An inverse problem of ocean acoustics * $*$

A.G. Ramm
Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract

Let $$
\begin{gather*} \Delta u+k^{2} n(z) u=-\frac{\delta(r)}{2 \pi r} f(z) \text { in } \mathbb{R}^{2} \times[0,1], \tag{1}\\ u\left(x^{1}, 0\right)=0, \quad u^{\prime}\left(x^{1}, 1\right)=0, \tag{2} \end{gather*}
$$ where $u=u\left(x^{1}, z\right), \quad x^{1}:=\left(x_{1}, x_{2}\right), r:=\left|x^{1}\right|, \quad x_{3}:=z, \quad u^{\prime}=\frac{\partial u}{\partial z}, \delta(r)$ is the delta-function, $n(z)$ is the refraction coefficient, which is assumed to be a realvalued integrable function, $k>0$ is a fixed wavenumber. The solution to (1)-(2) is selected by the limiting absorption principle.

It is proved that if $f(z)=\delta(z-1)$, then $n(z)$ is uniquely determined by the data $u\left(x^{1}, 1\right)$ known $\forall x^{1} \in \mathbb{R}^{2}$. Comments are made concerning the earlier study of a similar problem in the literature.

1 Introduction

In [1] the following inverse problem is studied:

$$
\begin{gather*}
{\left[\Delta+k^{2} n(z)\right] u=-\frac{\delta(r)}{2 \pi r} f(z), \quad \text { in } \mathbb{R}^{2} \times[0,1],} \tag{1.1}\\
u\left(x^{1}, 0\right)=u^{\prime}\left(x^{1}, 1\right)=0, \quad x^{1}:=\left(x_{1}, x_{2}\right), \quad x_{3}:=z, \quad u^{\prime}:=\frac{\partial u}{\partial z} . \tag{1.2}
\end{gather*}
$$

[^0]Here $k>0$ is a fixed wavenumber, $n(z)>0$ is the refraction coefficient, which is assumed in [1] to be a continuous real-valued function satisfying the condition $0 \leq$ $n(z)<1$, the layer $\mathbb{R}^{2} \times[0,1]$ models shallow ocean, $r:=\left|x^{1}\right|=\sqrt{x_{1}^{2}+x_{2}^{2}}, \quad \delta(r)$ is the delta-function, $\frac{\delta(r)}{2 \pi r}=\delta\left(x^{1}\right), f(z) \in C^{2}[0,1]$ is a function satisfying the following conditions [1] p.127:

$$
\begin{equation*}
f(0)=f^{\prime \prime}(0)=f^{\prime}(1)=0, \quad f^{\prime}(0) \neq 0, \quad f(1) \neq 0, \quad f(z)>0 \quad \text { in } \quad(0,1) \tag{C}
\end{equation*}
$$

The solution to (1.1)-(1.2) in [1] is required to satisfy some conditions ([1] , p. 122, formulas (1.4), (1.8)-(1.10)) of the radiation conditions type.

It is convenient to define the solution as $u(x)=\lim _{\varepsilon \downarrow 0} u_{\varepsilon}(x)$, that is by the limiting absorption principle. We do not show the dependence on k in $u(x)$ since $k>0$ is fixed throughout the paper. The function $u_{\varepsilon}(x)$ is the unique solution to problem (1.1)-(1.2) in which equation (1.1) is replaced by the equation with absorption:

$$
\left[\Delta+k^{2} n(z)-i \varepsilon\right] u_{\varepsilon}(x)=-\frac{\delta(r)}{2 \pi r} f(z), \quad \text { in } \mathbb{R}^{2} \times[0,1], \varepsilon>0
$$

One defines the differential operator corresponding to differential expression (1.1) and the boundary conditions (1.2) in $L^{2}\left(\mathbb{R}^{2} \times[0,1]\right)$ as a selfadjoint operator (for example, as the Friedrichs extension of the symmetric operator with the domain consisting of $H^{2}\left(\mathbb{R}^{2} \times[0,1]\right)$ functions vanishing near infinity and satisfying conditions (1.2)), and then the function $u_{\varepsilon}(x)$ is uniquely defined. By H^{m} we mean the usual Sobolev space. One can prove that the limit of this function $u(x)=\lim _{\varepsilon \downarrow 0} u_{\varepsilon}(x)$ does exist globally in the weighted space $L^{2}\left(\mathbb{R}^{2} \times[0,1], \frac{1}{(1+r)^{a}}\right), a>1$, and locally in $H^{2}\left(\mathbb{R}^{2} \times[0,1]\right)$ outside a neighborhood of the set $\{r=0,0 \leq z \leq 1\}$, provided $\lambda_{j} \neq 0 \forall j$, where λ_{j} are defined in (1.7) below. This limit defines the unique solution to problem (1.1)-(1.2) satisfying the limiting absorption principle if $\lambda_{j} \neq 0 \forall j$. If $f(z)=\delta(z-1)$, where $\delta(z-1)$ is the delta-function, then an analytical formula for $u_{\varepsilon}(x)$ can be written:

$$
u_{\varepsilon}(x)=\sum_{j=1}^{\infty} \psi_{j}(z) f_{j} \frac{1}{2 \pi} K_{0}\left(r \sqrt{\lambda_{j}^{2}+i \varepsilon}\right)
$$

where $K_{0}(r)$ is the modified Bessel function (the Macdonald function), and $f_{j}=\psi_{j}(1)$ are defined in (1.6) below, and $\psi_{j}(z)$ and λ_{j}^{2} are defined in formula (1.7) below. This formula can be checked by direct calculation and is obtained by the separation of variables. The known formula $\mathcal{F}^{-1} \frac{1}{\lambda^{2}+a^{2}}=\frac{1}{2 \pi} K_{0}(a r)$ was used, and $\mathcal{F} u:=\hat{u}$ is the Fourier transform defined above formula (1.3).

From the formula for $u_{\varepsilon}(x)$, the known asymptotics $K_{0}(r)=\sqrt{\frac{\pi}{2 r}} e^{-r}\left[1+O\left(r^{-1}\right)\right]$ for large values of r, the boundedness of $\left|\psi_{j}(z)\right|$ as $j \rightarrow \infty$ and formula (1.8) below, one can see that the limit of $u_{\varepsilon}(x)$ as $\varepsilon \rightarrow 0$ does exist for any $r>0$ and $z \in[0,1]$, if and only if $\lambda_{j} \neq 0$. If $\lambda_{j}=0$ for some $j=j_{0}$, then the limiting absorption principle holds if and only if $f_{j_{0}}=0$. If $\lambda_{j} \neq 0 \forall j$, then the limiting absorption principle holds and the solution to
problem (1.1)-(1.2) is well defined. If $\lambda_{j}=0$ for some $j=j_{0}$, then we define the solution to problem (1.1)-(1.2) with $f(z)=\delta(z-1)$ by the formula:

$$
u(x)=\psi_{j_{0}}(z) \psi_{j_{0}}(1) \frac{1}{2 \pi} \log \left(\frac{1}{r}\right)+\sum_{j=1, j \neq j_{0}}^{\infty} \psi_{j}(z) \psi_{j}(1) \frac{1}{2 \pi} K_{0}\left(r \lambda_{j}\right), \quad r:=\left|x^{1}\right| .
$$

This solution is unique in the class of functions of the form $u(x)=\sum_{j=1}^{\infty} u_{j}\left(x^{1}\right) \psi_{j}(z)$, where $\Delta_{1} u_{j}-\lambda_{j}^{2} u_{j}=-\delta\left(x^{1}\right)$ in $\mathbb{R}^{2}, \Delta_{1} w:=w_{x_{1} x_{1}}+w_{x_{2} x_{2}}, u_{j} \in L^{2}\left(\mathbb{R}^{2}\right)$ if $\lambda_{j}^{2}>0$; if $\lambda_{j}^{2}<0$ then u_{j} satisfies the radiation condition $r^{1 / 2}\left(\frac{\partial u_{j}}{\partial r}-i\left|\lambda_{j}\right| u_{j}\right) \rightarrow 0$ as $r \rightarrow \infty$, uniformly in directions $\frac{x^{1}}{r}$; and if $\lambda_{j}^{2}=0$ then $u_{j}=\frac{1}{2 \pi} \log \left(\frac{1}{r}\right)+o(1)$ as $r \rightarrow \infty$.

The inverse problem (IP) consists of finding $n(z)$ given $g\left(x^{1}\right):=u\left(x^{1}, 1\right)$ and assuming that $f(z)=\delta(z-1)$ in (1.1).

By the cylindrical symmetry one has $g\left(x^{1}\right)=g(r)$.
It is claimed in [1, p. 137] that the above inverse problem has not more than one solution, and a method for finding this solution is proposed. The arguments in [1] are not satisfactory (see Remark 2.1 below, where some of the incorrect statements from [1], which invalidate the approach in [1], are pointed out).

The aim of our paper is to prove that if $f(z)=\delta(z-1)$, then $n(z)$ can be uniquely and constructively determined from the data $g(r)$ known for all $r>0$. It is an open problem to find all such $f(z)$ for which the $I P$ has at most one solution.

The method we use is developed in [5] (see also [7]). Properties of the operator $\Delta+k^{2} n(z)$ in a layer were studied in [6]. In [8] an inverse problem for an inhomogeneous Schrödinger equation on the full axis was investigated.

Let us outline our approach to IP.
Take the Fourier transorm of (1.1)-(1.2) with respect to x^{1} and let

$$
v:=v(z, \lambda):=\hat{u}:=\int_{\mathbb{R}^{2}} u\left(x^{1}, z\right) e^{i x^{1} \cdot \zeta} d x^{1}, \quad|\zeta|:=\lambda, \quad \zeta \in \mathbb{R}^{2}
$$

and

$$
G(\lambda):=\hat{g}(r)
$$

Then

$$
\begin{gather*}
\ell v:=v^{\prime \prime}-\lambda^{2} v+q(z) v=-f(z), \quad q(z):=k^{2} n(z), \quad v=v(z, \lambda) \tag{1.3}\\
v(0, \lambda)=v^{\prime}(1, \lambda)=0 \tag{1.4}\\
v(1, \lambda)=G(\lambda) \tag{1.5}
\end{gather*}
$$

IP: The inverse problem is: given $G(\lambda)$, for all $\lambda>0$ and a fixed $f(z)=\delta(z-1)$, find $q(z)$.

The solution to (1.3)-(1.4) is:

$$
\begin{equation*}
v(z, \lambda)=\sum_{j=1}^{\infty} \frac{\psi_{j}(z) f_{j}}{\lambda^{2}+\lambda_{j}^{2}}, \quad f_{j}:=\left(f, \psi_{j}\right):=\int_{0}^{1} f(z) \psi_{j}(z) d z \tag{1.6}
\end{equation*}
$$

where $\psi_{j}(z)$ are the real-valued normalized eigenfunctions of the operator $L:=-\frac{d^{2}}{d z^{2}}-$ $q(z)$:

$$
\begin{equation*}
L \psi_{j}=\lambda_{j}^{2} \psi_{j}, \quad \psi_{j}(0)=\psi_{j}^{\prime}(1)=0, \quad\left\|\psi_{j}(z)\right\|=1 \tag{1.7}
\end{equation*}
$$

We can choose the eigenfunctions $\psi_{j}(z)$ real-valued since the function $q(z)=k^{2} n(z)$ is assumed real-valued. One can check that all the eigenvalues are simple, that is, there is just one eigenfunction ψ_{j} corresponding to the eigenvalue λ_{j}^{2} (up to a constant factor, which for real-valued normalized eigenfunctions can be either 1 or -1).

It is known (see e.g. [4. p.71]) that

$$
\begin{equation*}
\lambda_{j}^{2}=\pi^{2}\left(j-\frac{1}{2}\right)^{2}\left[1+O\left(\frac{1}{j^{2}}\right)\right] \text { as } j \rightarrow+\infty \tag{1.8}
\end{equation*}
$$

The data can be written as

$$
\begin{equation*}
G(\lambda)=\sum_{j=1}^{\infty} \frac{\psi_{j}(1) f_{j}}{\lambda^{2}+\lambda_{j}^{2}} \tag{1.9}
\end{equation*}
$$

where f_{j} are defined in (1.6). The series (1.9) converges absolutely and uniformly on compact sets of the complex plane λ outside the union of small discs centered at the points $\pm i \lambda_{j}$. Thus, $G(\lambda)$ is a meromorphic function on the whole complex λ-plane with simple poles at the points $\pm i \lambda_{j}$. Its residue at $\lambda=i \lambda_{j}$ equals $\frac{\psi_{j}(1) f_{j}}{2 i \lambda_{j}}$.

If $f(z)=\delta(z-1)$, then $f_{j}=\psi_{j}(1) \neq 0 \forall j=1,2, \ldots \ldots$, (see section 2 for a proof of the inequality $\left.\psi_{j}(1) \neq 0 \forall j=1,2, \ldots .,\right)$ and the data (1.9) determine uniquely the set

$$
\begin{equation*}
\left\{\lambda_{j}^{2}, \quad \psi_{j}^{2}(1)\right\}_{j=1,2, \ldots} \tag{1.10}
\end{equation*}
$$

In section 2 we prove the basic result:
Theorem 1.1. If $f(z)=\delta(z-1)$ then the data (1.5) determine $q(z) \in L^{1}(0,1)$ uniquely.
An algorithm for calculation of $q(z)$ from the data is described in section 2.
Remark 1.2. The proof and the conclusion of Theorem 1.1 remain valid for other boundary conditions, for example, $u^{\prime}\left(x^{1}, 0\right)=u\left(x^{1}, 1\right)=0$ with the data $u\left(x^{1}, 0\right)$ known for all $x^{1} \in \mathbb{R}^{2}$.

2 Proofs: uniqueness theorem and inversion algorithm

Proof of Theorem 1.1. The data (1.9) with $f(z)=\delta(z-1)$, that is, with $f_{j}=\psi_{j}(1)$, determine uniquely $\left\{\lambda_{j}^{2}\right\}_{j=1,2, \ldots .}$ since $\pm i \lambda_{j}$ are the poles of the meromorphic function $G(\lambda)$ which is uniquely determined for all $\lambda \in \mathbb{C}$ by its values for all $\lambda>0$ (in fact, by its values at any infinite sequence of $\lambda>0$ which has a finite limit point on the real axis). The residues $\psi_{j}^{2}(1)$ of $G(\lambda)$ at $\lambda=i \lambda_{j}$ are also uniquely determined.

Let us show that:
i) $\psi_{j}(1) \neq 0 \quad \forall j=1,2, \ldots$
ii) The set (1.10) determines $q(z) \in L^{1}(0,1)$ uniquely.

Let us prove i):
If $\psi_{j}(1)=0$ then equation (1.7) and the Cauchy data $\psi_{j}(1)=\psi_{j}^{\prime}(1)=0$ imply that $\psi_{j}(z) \equiv 0$ which is impossible since $\left\|\psi_{j}(z)\right\|=1$, where $\|u\|^{2}:=\int_{0}^{1}|u|^{2} d x$.

Let us prove ii):
It is sufficient to prove that the set (1.10) determines the norming constants

$$
\alpha_{j}:=\left\|\Psi_{j}(z)\right\|^{2}
$$

and therefore the set

$$
\left\{\lambda_{j}^{2}, \alpha_{j}\right\}_{j=1,2, \ldots}
$$

where the eigenvalues λ_{j}^{2} are defined in (1.7), $\Psi_{j}=\Psi\left(z, \lambda_{j}\right), \psi_{j}(z):=\frac{\Psi\left(z, \lambda_{j}\right)}{\left\|\Psi_{j}\right\|}$,

$$
\begin{equation*}
-\Psi^{\prime \prime}-s^{2} \Psi-q(z) \Psi=0, \quad \Psi(0, s)=0, \quad \Psi^{\prime}(0, s)=1 \tag{2.1}
\end{equation*}
$$

and λ_{j} are the zeros of the equation

$$
\begin{equation*}
\Psi^{\prime}(1, s)=0, \quad s=\lambda_{j}, \quad j=1,2, \ldots \ldots \tag{2.2}
\end{equation*}
$$

The function $\Psi^{\prime}(1, s)$ is an entire function of $\nu=s^{2}$ of order $\frac{1}{2}$, so that (see [2]):

$$
\begin{equation*}
\Psi^{\prime}(1, s)=\gamma \prod_{j=1}^{\infty}\left(1-\frac{s^{2}}{\lambda_{j}^{2}}\right), \quad \gamma=\text { const } . \tag{2.3}
\end{equation*}
$$

From the Hadamard factorization theorem for entire functions of order <1 formula (2.3) follows but the constant factor γ remains undetermined. This factor is determined by the data $\left\{\lambda_{j}^{2}\right\}_{\forall j}$ because the main term of the asymptotics of function (2.3) for large positive s is $\cos (s)$, and the result in [4], p.243, (see Claim 1 below) implies that the constant γ in formula (2.3) can be computed explicitly:

$$
\begin{equation*}
\gamma=\prod_{j=1}^{\infty} \frac{\lambda_{j}^{2}}{\left(\lambda_{j}^{0}\right)^{2}} \tag{2.3’}
\end{equation*}
$$

where λ_{j}^{0} are the roots of the equation $\cos (s)=0, \lambda_{j}^{0}=\frac{(2 j-1) \pi}{2}, j=1,2, \ldots$. , and the infinite product in (2.3') converges because of (1.8).

A simple derivation of (2.3'), independent of the result formulated in Claim 1 below, is based on the formula:

$$
1=\lim _{y \rightarrow+\infty} \frac{\Psi^{\prime}(1, i y)}{\cos (i y)}=\gamma \prod_{j=1}^{\infty} \frac{\left(\lambda_{j}^{0}\right)^{2}}{\lambda_{j}^{2}}
$$

For convenience of the reader let us formulate the result from [4], p.243, which yields formula (2.3') as well:

Claim 1: The function $w(\lambda)$ admits the representation

$$
w(\lambda)=\cos (\lambda)-B \frac{\sin (\lambda)}{\lambda}+\frac{h(\lambda)}{\lambda}
$$

where $B=$ const, $h(\lambda)=\int_{0}^{1} H(t) \sin (\lambda t) d t$, and $H(t) \in L^{2}(0,1)$ if and only if

$$
w(\lambda)=\prod_{j=1}^{\infty} \frac{\lambda_{j}^{2}-\lambda^{2}}{\left(\lambda_{j}^{0}\right)^{2}},
$$

where $\lambda_{j}=\lambda_{j}^{0}-\frac{B}{j}+\frac{\beta_{j}}{j}, \beta_{j}$ are some numbers satisfying the condition: $\sum_{j=1}^{\infty}\left|\beta_{j}\right|^{2}<\infty$, λ_{j} are the roots of the even function $w(\lambda)$ and $\lambda_{j}^{0}=\left(j-\frac{1}{2}\right) \pi, j=1,2, \ldots$. are the positive roots of $\cos (\lambda)$.

The equality

$$
\begin{equation*}
\prod_{j=1}^{\infty} \frac{\lambda_{j}^{2}-\lambda^{2}}{\left(\lambda_{j}^{0}\right)^{2}}=\gamma \prod_{j=1}^{\infty}\left(1-\frac{\lambda^{2}}{\lambda_{j}^{2}}\right), \tag{2.3"}
\end{equation*}
$$

where γ is defined in (2.3'), is easy to prove: if w is the left-hand side and v the right-hand side of the above equality, then w and v are entire functions of λ, the infinite products converge absolutely, $\frac{\lambda_{j}^{2}-\lambda^{2}}{\left(\lambda_{j}^{0}\right)^{2}}=\frac{\lambda_{j}^{2}}{\left(\lambda_{j}^{0}\right)^{2}}\left(1-\frac{\lambda^{2}}{\lambda_{j}^{2}}\right)$, and taking the infinite product and using (2.3'), one concludes that $\frac{w}{v}=1$, as claimed.

In fact, one can establish formula (2.3") and prove that γ in (2.3") is defined by (2.3') without assuming a priori that (2.3') holds and without using Claim 1. The following assumption suffices for the proof of (2.3"):
i) $\lambda_{j}^{2}=\left(\lambda_{j}^{0}\right)^{2}+O(1),\left(\lambda_{j}^{0}\right)^{2}=\pi^{2}\left(j-\frac{1}{2}\right)^{2}$.

Indeed, if i) holds then both sides of (2.3") are entire functions with the same set of zeros and their ratio is a constant. This constant equals to 1 if there is a sequence of points at which this ratio converges to 1 . Using the known formula: $\cos (\lambda)=\prod_{j=1}^{\infty} \frac{\left(\lambda_{j}^{0}\right)^{2}-\lambda^{2}}{\left(\lambda_{j}^{0}\right)^{2}}$, and the assumption i) one checks easily that the ratio of the left- and right-hand sides of (2.3") tends to 1 along the positive imaginary semiaxis. Thus, we have proved formulas (2.3)-(2.3') without reference to Claim 1.

The above claim is used with $w(s)=\Psi^{\prime}(1, s)$ in our paper. The fact that $\Psi^{\prime}(1, s)$ admits the representation required in the claim is checked by means of the formula for $\Psi^{\prime}(1, s)$ in terms of the transformation operator: $\Psi(z, s)=\frac{\sin (s z)}{s}+\int_{0}^{z} K(z, t) \frac{\sin (s t)}{s} d t$, and the properties of the kernel $K(z, t)$ are studied in [4]. Thus, $\Psi^{\prime}(1, s)=\cos (s)+$ $\frac{K(1,1) \sin (s)}{s}+\int_{0}^{1} K_{z}(1, t) \frac{\sin (s t)}{s} d t$. This is the representation of $\Psi^{\prime}(1, s):=w(s)$ used in Claim 1.

Let us derive a formula for $\alpha_{j}:=\left\|\Psi_{j}\right\|^{2}$. Denote $\dot{\Psi}:=\frac{d \Psi}{d \nu}$, differentiate (2.1), with s^{2} replaced by ν, with respect to ν and get:

$$
\begin{equation*}
-\dot{\Psi}^{\prime \prime}-\nu \dot{\Psi}-q \dot{\Psi}=\Psi \tag{2.4}
\end{equation*}
$$

Since $q(z)$ is assumed real-valued, one may assume ψ real-valued. Multiply (2.4) by Ψ and (2.1) by $\dot{\Psi}$, subtract and integrate over $(0,1)$ to get

$$
\begin{equation*}
0<\alpha_{j}:=\int_{0}^{1} \Psi_{j}^{2} d z=\left.\left(\Psi_{j}^{\prime} \dot{\Psi}_{j}-\Psi_{j} \dot{\Psi}_{j}^{\prime}\right)\right|_{0} ^{1}=-\Psi_{j}(1) \dot{\Psi}_{j}^{\prime}(1) \tag{2.5}
\end{equation*}
$$

where the boundary conditions $\Psi_{j}(0)=\Psi_{j}^{\prime}(1)=\dot{\Psi}_{j}(0)=0$ were used.
From (2.3) with $s^{2}=\nu$ one finds the numbers $b_{j}:=\dot{\Psi}_{j}^{\prime}(1)$:

$$
\begin{equation*}
b_{j}=\left.\gamma \frac{d}{d \nu} \prod_{j^{\prime}=1}^{\infty}\left(1-\frac{\nu}{\lambda_{j^{\prime}}^{2}}\right)\right|_{\nu=\lambda_{j}^{2}}=-\frac{\gamma}{\lambda_{j}^{2}} \prod_{j^{\prime} \neq j}\left(1-\frac{\lambda_{j}^{2}}{\lambda_{j^{\prime}}^{2}}\right) . \tag{2.6}
\end{equation*}
$$

Claim 2: The data $\psi_{j}^{2}(1)=\frac{\Psi_{j}^{2}(1)}{\alpha_{j}}:=t_{j}$, where $\alpha_{j}:=\left\|\Psi_{j}(z)\right\|^{2}$, and equation (2.5) determine uniquely α_{j}.

Indeed, the numbers b_{j} are the known numbers from formula (2.6). Denote by $t_{j}:=$ $\psi_{j}^{2}(1)$ the quantities known from the data (1.10). Then it follows from (2.5) that $\alpha_{j}^{2}=$ $t_{j} \alpha_{j} b_{j}^{2}$, so that

$$
\begin{equation*}
\alpha_{j}=t_{j} b_{j}^{2} \tag{2.7}
\end{equation*}
$$

Claim 2 is proved.
Thus, the data (1.10) determine $\alpha_{j}=\left\|\Psi_{j}\right\|^{2}$ uniquely and analytically by the above formula, and consequently $q(z)$ is uniquely determined by the following known theorem (see for example, [3]):

The spectral function of the operator L determines $q(z)$ uniquely.
The spectral function $\rho(\lambda)$ of the operator L is defined by the formula (see [3, formula (10.5)]):

$$
\begin{equation*}
\rho(\lambda)=\sum_{\lambda_{j}^{2}<\lambda} \frac{1}{\alpha_{j}} \tag{2.8}
\end{equation*}
$$

The Gelfand-Levitan algorithm [3] allows one to reconstruct analytically $q(z)$ from the spectral function $\rho(\lambda)$ and therefore from the data (1.10), since, as we have proved already, these data determine the spectral function $\rho(\lambda)$ uniquely.

Theorem 1.1 is proved.

Let us describe an algorithm for calculation of $q(z)$ from the data $g\left(x^{1}\right)$:
Step 1: Calculate $G(\lambda)$, the Fourier transform of $g\left(x^{1}\right)$. Given $G(\lambda)$, find its poles $\pm i \lambda_{j}$, and consequently the numbers λ_{j}; then find its residues, and consequently the numbers $\psi_{j}(1) f_{j}$.

Step 2: Calculate the function (2.3), and the constant γ by formulas (2.3) and (2.3'). Calculate the numbers b_{j} by formula (2.6) and α_{j} by formula (2.7). Calculate the spectral function $\rho(\lambda)$ by formula (2.8).

Step 3: Use the known Gel'fand-Levitan algorithm (see [3]-[5]) to calculate $q(z)$ from $\rho(\lambda)$.

This completes the description of the inversion algorithm for IP.
Remark 2.1. There are inaccuracies in [1]. We point out two of these, of which the first invalidates the approach in [1].

In [1, p.128, line 2] the α_{n} are not the same as α_{n} in formula [1, (3.3)]. If one uses α_{n} from formula [1, (3.3)], then one has to use in [1, p.128, line 2] the coefficients $\alpha_{n} \phi_{n}(h)$, according to formula [1, (1.5)]. In [1] h is the width of the layer, which we took to be $h=1$ in our paper without loss of generality. However, the numbers $\phi_{n}(h)$ are not known in the inverse problem, since the coefficient $n(z)$ is not known. Therefore formula [1, (3.9)] is incorrect. This invalidates the approach in [1].

In [1, p.128] a negative decreasing sequence of real numbers a_{n} is defined by equation (3.1), which we give for $h=1$:

$$
k \sqrt{1-a_{n}^{2}}=\left(n+\frac{1}{2}\right) \pi+O\left(\frac{1}{n}\right) \quad(*) .
$$

Such a sequence does not exist: if $a_{n}<0$ and a_{n} has a finite limit then the right-hand side of $(*)$ cannot grow to infinity, and if $a_{n} \rightarrow-\infty$, then the left-hand side of ($*$) cannot stay positive for large n, and therefore cannot be equal to the right-hand side of $(*)$.

References

[1] Gilbert R., Xu Y., An inverse problem for harmonic acoustis in stratified ocean. J. Math Anal. Appl., 176, (1993), 121-137.
[2] Levin B.Ya., Zeros of entire functions, Amer. Math. Soc., Providence, 1964.
[3] Levitan B.M., Inverse Sturm-Liouville problems, VNU Press, Utrecht, The Netherlands, 1987.
[4] Marchenko V. Sturm-Liouville operators and applications, Birkhäuser, Basel, 1986.
[5] Ramm A.G., Multidimensional inverse scattering problems, Longman/Wiley, New York, 1992, pp.1-385. Russian translation of the expanded monograph, Mir Publishers, Moscow, 1994, pp.1-496.
[6] Ramm A.G., G. Makrakis, Scattering by obstacles in acoustic waveguides, In the book: Spectral and scattering theory, Plenum, New York, 1998 (ed. A.G.Ramm), pp.89-110.
[7] Ramm A.G., Inverse problem for an inhomogeneous Schrödinger equation, Jour. Math. Phys, 40, N8, (1999), 3876-3880.
[8] Weder R., Spectral and scattering theory for wave propagation in perturbed stratified media, Springer Verlag, New York, 1991.

[^0]: *Key words and phrases: inverse scattering, wave propogation, waveguides,ocean acoustics
 ${ }^{\dagger}$ Math subject classification: 35R30

