d-
(

1

Λr/
1

Θr

)

Y

E1 - . . .
d-
(

J

Λr

)

Y

d - 0

and denote by Hk
VS the kth–cohomology group of the above cochain complex.
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Corollary 2.2.2. For all k ≥ 0 there is a natural isomorphism

Hk
VS ≃ Hk

de RhamY

(see [Kru90]).

Proof. In fact, the variational sequence is a soft resolution of IR, hence the coho-
mology of the sheaf IR is naturally isomorphic to the cohomology of the above cochain
complex. Also, the de Rham sequence gives rise to a cochain complex of global sec-
tions, whose cohomology is naturally isomorphic to the cohomology of the sheaf IR on
Y . Hence, we have the result by a composition of isomorphisms. (See [Wel80] for more
details on the above natural isomorphisms.) QED

Finally, we investigate the relationship between variational bicomplexes of different
orders. To this purpose, we recall the intrinsic inclusions (0 ≤ s ≤ r)

k

Λs ≃ πr
s
∗

k

Λs ⊂
k

Λr ,
k

Θs ≃ πr
s
∗

k

Θs ⊂
k

Θr ,

and the isomorphism

(
k

Λs/
k

Θs

)
≃

(
πr

s
∗

k

Λs/π
r
s
∗

k

Θs

)
.

Lemma 2.2.1. Let s ≤ r. Then, the above inclusions induce the injective sheaf
morphism (see [Kru90])

χr
s :

(
k

Λs/
k

Θs

)
→

(
k

Λr/
k

Θr

)
: [α] 7→ [πr

s
∗α] ,

where [α] denotes an equivalence class of a form on JsY .

Proof. The above morphism χr
s is well–defined, because

[α] = [β] ⇒ [πr
s
∗α] = [πr

s
∗β]

due to the above inclusions.

The morphism is injective too. For if α ∈
k

Λs and β ∈
k

Λs such that

[πr
s
∗α] = [πr

s
∗β] ,

then, being πr
s
∗(α − β) ∈ πr

s
∗

k

Λs, and πr
s
∗(α − β) ∈

k

Θr, it must be πr
s
∗(α− β) ∈ πr

s
∗

k

Θs,
hence [α] = [β]. QED
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Remark 2.2.1. It is clear that, if t ≤ s ≤ r, then χr
s◦χ

s
t = χr

t .
We have the commutative diagrams

k

Λr

d -
k+1

Λ r

k

Θr

d -
k+1

Θ r

k

Λs

πr
s
∗

6

d -
k+1

Λ s

πr
s
∗

6

k

Θs

πr
s
∗

6

d -
k+1

Θ s

πr
s
∗

6

hence the following commutative diagram holds

k

Λr/
k

Θr

Ek-
k+1

Λ r/
k+1

Θ r

k

Λs/
k

Θs

πr
s
∗

6

Ek-
k+1

Λ s/
k+1

Θ s

πr
s
∗

6

We can summarise the above commutative diagrams stating the existence of a three–
dimensional commutative diagram (which is not exact), whose bi–dimensional slices are
the variational bicomplexes of order 1, 2, . . . .



Chapter 3

Representation of the variational

sequence

In this section we find suitable sheaves of fibred morphisms that are isomorphic to the
quotient sheaves of the variational sequence.

As a consequence, we will recover the sheaves of the geometric objects that arise
in the variational calculus (like Lagrangians, Euler–Lagrange morphisms, . . . ). Also,
we will be able to give an intrinsic formulation of the Helmholtz conditions of local
variationality. By the way, one can see that in the infinite–jet formalism one loses
information relatively to the order of the jet in which objects really ‘live’.

We start by restricting our analysis to the following short exact subcomplex

0 0 0 0 0

0 - 0
?

- 0
?

-
1

Θr

?
d- . . .

d-
n+1

Θ r

?
d- d

n+1

Θ r

?

0

0 - IR
?

-
0

Λr

?
d-

1

Λr

?
d- . . .

d-
n+1

Λ r

?
d- d

n+1

Λ r

?
d - 0

0 - IR
?

-
0

Λr

?
E0-

1

Λr/
1

Θr

?
E1- . . .

En- En(
I

Λr/
I

Θr)

?
En+1- 0

?

0
?

0
?

0
?

0
?

0
?

due to the fact that, to our knowledge, if k ≥ n + 3, there is no interpretation of the
kth–column of the variational bicomplex in terms of geometric objects of the variational
calculus. We say the bottom row of the above bicomplex to be the short variational
sequence.

20
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3.1 Lagrangian

In this section, we show that the quotient sheaves

1

Λr/
1

Θr , . . . ,
n

Λr/
n

Θr

are isomorphic to certain subsheaves of sheaves of sections of a vector bundle. In this
way, we are able to find an explicit expression for the sheaf morphisms E0, . . .En−1.

Theorem 3.1.1. Let k ≤ n. Then, the sheaf morphism h yields the isomorphism

Ik :
k

Λr/
k

Θr →
k

Hh
r+1 : [α] 7→ h(α) .

Proof. This is by the fact that, if k ≤ n, then
k

Θr = ker h, and to the characteri-
sation of the image of h of Theorem 1.4.1.

QED

Corollary 3.1.1. The sheaf morphisms E0, . . . , En−1 are expressed through the above
isomorphisms Ik as

Ek(h(α)) = Ek(h(dα)) .

As an example, we have E0 = dh. It is easy to compute coordinate expressions for
E0, . . . , En−1 via the above Corollary.

Definition 3.1.1. Let us set
k

Vr :=
k

Hh
r+1.

We say a section L ∈
n

Vr to be a r–th order generalised Lagrangian.

It is worth to note that the sheaf of the r–th order Lagrangians of the standard

literature is
n

Hr, and that
n

Hr ⊂
n

Hh
r+1 (see the Appendix).

3.2 Euler–Lagrange morphism

In this section we will show that the quotient sheaf
n+1

Λ r/
n+1

Θ r of the variational sequence
is isomorphic to certain subsheaves of sheaves of sections of a vector bundle. In this
way, we are able to find an explicit coordinate expression for the sheaf morphism En.

Throughout this chapter we will adopt the notation

dh(
k−n

C r ∧
n−1

H h
r+1) := dh(

k−n

C r ∧
n−1

H h
r+1) ,

for evident practical reasons.
It is possible to introduce a first simplification of the quotient sheaves.



Introduction 22

Lemma 3.2.1. If k > n, then the restriction of h to the sheaf
k

Θr is the surjective
presheaf morphism

h :
k

Θr → h(d ker h) .

Moreover, pull–back yields the natural inclusion

h(d ker h) ⊂ dh(
k−n

C r ∧
n−1

H h
r+1) ⊂ h(

k

Θr+1) = h(d ker h) ,

which turns out to be an equality if dim X = 1.

Proof. The first statement is obvious. We have the natural identification ker h ≃
v(ker h), which yields

h(d ker h) ≃ h(dhv(ker h) + dvv(ker h)) ≃ hdhv(ker h) ,

due to Proposition 1.5.1. The same Proposition yields the inclusion

hdhv(ker h) ⊂ dh(
k−n

C r ∧
n−1

H h
r+1) ,

hence the inclusions of the statement.

If dim X = 1, then ker h =
k

C(r,r−1) [Kru95a, Vit95], hence the result. QED

Proposition 3.2.1. Let k > n. Then, the projection h induces the natural sheaf
isomorphism

(
k

Λr/
k

Θr

)
→

(
k−n

C r ∧
n

Hh
r+1

)/
h(d ker h) : [α] 7→ [h(α)] .

Proof. The map is clearly well defined.

Also, the map is injective, for if α, α′ ∈
k

Λr, then

[h(α)] = [h(α′)] ⇒ h(α− α′) = hdp ,

with p ∈ ker h. Hence

α− α′ = v(α− α′ − dp) + dp ,

where, being dp ∈
k

Λr and α− α′ ∈
k

Λr, we have v(α− α′ − dp) ∈
k

Λr. Due to h ◦ v = 0,
we have [α− α′] = 0.

Finally, the map is surjective, due to the surjectivity of h. QED
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Remark 3.2.1. In spite of the apparent complexity of the quotient sheaf(
k−n

C r ∧
n

Hh
r+1

)/
h(d ker h), we notice that it is made with proper subsheaves of the

sheaves
k

Λr+1 and
k

Θr+1. Hence, our search for a natural representative in each equiva-
lence class will be considerably simplified.

Remark 3.2.2. Let 0 ≤ s ≤ r. Then, the sheaf injection χr
s induces the sheaf

injection

(
k−n

C s ∧
n

Hh
s+1

)/
h(d ker h) →

(
k−n

C r ∧
n

Hh
r+1

)/
h(d ker h) .

As for the sheaf
n+1

Λ r/
n+1

Θ r, taking into account the isomorphism of Proposition 3.2.1
and the identification of Lemma 3.2.1, we have two main tasks:

1. to find for all α ∈
1

Cr∧
n

Hh
r+1 a natural (and possibly unique, in some sense) n–form

Fα ∈ h(d ker h) in such a way that the sheaf morphism

In+1 :

(
1

Cr ∧
n

Hh
r+1

)/
h(d ker h) →

n+1

Λ r+s : [α] 7→ α+ Fα

is injective (for some s ∈ N);

2. to characterise the image of the above sheaf morphism, so to obtain a sheaf of

sections of a vector bundle that is isomorphic to
n+1

Λ r/
n+1

Θ r.

The above first problem can be solved by means of a result by Kolář [Kol83]. To
proceed further, we need some notation. On the domain of any chart, we set

ω :=
n∑

λ1,...,λn=1

dλ1 ∧ . . . ∧ dλn = n!d1 ∧ . . . ∧ dn ,

ωλ := i∂λ
ω , ωλµ := i∂µ

(ωλ) .

We have

n∑

µ=1

dµ ∧ ωλ = ω .

If U ⊂ Y is a coordinate open subset and f ∈

(
0

Λr

)

U

, then we set, by induction

Jλf := (dr+1)λf , Jp+λf := JλJpf ;
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analogously, we denote by LJp
the iterated Lie derivative. We have the characterisation

Jpf ◦jr+|p|s = ∂p(f ◦jrs) ,

A Leibnitz’ rule holds (see [Sau89]); if g ∈

(
0

Λr

)

U

, then we have

Jp(fg) =
∑

q+t=p

p!

q!t!
Jqf Jtg .

Let u : Y → V Y be a vertical vector field with coordinate expression u = ui∂i. Then,
the coordinate expression of the prolongation ur : JrY → V JrY is ur = Jpu

i∂
p

i .

Theorem 3.2.1. (First variation formula for higher–order variational calculus

[Kol83]) Let α ∈
1

Λr ∧
n

Hr ≃
1

Cr ∧
n

Hr. Then there is a unique pair of sheaf morphisms

Eα ∈
1

C(2r,0) ∧
n

H2r , Fα ∈
1

C(2r,r) ∧
n

H2r ,

such that
i. (π2r

r )∗α = Eα − Fα;

ii. Fα is locally of the form Fα = dhpα, with pα ∈
1

C(2r−1,r−1) ∧
n

H2r.

Proof. The proof is carried on by induction. We set, in a coordinate neighbour-
hood,

α = α
p

i ϑ
i
p ∧ ω , pα = p

q

i
λ ϑi

q ∧ ωλ , Eα = Ei ϑ
i ∧ ω ,

where 0 ≤ |p| ≤ r and 0 ≤ |q| ≤ r − 1, hence we have

dhpα = −Jλp
q

i
λ ϑi

q ∧ ω − p
q

i
λ ϑi

q+λ ∧ ω .

The requirements on Eα and on pα yield the vanishing of some components of the
sum α + dhpα, hence a system of linear equations which has a unique pair of local
solutions Eα and dhpα. In particular, we have

Eα = (−1)|p|Jpα
p

i ϑ
i ∧ ω , 0 ≤ |p| ≤ r .(3.1)

The uniqueness ensures that Eα and dhpα are intrinsically characterised, hence they
yield two sections Eα and Fα which fulfill the requirement of the statement; in particular,
they have the same domain of definition as α. QED

Remark 3.2.3. As it is proved in [Kol83], to any Fα there always exists a section

pα ∈
1

C(2r−1,r−1) ∧
n

H2r (with the same domain as α) such that Fα. But in general
such a pα is not unique. In fact [Kol83], by adding to pα the horizontal differential
of a suitable n − 1–form we obtain another form which fulfills the conditions of the
statement. Anyway, we have some particular cases where a form pα can be uniquely
determined.
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1. Suppose that dim X = 1. Then, it can be easily proved [AnTh92, Kru95a, Vit95]
that dhpα = 0 implies pα = 0, so that pα is uniquely determined.

2. Suppose that r = 1. Then, one can easily realise that there does not exists a

n− 1–form such that its horizontal differential is a section of
1

C(2r−1,r−1) ∧
n−1

H 2r−1,
so that pα is uniquely determined. In this case, we can say even more. In fact,
we are able to determine pα from α by means of the natural sheaf morphism

p :
1

C1 ∧
n

H1 →
1

C(1,0) ∧
n−1

H 1 .

which fulfills

p(dhβ) = −β ∀β ∈
1

C(1,0) ∧
n−1

H 1 .

The above morphism was introduced in different forms by several authors [Kol93,
MaMo83b, Sau89, Vit95]. If

α = αi d
i ∧ ω + αλ

i d
i
λ ∧ ω ,

then we have the coordinate expression

p(α) = αλ
i ϑ

i ∧ ωλ .

3. In the case r = 2 we are able to characterise a unique pα by means of an additional
requirement. There is a natural morphism

s :
1

C(3,1) ∧
n−1

H 3 →
1

C(3,0) ∧
n−2

H 3

where, if p ∈
1

C(3,1) ∧
n−1

H 3 has the coordinate expression

p = pi
µ ϑi ∧ ωµ + pλ

i
µ ϑi

λ ∧ ωµ ,

then we have

s(p) = pλ
i

µ ϑi ∧ ωµλ .

It is easily proved that there exists a unique morphism pα ∈
1

C(3,1) ∧
n−1

H 3 such
that s(pα) = 0. Such a morphism is called quasisymmetric. This result has been
shown in [Kol83]. In particular, if we have the coordinate expression

α = αi ϑ
i ∧ ω + αλ

i ϑ
i
λ ∧ ω + αλ+µ

i ϑi
λ+µ ∧ ω ,

then we have

pα = (αλ
i − Jµα

µ+λ
i )ϑi ∧ ωλ + αµ+λ

i ϑi
µ ∧ ωλ .
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4. In the case r ≥ 3 we have no natural ways to select a form pα. In [Kol83] a
sufficient condition to the uniqueness of pα is given. Namely, let us denote with
T ∗

s X the s–th order cotangent bundle. Let Γ : T ∗
X → T ∗

r−1X be a section which
is also a linear morphism. Then, there exists a unique form pα[Γ]. Note that, if
r = 2, then we have the natural choice Γ = id, which yields the natural form of
the previous item.

Remark 3.2.4. The choice of the subsheaf

1

C(2r,0) ∧
n

H2r ⊂
1

C(2r,2r−1) ∧
n

H2r

will provide representatives Eα of sections of the quotient sheaf
2

Λ1/
2

Θ1 with a minimal
number of components.

Remark 3.2.5. The section Eα ∈
1

C(2r,0)∧
n

H2r has a peculiar structure with respect
to the derivative coordinates of order greater than r. In fact, if we assign to the variables
yi

p with |p| = r + s the weight s, then it is easily seen that Eα is a polynomial with

weighted degree r with respect to yi
p, with |p| > r. This kind of structure was first

introduced and studied in [KoMo90].

Corollary 3.2.1. Let α ∈
1

Cr ∧
n

Hh
r+1 ⊂

1

Λr+1 ∧
n

Hr+1. Then Eα and pα are sections
of the following subsheaves

Eα ∈
1

C(2r,0) ∧
n

Hh
2r+1 , pα ∈

1

C(2r,r−1) ∧
n−1

H h
2r .

Proof. This depends on the form of the system

α = Eα − dhpα ,

and on the fact that the form α takes values into the vector bundle T ∗JrY ∧T ∗
X, even

if it depends on Jr+1Y . QED

Remark 3.2.6. In the case α ∈
1

Cr ∧
n

Hh
r+1, the section Eα has an additional feature

with respect to the polynomial structure of Remark 3.2.5. In fact, the coefficients of
the polynomial are polynomials of (standard) degree n with respect to the coordinates
yi

p, with |p| = r + 1.

Theorem 3.2.2. Let q ∈
1

C(2r−1,r−1) ∧
n−1

H 2r−1. Then we have

dhpdhq = −dhq ,

hence Edhq = 0.
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Proof. In fact, by recalling the proof of the above Theorem, we find that the
system

dhq = Edhq − dhpdhq

has the unique solutions dhpdhq = −dhq and Edhq = 0. QED

Remark 3.2.7. The above Theorem is the geometric interpretation of the well–
known fact that ‘the Euler–Lagrange morphism annihilates divergencies’ (see also
[Tra96]).

Proposition 3.2.2. The sheaf morphism

1

Cr ∧
n

Hh
r+1 →

n+1

Λ 2r+1 : α 7→ α+ Fα

induces the injective sheaf morphism

In+1 :

(
1

Cr ∧
n

Hh
r+1

)/
h(d ker h) →

n+1

Λ 2r+1 : [α] 7→ α + Fα

Proof. We make use of the injective morphism χs
r of Remark 3.2.2 and of Lemma

3.2.1. The morphism In+1 is well–defined, due to Corollary 3.2.1 and to the fact that,

if α, β ∈
1

Cr ∧
n

Hh
r+1 such that β = α + F , where F is of the local form F = dhq with

dhq ∈ d ker h then

β + Fβ = α+ F + Fα + FF ,

where FF = −F by the uniqueness in Theorem 3.2.1.
We have to prove that the morphism is injective. Suppose that

β + Fβ = α + Fα .

Hence β − α = Fα − Fβ, so [β − α] = 0. QED

The final step is to characterise the image of In+1.

Theorem 3.2.3. We have the sheaf isomorphism

In+1 :
n+1

Λ r/
n+1

Θ r →
n+1

V r,

where

n+1

V r :=

(
1

Cr ∧
n

Hh
r+1 + dh(

1

C(2r,r−1) ∧
n−1

H 2r)

)
∩

(
1

C(2r+1,0) ∧
n

H2r+1

)
.

Proof. It comes from the isomorphism of Proposition 3.2.1, the injective morphism
In+1 and the characterisation of the image of In+1 provided by Theorem 3.2.1. QED
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Now, we can evaluate En by means of the isomorphisms In, In+1.

Theorem 3.2.4. Let α ∈
n

Vr. Then, En(α) ∈
n+1

V r coincides with the standard
higher–order Euler–Lagrange morphism [Fer83, FeFr82, GaMu82, Kol83, Kru83, Sau89]
associated with the generalised r–th order Lagrangian α, regarded as a standard r+1–th
order Lagrangian.

Proof. In fact, Theorem 3.2.1 yields the standard higher–order Euler–Lagrange
morphism. Moreover, we have the inclusions

n

Vr ⊂
n

Hr+1 ⊂
n

Vr+1 .

The result now is immediate, due to the commutativity of the inclusion of the bicomplex
of order r into the bicomplex of order r + 1 (Remark 2.2.1). QED

Definition 3.2.1. Let α ∈
n+1

Λ r.

We say Eh(α) ∈
n+1

V r to be the generalised r–th order Euler–Lagrange morphism
associated with α.

We say ph(α) to be a generalised r th order momentum associated with Eh(α).
We say En to be the generalised r–th order Euler–Lagrange operator.

Remark 3.2.8. It is of fundamental importance to note that some theories which
are based upon polynomial (r+ 1)–th order horizontal Lagrangians can be seen also as
r–th order theories using a non–horizontal Lagrangian (see Appendix). And it is worth
to point out that most of second–order horizontal Lagrangians known in physics are
affine.

3.3 Helmholtz morphism

In this section we will devote ourselves to a description of the presheaf

En+1

(
n+1

V r

)
≃ En+1

(
n+1

Λ r/
n+1

Θ r

)
=

(
d

n+1

Λ r/d
n+1

Θ r

)
.

In particular, we will find an isomorphism of this presheaf with a subpresheaf of a
sheaf of sections of a vector bundle. Hence, we will be able to provide an explicit ex-
pression for the map En+1. This will yield an intrinsic geometric object whose vanishing
is equivalent to the Helmholtz conditions of local variationality.

Let E ∈
n+1

V r. In order to evaluate the expression of En+1(E), it is very difficult to

find a n + 1–form α ∈
n+1

Λ s such that In+1([h(α)]) = E. So, it is difficult in concrete
cases to use the commutativity of the diagram in order to compute En+1.
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Hence, the most convenient way to reach our task is to use Theorem 3.2.1 together

with the isomorphism
n+1

Λ r/
n+1

Θ r →
n+1

V r in order to simplify the analysis of the sheaf

En+1

(
n+1

Λ r/
n+1

Θ r

)
.

Lemma 3.3.1. We have the natural injection

(
d

n+1

Λ r/d
n+1

Θ r

)
→

(
2

C2r+1 ∧
n

Hh
2r+2

)/
h(d ker h) : [dα] 7→ [dEh(α)] .

Proof. It is a direct consequence of the decomposition

α = Eh(α) − dhph(α) + v(α) .

together with ddh = −dhdv. QED

Hence, we search for natural representatives of the classes of the image of

d
n+1

V r ⊂
1

Λ2r+1 ∧
1

C(2r+1,0) ∧
n

H2r+1 ≃
1

C2r+1 ∧
1

C(2r+1,0) ∧
n

H2r+1 ⊂
2

C2r+1 ∧
n

Hh
2r+2

into the quotient

(
2

C2r+1 ∧
n

Hh
2r+2

)/
h(d ker h); we denote this image by [d

n+1

V r].

Our task is the following one: to characterise a unique representative of every equiv-

alence class of [d
n+1

V r] by means of the higher–order Euler–Lagrange morphism.
First of all, we need a technical Lemma.

Lemma 3.3.2. Let β ∈
1

Cs ∧
1

C(s,0) ∧
n

Hs. Suppose that the coordinate expression of
β is

β = β
p

i jϑ
i
p ∧ ϑ

j ∧ ω , 0 ≤ |p| ≤ s .

Let u : Y → V Y be a vertical vector field, with coordinate expression u = ui∂i, and set

β̂ := ius
β .

Then we have Eβ̂ = ejϑ
j ∧ ω, with

ej = Jpu
i


β

p

i j −

k−|p|∑

|q|=0

(−1)|p+q| (p+ q)!

p!q!
Jqβ

p+q

j i


 ,

where 0 ≤ |p| ≤ s.

Proof. It follows from the coordinate expression of Eβ̂ and the Leibnitz’rule for
Jp. QED
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Lemma 3.3.3. Let β ∈
1

Cs ∧
1

C(s,0) ∧
n

Hs. Then, there is a unique

H̃β ∈
1

C(2s,s) ⊗
1

C(2s,0) ∧
n

H2s

such that, for all u : Y → V Y ,

Eβ̂ = C1
1

(
u2s⊗H̃β

)
,

where β̂ := ius
β, and C1

1 stands for tensor contraction.

Proof. Let U ⊂ Y be an open coordinate subset, and suppose that we have the
expression on U

β = β
p

i jϑ
i
p ∧ ϑ

j ∧ ω , 0 ≤ |p| ≤ s .

Then we have the coordinate expression

Eβ̂ = Jpu
i


β

p

i j −

s−|p|∑

|q|=0

(−1)|p+q| (p+ q)!

p!q!
Jqβ

p+q

j i


ϑj ∧ ω .

Let us set

H̃β[U ] :=


β

p

i j −

s−|p|∑

|q|=0

(−1)|p+q| (p+ q)!

p!q!
Jqβ

p+q

j i


ϑi

p⊗ϑ
j ∧ ω .

Then, by the arbitrariness of u, H̃β[U ] is the unique morphism fulfilling the conditions
of the statement on U .

If V ⊂ Y is another open coordinate subset and U∩V 6= ∅, then, by uniqueness, we
have H̃β[U ]|U∩V = H̃β[V ]|U∩V . Hence, we obtain the result by setting H̃β|U := H̃β[U ]
on any coordinate open subset U ⊂ Y . QED

Theorem 3.3.1. (Generalised second variation formula).

Let β ∈
1

Cs ∧
1

C(s,0) ∧
n

Hs. Then, there is a unique pair of sheaf morphisms

Hβ ∈
1

C(2s,s) ∧
1

C(2s,0) ∧
n

H2s , Gβ ∈
2

C(2s,s) ∧
n

H2s ,

such that
i. π2s

s
∗
β = Hβ −Gβ

ii. Hβ = 1/2A(H̃β), where A is the antisymmetrisation map.

Moreover, Gβ is locally of the type Gβ = dhqβ, where qβ ∈
2

C2s−1 ∧
n−1

H 2s−1, hence
[β] = [Hβ].
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Proof. It is clear that Gβ is uniquely determined by β and the choice Hβ =
1/2A(H̃β).

Moreover, it can be easily seen [Sau89] by induction on |p| that, on a coordinate
open subset U ⊂ Y , we have

β = β
p

i jϑ
i
p ∧ ϑ

j ∧ ω = β
p

i jLp(ϑ
i) ∧ ϑj ∧ ω = (−1)|p|ϑi ∧ Lp(β

p

i jϑ
j) ∧ ω + 2dhqβ ,

which yields the thesis by the Leibnitz’ rule, the injective morphism χs
r of remark 2.2.1,

and the inclusions (3.2.1) (a similar local result can be found in [Bau82, Kru90]).
QED

Remark 3.3.1. In general, the section qβ is not uniquely characterised. But, if
dim X = 1, then there exists a unique qβ fulfilling the conditions of the statement of
the above theorem.

Corollary 3.3.1. The presheaf En+1

(
n+1

V r

)
is isomorphic to the image of the in-

jective morphism

In+2 :

(
d

n+1

Λ r/d
n+1

Θ r

)
→

1

C4r+1 ∧
1

C(4r+1,0) ∧
n

H4r+1 : [dα] 7→ HdEh(α)
.

Proof. In+2 is well defined, because, recalling Lemma 3.3.1, if we add a suitable
form G of the local type G = dhq to dEh(α), the uniqueness of the decomposition of
the generalised second variation formula (see also the above Corollary) yields HG = 0.
Moreover, In+2 is valued into

1

C4r+1 ∧
1

C(4r+1,0) ∧
n

H4r+1 ⊂
1

C4r+2 ∧
1

C(4r+2,0) ∧
n

H4r+2

due to the coordinate expression of Eh(α) and HdEh(α)
; more precisely, being Eh(α) affine

with respect to the highest order derivatives, such derivatives disappear from the coef-
ficient of dEh(α) which produces the higher order coefficient of HdEh(α)

. The injectivity
of In+2 follows from Lemma 3.3.1 and the above Corollary, because if dEh(α) and dEh(β)

fulfill HdEh(α)
= HdEh(β)

, then we have

dEh(α) − dEh(β) = GdEh(β)
−GdEh(α)

,

hence [dEh(α) − dEh(β)] = 0. QED

Remark 3.3.2. Unlike the Euler–Lagrange morphism, the Helmholtz morphism is
not characterised as being a section of a particular subsheaf. Anyway, the vanishing of
[dα] is completely equivalent to the vanishing of Hdα. See also [And86, GiMa90] for a
derivation of the Helmholtz conditions as Euler–Lagrange equations. Also, it is evident
that the vanishing of Hdα is a weaker condition than the vanishing of dα.
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Corollary 3.3.2. The sheaf morphism En+1 can be expressed via In+1 and In+2 by

En+1 :
n+1

V r →
1

C4r+1 ∧
1

C(4r+1,0) ∧
n

H4r+1 : E 7→ HdE .

Moreover, if the coordinate expression of E is E = Ejϑ
j ∧ ω, then the coordinate

expression of En+1(E) is

En+1(E) =
1

2


∂

p

iEj −

2r+1−|p|∑

|q|=0

(−1)|p+q| (p+ q)!

p!q!
Jq∂

p+q

j Ei


ϑi

p ∧ ϑ
j ∧ ω .

Definition 3.3.1. Let α ∈
n+1

Λ r.
We say HdEh(α)

to be the generalised r–th order Helmholtz morphism.
We say qdEh(α)

to be a generalised r–th order momentum associated to the Helmholtz
morphism.

We say En+1 to be the generalised r–th order Helmholtz operator.

Remark 3.3.3. In this section we have obtained an intrinsic Helmholtz morphism
that is associated to each first–order generalised Euler–Lagrange morphism via the sheaf
morphism En+1. The vanishing of the Helmholtz morphism is completely equivalent to
the standard local Helmholtz conditions (see, for example, [AnDu80, And86, Bau82,
GiMa90, Kru90, LaTu77, Ton69]).

As a by–product, to each first–order generalised Euler–Lagrange morphism E ∈
n+1

V r

we find a unique intrinsic contact two–form GdE , where GdE = dhqdE locally; q plays a
role analogous to that of p.

3.4 Inverse problems

In this section, we show that the results of the above sections together with the exact-
ness of the variational sequence yield the solution for two important inverse problems:
the minimal order variationally trivial Lagrangians and the minimal order Lagrangian
corresponding to a locally variational Euler–Lagrange morphism. As for trivial La-
grangians, our result agrees with the local result of [Gri99b, KrMu99].

We can summarise the results of the above sections in the following theorem.

Theorem 3.4.1. The r–th order short variational sequence is isomorphic to the
exact sequence

0 - IR -
0

Λr

E0 -
1

Vr

E1 - . . .

. . .
En−1-

n

Vr

En-
n+1

V r

En+1- En+1

(
n+1

V r

)
En+2- 0 ,
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We have two main consequences of the exactness of the above sequence.

Corollary 3.4.1. Let L ∈ (
n

Vr)Y such that En(L) = 0. Then, for any y ∈ Y

there exist an open neighbourhood U ⊂ Y of y and a section T ∈ (
n−1

V r)U such that
En−1(T ) = L. If Hn

de Rham
Y = 0, then we can choose U = Y .

Proof. The first statement comes from the definition of exactness for a sheaf se-
quence. The second statement comes from the abstract de Rham theorem; in fact,
the (long) variational sequence is a (soft) resolution of the constant sheaf IR (see
[Kru90, Wel80]). QED

Definition 3.4.1. Let L ∈ (
n

Vr)Y such that En(L) = 0. We say L to be a variation-
ally trivial r–th order (generalised) Lagrangian.

Remark 3.4.1. If L ∈
n

Vr is variationally trivial, then L is (locally) of the form

L = En−1(h(α)) = dhα, with α ∈
n−1

Λ r.
We stress that a similar result is obtained in [Kru93], but with a computational

proof.

As for (
n+1

V r)Y , we have a result which is analogous to the above corollary, and
justifies the following definition.

Definition 3.4.2. Let E ∈ (
n+1

V r)Y . If En+1(E) = 0, then we say E to be a locally
variational (generalised) r–th order Euler–Lagrange morphism.

So, to any locally variational Euler–Lagrange morphism there exists a local La-
grangian whose associated Euler–Lagrange morphism (locally) coincides with the given
one. This is a well–known fact in the theory of infinite order Lagrangian sequences,
but the novelty provided by our approach is the minimality of the order of the local
Lagrangian. In fact, we have the following obvious proposition.

Proposition 3.4.1. Let E ∈ (
n+1

V r)Y such that E 6∈ (
n+1

V r−1)Y . Let E be locally

variational. Then, for any (local) Lagrangian L ∈
n

Vr of E, we have L 6∈
n

Vr−1.

Remark 3.4.2. In the literature there are similar results [AnDu80, And86, AnTh92],
but proofs are done by computations. The finite order variational sequence provides a
structural answer to the minimal order Lagrangian problem.
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Remark 3.4.3. We stress that a minimal order Lagrangian L ∈
n

Vr for a locally

variational Euler–Lagrange morphism E ∈
n+1

V r can be explicitly computed.

Namely, we pick an α ∈
n+2

Λ r corresponding to the Euler–Lagrange morphism (i.e. ,
In+1(h(α)) = E), and apply the contact homotopy operator (which is just the restriction

of the Poincaré’s homotopy operator to
n+2

Θ r) to the closed form dα ∈
n+2

Θ r, finding

β ∈
n+1

Θ r such that dβ = dα. By using once again using the (standard) homotopy

operator we find γ ∈
n

Λr such that dγ = β − α : L := In(γ) is the minimal order
Lagrangian.

We recall that the well–known Volterra–Vainberg method for finding a Lagrangian
for E yields a (2r + 1)–th order Lagrangian.

Appendix: calculus of variations

In this Appendix we give the intrinsic geometrical setting for the calculus of variations in
Lagrangian mechanics ([GoSt73, Kru73, Tul75, Gar74, FeFr82, GaMu82, Fer83, Kol83,
MaMo83b, Cos94]). The aim is to justify the choice of the contact subsequence in the
variational bicomplex, and to give an interpretation of the results of paper.

Suppose that a section L ∈
n

Hr is given. Then the action of an r–th Lagrangian L
on a section s : I → Y (I is an orientable open subset of X with compact closure and
regular boundary) is defined to be the real number

∫

I

(jrs)
∗L .

A vertical vector field u : Y → V Y defined on π−1(I) and vanishing on π−1(∂I) is
said to be a variation field .

A section s : I → Y is said to be critical if, for each variation field with flow φp, we
have

δ
∫

I

(Jrφp◦jrs)
∗L = 0 ,

where δ is the variational derivative with respect to the parameter p, and Jrφp : JrY →
JrY is first jet prolongation of the morphism φp (see [MaMo83a]).

The derivative δ commutes with
∫
I
, so that the above condition is equivalent to

∫

I

(jrs)
∗Lur

L = 0

for each variation field u, where ur : JrY → V JrY is the r–th jet prolongation of u
(see the first section), and Lur

stands for the Lie derivative.
Using the splitting of Proposition 3.2.1 (or, equivalently, adding the form pdL to L)

together with Lur
L = iur

dL and the Stokes’ theorem, we find that the above equation
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is equivalent to

∫

I

(j2rs)
∗(iuEdL) = 0

for each variation field u. Finally, by virtue of the fundamental lemma of calculus of
variations, the above condition is equivalent to

(j2rs)
∗EdL = 0 ,

or, that is the same, EdL◦j2rs = 0.

Remark 3.4.4. The reason of the choice of the sheaf
k

Θr (for O ≤ k ≤ n) as the

first non–trivial sheaf of the contact subsequence is now clear: for k = n
n

Θr is made by
forms which does not contribute to the action.

As for the sheaf
n+1

Θ r, it is easily seen that this is precisely the sheaf of forms that
give no contribution to the above last integral when added to EdL.

Analogously, a ‘second variation’ of on Euler–Lagrange type operator can be defined

(see [Tak79]); the sheaf
n+2

Θ r is the sheaf of forms that give no contribution to the integral
of this second variation.

Remark 3.4.5. Given α ∈
n

Λr, we can extend the definition of action of a first–order
(generalised) Lagrangian α on a section s : I → Y as

∫
I
(jrs)

∗α. By means of a pull–back
on Jr+1Y , we obtain the equivalent action

∫
I
(jr+1s)

∗h(α), being (jr+1s)
∗v(α) = 0, and

we have h(α) ∈
n

Vr. This explains how the r–th order variational sequence generalises
the r–th order variational calculus (see [Kru90, Kru95a, Kru95b]).



Bibliography

[And86] I. M. Anderson: Aspects of the Inverse Problem to the Calculus of Variations,
in Proc. Conf. Diff. Geom. and its Appl., Brno, 1986.

[And92] I. M. Anderson: Introduction to the variational bicomplex, Contemporary
Mathematics, American Math. Soc., 132, 1992, 51–73.

[AnDu80] I. M. Anderson, T. Duchamp: On the existence of global variational princi-
ples, Amer. Math. J., 102 (1980), 781–868.

[AnTh92] I. M. Anderson, G. Thompson: The Inverse Problem of the Calculus of
Variations for Ordinary Differential Equations, Memoirs of the Am. Math. Soc.,
98, n. 473 (1992).

[Bau82] M. Bauderon: Le problème inverse du calcul des variations, Ann. de l’I.H.P.,
36, n. 2 (1982), 159–179.

[Bau85] M. Bauderon: Differential Geometry and Lagrangian Formalism in the Cal-
culus of Variations, in Lecture Notes in Pure and Applied Mathematics n. 100:
Differential Geometry, Calculus of Variations and their Applications, Marcel
Dekker, New York, 1985, p. 67.

[Cos94] P. G. Costantini: On The Geometrical Structure of Euler–Lagrange Equations,
Ann. Mat. Pura ed Applicata, 167, n. 4 (1994), 389–402.

[Cra81] M. Crampin: On the differential geometry of the Euler–Lagrange equations, and
the inverse problem of Lagrangian dynamics, J. Phys. A: Math. Gen., 14 (1981),
2567–2575.

[DeTu80] P. Dedecker, W. M. Tulczyjew: Spectral sequences and the inverse problem
of the calculus of variations, Internat. Coll. on Diff. Geom. Methods in Math.
Phys., Aix–en–Provence, 1979; Lecture Notes in Mathematics, n. 836, Springer–
Verlag, Berlin, 1980, 498–503.

[Fer83] M. Ferraris: Fibered Connections and the global Poincaré–Cartan Form in
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