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Abstract

We develop a graph-Hilbert-space framework, inspired by non-commutative
geometry, on (infinite) graphs and use it to study spectral properies of
graph-Laplacians and so-called graph-Dirac-operators. Putting the various
pieces together we define a spectral triplet sharing most (if not all, depend-
ing on the particular graph model) of the properties of what Connes calls
a spectral triple. With the help of this scheme we derive an explicit expres-
sion for the Connes-distance function on general graphs and prove both a
variety of apriori estimates for it and calculate it for certain examples of
graphs. As a possibly interesting aside, we show that the natural setting
of approaching such problems may be the framework of (non-)linear pro-
gramming or optimization. We compare our results (arrived at within our
particular framework) with the results of other authors and show that the
seeming differences depend on the use of different graph-geometries and/or
Dirac operators.
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1 Introduction

We recently embarked on a programme to reconstruct continuous physics and/or
mathematics from an underlying more primordial and basically discrete theory
living on the Planck-scale (cf. [1],[2],[3]). As sort of a “spin-off” various problems
of a more mathematical and technical flavor emerged which have an interest of
their own. Discrete differential geometric concepts were dealt with in [1], the
theory of random graphs was a central theme of [2], topics of dimension theory
and fractal geometry were addressed in [4].

If one wants to recover the usual (differential) operators of continuum physics
and mathematics by some sort of limiting process from their discrete protoforms,
living on a relatively disordered discrete background like, say, a network, one has,
in a first step, to study their discrete counterparts. This will be our main theme in
the following with particular emphasis on discrete Laplacians and Dirac-operators
on general graphs.

We note in passing that functional analysis on graphs is both of interest
in pure and applied mathematics and also in various fields of (mathematical)
physics. For one, discrete systems have an increasing interest of their own or serve
as easier to analyse prototypes of their continuum counterparts. To mention a
few fields of applications: graph theory in general, analysis on (discrete) man-
ifolds, lattice or discretized versions of physical models in statistical mechanics
and quantum field theory, non-commutative geometry, networks, fractal geometry
etc. From the vast and widely scattered literature we mention (possibly) very
few sources which were of relevance for our own motivation or we came across
recently (after finishing a first draft): [6] to [12],[5] and [32], paper [13] appeared
after finishing our first draft, some more literature like e.g. [14] was pointed out
to us by Mueller-Hoissen; the possible relevance of references [15] to [17] were
brought to our notice by some unknown referee, [18] was also discovered by us
only recently. Last, but not least, there is the vast field of discretized quantum
gravitiy (see e.g. [19] or [20]). All this shows that the sort of discrete functional
analysis we are dealing with in the following, is presently a very active field with
a lot of different applications.

We use the graph-Hilbert-space machinery, developed in the first part of our
paper to investigate the spectral properties of graph Laplacians and Dirac oper-
ators. In a next step we study and test concepts and ideas, which arose in the
framework of non-commutative geometry. As we (and others) showed in preced-
ing papers, networks and graphs may (or even should) be understood as examples
of non-commutative spaces. A currently interesting topic in this field is the in-
vestigation of certain distance functionals on “nasty” or non-standard spaces and
their mathematical or physical “naturalness”. Graphs carry, on the one hand, a
natural metric structure given by a distance function d(x, y), with x, y two nodes
of the graph (see the following sections). This fact was already employed by us
in e.g. [4] to develop dimensional concepts on graphs. Having Connes’ concept
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of distance in noncommutative geometry in mind (cf. chapt. VI of [5]), it is
a natural question to try to compute it in model systems, which means in our
context: arbitrary graphs, and compare it with the already existing notion of
graph distance mentioned above. (We note in passing that the calculation of the
Connes distance for general graphs turns out to be surprisingly complex and leads
to perhaps unexpected connections to fields of mathematics like e.g. (non-)linear
programming or optimization; see the last section).

Therefore, as one of many possible applications we construct a protoform of
what Connes calls a spectral triple, that is, a Hilbert space structure , a corre-
sponding representation of a certain (function) algebra and a (in our framework)
natural candidate for a so-called Dirac operator (not to be confused with the
ordinary Dirac operator of the Dirac equation), which encodes certain properties
of the graph geometry. This will be done in section 4.

In the last section, which deals with the distance concept deriving from this
spectral triplet (as we like to call it), we will give this notion a closer inspection
as far as graphs and similar spaces are concerned. In this connection some recent
work should be mentioned, in which Connes’ distance function was analyzed
in certain simple models like e.g. one-dimensional lattices ([23]-[25]). These
papers already show that it is a touchy business to isolate “the” appropriate
Dirac operator (after all, different Dirac operators are expected to lead to different
geometries!) and that it is perhaps worthwhile to scrutinize the whole topic in a
more systematic way. We show in particular that one may choose different Dirac-
operators on graphs (or rather, different types of graphs over the same node set)
which may lead to different results for e.g. the corresponding Connes-distance.

The problem of finding suitable metrics on “non-standard” spaces is a particu-
larly interesting research topic of its own, presently pursued by quite a few people
(see the beautiful paper by Rieffel, [12] and the references mentioned therein).
Another earlier source is e.g. [14]. As to this latter paper we would like to remark
that, while much of the framework is different from ours, there is, on the other
side, a small overlap as far as some technical notions and results are concerned
(after an appropriate translation of the respective technical notions and defini-
tions). To give an example: While the definition of Dirac operators is different,
some of the operator norms and metrics, being calculated, turn out to be identical
to ours. This suggests a more careful comparison of the underlying conceptual
ideas which we plan to give elsewhere. We presently extend this investigation
of metric structures to lump spaces and probabilistic metric spaces (see [36] and
[37]) in the general context of quantum gravity (cf. also [2]).

Our own approach provides a systematic recipe to calculate the Connes dis-
tance in the most general cases of graphs and exhibits its role as a non-trivial
constraint on certain function classes on graphs. We prove various rigorous a
priori estimates and show how the constraints have to be dealt with in several
examples.

2



Remark: (For possible reasons of priority) we would like to mention that many
of our results can already be found in a (preliminary form) in an earlier draft
version ([26]).

2 A brief Survey of Differential Calculus on

Graphs

The following is a brief survey of certain concepts and tools needed in the further
analysis. While our framework may deviate at various places from the ordinary
one, employed in e.g. algebraic graph theory, this is mainly done for reasons
of greater mathematical flexibility and generality and, on the other side, possi-
ble physical applications (a case in point being the analysis of non-commutative
spaces). Some more motivations are provided in [1] and [2]). We begin with
the introduction of some graph theoretical concepts. We would however like to
mention, that it is not our intention to cover any appreciable amount of the
close interrelationship between graph spectra and graph characteristics (as has
e.g. been done in [15]; our main emphasis lies on providing various Hilbert-space-
techniques).

Definition 2.1 (Simple Locally Finite (Un)directed Graph)

1. We write the simple graph as G := (V, E) where V is the countable set of
nodes {ni} (or vertices) and E the set of bonds (edges). The graph is called
simple if there do not exist elementary loops and multiple edges, in other
words: each existing bond connects two different nodes and there exists at
most one bond between two nodes. (We could of course also discuss more
general graphs). Furthermore, for simplicity, we assume the graph to be
connected, i.e. two arbitrary nodes can be connected by a sequence of con-
secutive bonds called an edge sequence or walk. A minimal edge sequence,
that is one with each intermediate node occurring only once, is called a path
(note that these definitions may change from author to author).

2. We assume the graph to be locally finite, that is, each node is incident with
only a finite number of bonds. Sometimes it is useful to make the stronger
assumption that this vertex degree, vi, (number of bonds being incident with
ni), is globally bounded away from ∞.

3. One can give the edges both an orientation and a direction (these two, in
our view, slightly different geometric concepts are frequently intermixed in
the literature). In our context we adopt the following convention: If two
nodes ni, nk are connected by a bond, we interpret this as follows: There
exists a directed bond, dik, pointing from ni to nk and a directed bond, dki,
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pointing in the opposite direction. In an algebraic sense, which will become
clear below (for more details see also [1]), we call their superposition

bik := dik − dki = −bki (1)

the corresponding oriented bond (for obvious reasons; the directions are
fixed while the orientation can change its sign). In a sense the above reflects
the equivalence of an undirected graph with a directed multi-graph having
two directed bonds pointing in opposite directions for each undirected bond.

This way of algebraic implementation of geometric structures allows us to treat
in principle all kinds of graphs on essentially the same footing. That is, it also
applies to, say, graphs with only one directed edge being existent between two
nodes. On the other side, an orientation should exist also for undirected graphs.
As an aside, we remark that, on the one side, our generators, bik, correspond to the
oriented pairs of nodes, (i, k) in e.g. [15], on the other hand, our dik correspond
to the oriented pairs, (i, k), in [14]. One sees from this that the conventions are
far from being unique and that a certain unification may be desirable.

We now take the elementary building blocks {ni} and {dik} as basis elements
of a certain hierarchy of vector spaces over, say, C with scalar product

(ni|nk) = δik (dik|dlm) = δil · δkm (2)

Definition 2.2 (Vertex-, Edge-Space) The vector spaces (or modules) C0,
Ca

1 (a for antisymmetric) and C1 consist of the finite sums

f :=
∑

fini g :=
∑

gikdik with gik = −gki and g′ :=
∑

gikdik (3)

fi, gik ranging over a certain given field like e.g. C or ring like e.g. Z in case of
a module. Evidently we have Ca

1 ⊂ C1.

These spaces can be easily completed to Hilbert spaces by assuming
∑

|fi|2 < ∞
∑

|gik|2 < ∞ (4)

if one chooses e.g. the field C (see the next section). Furthermore, one can
continue this row of vector spaces in ways which are common practice in, say,
algebraic topology ( see [1] sections 3.1 and 3.2). In this context they are frequently
called chain complexes (see also [18]). Evidently the above vector spaces could
as well be viewed as discrete function spaces over the node-, bond set with ni, dik

now representing the elementary indicator functions.
In the same spirit we can now introduce two linear maps between C0, C1 called

for obvious reasons boundary- and coboundary map. On the basis elements they
act as follows:
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Definition 2.3 ((Co)boundary Operator)

δ : dik → nk hence bik → nk − ni (5)

d : ni →
∑

k

(dki − dik) =
∑

k

bki (6)

and linearly extended. That is, δ maps the directed bonds dik onto the terminal
node and bik onto its (oriented) boundary, while d maps the node ni onto the sum
of the ingoing directed bonds minus the sum of the outgoing directed bonds or on
the sum of oriented ingoing bonds bki.

The following results show, that these definitions lead in fact to a kind of
discrete differential calculus on C0, C1.

Observation 2.4 (Discrete Differential Forms) From the above it follows that

df = d(
∑

fini) =
∑

k,i

(fk − fi)dik (7)

Combining now the operators δ and d, we can construct, what is called the
canonical graph Laplacian. On the vertex space it reads:

Observation 2.5 (Graph Laplacian)

δdf = −
∑

i

(
∑

k

fk − vi · fi)ni = −
∑

i

(
∑

k

(fk − fi))ni =: −∆f (8)

where vi denotes the node degree or valency defined above and the k-sum extends
over the nodes adjacent to ni.

Note that there exist several variants in the literature (see e.g. [15] or [9]). Fur-
thermore, many mathematicians employ a different sign-convention. We stick in
the following to the convention being in use in the mathematical-physcis literature
where −∆ is the positive(!) operator.

This graph Laplacian is intimately connected with yet another important ob-
ject, employed by graph-theorists, i.e. the adjacency matrix of a graph.

Definition 2.6 (Adjacency Matrix) The entries aik of the adjacency matrix
A have the value one if the nodes ni, nk are connected by a bond and are zero
elsewhere. If the graph is undirected (but orientable; the case we mainly discuss),
the relation between ni, nk is symmetric, i.e.

aik = 1 ⇒ aki = 1 etc. (9)

This has the obvious consequence that in case the graph is simple and undirected,
A is a symmetric matrix with zero diagonal elements.
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Remark: More general A’s occur if more general graphs are admitted (e.g. general
multigraphs).

Observation 2.7 : With our definition of ∆ it holds:

∆ = A − V (10)

where V is the diagonal degree matrix, having vi as diagonal entries.

(Note that the other sign-convention would lead to ∆ = V − A).

Proof: As we have not yet introduced the full Hilbert space machinery (which we
will introduce in the next section), the proof has to be understood, for the time
being, in an algebraic way. We then have:

Af = A(
∑

fini) =
∑

i

fi(
∑

k−i

nk) =
∑

i

(
∑

k−i

fk)ni (11)

V f =
∑

i

(vifi)ni (12)

hence the result. 2

(Here and in the following we use the abbreviation k − i if the nodes nk, ni are
connected by a bond, the summation always extending over the first variable).

As we already remarked above, our approach to functional analysis on graphs
is perhaps a little bit different compared with the usual one. It seems therefore to
be appropriate to exhibit some of the conceptual differences as compared to the
more traditional framework, as e.g. developed in the beautiful monographs [8]
or [9], by briefly discussing the following (however only minor) point. In general,
the graphs under discussion may be directed or undirected. In the traditional
approach the edges are typically independently labelled of the nodes and the
corresponding edge space, denoted in this case for the time being by Ĉ1, is built
over this edge set. In contrast to that habit we found it useful to label the
occurring edges as dik, bik with bik = −bki which leads in our view to a more
flexible discrete calculus and, among other things, to a natural Dirac operator on
graphs (see below).

More or less related to our operators d, d∗ (d∗ the adjoint of d; see the next
section) are now the so-called incidence matrix, B, and its adjoint in the tradi-
tional approach which relate the edges with the nodes. To do this, the edges are
given an adhoc orientation, denoting one vertex arbitrarily as initial point, the
other as end point. With the n labelled vertices, ni and m labelled edges, ej (Bij)
has the entries











+1 if ni is the endpoint of ej

−1 if ni is the initial point of ej

0 otherwise

(13)
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Evidently B is a mapping from Ĉ1 to C0 and maps an edge to the respective
difference of end vertex and initial vertex. By the same token, the transpose, Bt

is defined as a map from C0 to Ĉ1 and one gets:

B · Bt = V − A (14)

Note that the above introduced adhoc orientation does not enter in any end result;
on the other hand, our approach is not based on such a contingent structure.

3 Some Spectral Analysis and Operator Theory

on (Infinite) Graphs

After these preliminary remarks we now enter the heart of the matter. Our first
task consists of endowing a general graph with a natural Hilbert space structure
on which the various operators constructed in the following can operate. (The
following analysis is done on undirected graphs, but could be extended to more
general but less symmetric situations).

Definition 3.1 (Hilbert Space) As indicated in the previous section, we ex-
tend C0, C

a
1 , C1 to the respective Hilbert spaces H0, H

a
1 ⊂ H1 of sequences over

the respective ON-bases {ni}, {dik}, that is (ni|nk) = δi,k, (dik|di′k′) = δii′δkk′.
As Ha, H we take the direct sums:

Ha := H0 ⊕ Ha
1 ⊂ H := H0 ⊕ H1 (15)

Note that members of Ha
1 can be written

∑

gikdik = 1/2
∑

gikdik + 1/2
∑

gkidki = 1/2
∑

gik(dik − dki) = 1/2
∑

gikbik

(16)

Obviously Ha is a subspace of H and we have

(bik|bik) = 2 (17)

i.e. the bik are not(!) normalized if the dik are. We could of course enforce this
but then a factor two would enter elsewhere.

With these definitions it is now possible to define the maps d, δ as true oper-
ators between these Hilbert (sub)spaces. To avoid domain problems we assume
from now on that the node degree v(ni) is uniformly bounded on the graph G, i.e.

vi ≤ vmax < ∞ (18)
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Observation 3.2 We have the following relations

d : H0 → Ha
1 ⊂ H1, δ : H1 → H0 (19)

d1,2 with

d1,2 : ni →
∑

dki ,
∑

dik (20)

respectively and linearly extended, are linear operators from H0 → H1 and we
have

d = d1 − d2 (21)

Similarly we may define δ =: δ1 and δ2 via:

δ1,2 : dik → nk, ni (22)

It is remarkable (but actually not surprising) that vi ≤ vmax implies that
all the above operators are bounded (in contrast to their continuous counterparts,
which are typically unbounded). Taking this for granted at the moment, there are
no domain problems and a straightforward analysis yields the following relations:

Observation 3.3

1. The adjoint d∗ of d with respect to the spaces H0, H
a
1 is 2δ

2. On the other side we have for the natural extension of d, δ to the larger
space H1 (cf. the definitions in Observation 3.2):

δ1 = (d1)
∗ , δ2 = (d2)

∗ (23)

hence

(δ1 − δ2) = (d1 − d2)
∗ = d∗ 6= 2δ = 2δ1 (24)

3. Furthermore we have

d∗
1 · d1 = δ1 · d1 = d∗

2 · d2 = V : ni → vini (25)

d∗
1 · d2 = δ1 · d2 = d∗

2 · d1 = δ2 · d1 = A : ni →
∑

k−i

nk (26)

Similar geometric properties of the graph are encoded in the products coming
in reversed order.
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That and how d, d∗ encode some more geometric information about the graph
can be seen from the following domain- and range-properties (for corresponding
results in the more traditional approach see also [8],p.24ff).

Theorem 3.4 Let the graph be connected and finite, |V| = n, then

dim(Rg(d∗)) = n − 1 (27)

dim(Ker(d∗)) =
∑

i

vi − (n − 1) (28)

With dim(H1) =
∑

i vi, dim(Ha
1 ) = 1/2 · dim(H1) we have

codim(Ker(d∗)) = dim(Rg(d)) = n − 1 (29)

We see that both Rg(d∗) and Rg(d) have the same dimension (n − 1).

Remark 3.5 In case the graph has, say, c components, the above results are
altered in an obvious way; we have for example

dim(Rg(d∗)) = n − c (30)

Proof: we first state the general result for bounded operators

Rg(T ∗) = Ker(T )⊥ (31)

we then have for T = d

f ∈ Ker(d) ⇒ 0 = d(f) =
∑

ik

(fk − fi)dik (32)

As the dik are linearly independent this entails fk = fi for the pairs (i.k) which
occur in the sum. Since the graph is connected we have fk = fi = const for all
nodes, hence dim(Ker(d)) = 1 and is spanned by

∑

i ni. this proves the first
item.

In a similar way we proceed for d∗.

0 = d∗(g) =
∑

i

(
∑

k

(gki − gik))ni ⇒
∑

k

(gki − gik) = 0 for all nodes ni (33)

In H1 gik, gki can be independently chosen. We have n linear equations, which
are, however, not independent. There is, in fact, exactly one apriori constraint
of the form

∑

i

(
∑

k

(gik − gki)) = 0 (34)

Hence, the above yields exactly n − 1 independent linear equations for the
∑

vi

coefficients. This implies that the subspace, so defined, has dimension
∑

vi −
(n − 1). This proves items two and three. 2
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Observation 3.6 In the literature Ker(d∗) is called (for obvious reasons) the
cycle subspace (cf e.g. [8]). On the antisymmetric subspace Ha

1 we have d∗ = 2δ
and δ(bik) = nk − ni. Choosing now a cycle, given by its sequence of consecutive
vertices ni1 , . . . , nik ; nik+1

:= ni1, we have

d∗(
∑

bilil+1
) = 2

∑

(nil+1
− nil) = 0 (35)

that is, vectors of this kind lie in the kernel of d∗

We will now provide quantitative lower and upper bounds for the respective
norms of the occurring operators. For d we have:

d : H0 ∋
∑

i

fini →
∑

i

fi(
∑

k−i

bki) =
∑

ik

(fk − fi)dik (36)

and it follows for the norm of the rhs:

‖rhs‖2 =
∑

ik

|(fk − fi)|2 =
∑

i

vi · |fi|2 +
∑

k

vk · |fk|2 −
∑

i6=k

(fkfi + fifk)

= 2 ·
∑

i

vi|fi|2 − 2 ·
∑

i6=k

fkfi (37)

The last expression can hence be written:

‖df‖2 = 2((f |V f) − (f |Af)) = (f | − 2∆f) (38)

and shows the close relationship of the norm of d with the expectation values of
the adjacency and degree matrix respectively the graph Laplacian. That is, norm
estimates for, say, d, derive in a natural manner from the corresponding estimates
for A or −∆. It follows from the above that we have:

Observation 3.7

‖df‖2 = (f |d∗df) = (f | − 2∆f) (39)

i.e.

d∗d = −2∆ hence ‖d‖2 = sup
‖f‖=1

(f | − 2∆f) = ‖ − 2∆‖ (40)

and

0 < sup
‖f‖=1

(f | − 2∆f) ≤ 2vmax + 2 sup
‖f‖=1

| < f |Af > | (41)

i.e.

‖ − ∆‖ ≤ vmax + ‖A‖ (42)

10



We want to note that we are exclusively using the operator norm also for matrices
(in contrast to most of the matrix literature), which is also called the spectral
norm. It is unique in so far as it coincides with the so-called spectral radius (cf.
e.g. [27] or [28]), that is

‖A‖ := sup{|λ|; λ ∈ spectr(A)} (43)

We now provide upper and lower bounds for the operator norm of the ad-
jacency matrix, A, both in the finite- and infinite-dimensional case. In [29] we
estimated the upper bound by a method being different from the following calcu-
lation which, being based on form-estimates, is much more direct. The previous
proof was based on the so-called Gerschgorin-inequality for finite matrices and
a not entirely straightforward extension to the infinite dimensional case. We ex-
pect this upper bound to be well-known (cf. e.g. [15], Theorem 2.8 – Lemma
of Gabber-Galil – which is slightly more general). We do not know whether this
is also the case for the lower bound. As such lower bounds are frequently less
straightforward to derive and since, as a byproduct, we develop several potentially
useful techniques, we give our own proof of the lower bound below.

Theorem 3.8 (Norm of A) With the adjacency matrix A finite or infinite and
a finite vmax we have the following result (a certain fixed labelling of the nodes
being assumed):

lim sup n−1 ·
n

∑

i=1

vi ≤ ‖A‖ = sup{|λ|; λ ∈ spectr(A)} ≤ vmax (44)

Proof: In order to prove the upper bound we use a form-estimate directly for the
infinite case. We have

|(x, Ax)| = |
∑

xja
jixi| ≤

∑

aji 6=0

|xj| · |xi| (45)

with aji = 1 or 0. Note that, due to the symmetry of A, each term, |xj | · |xi|
occurs twice in the above sum. With

2|xj | · |xi| ≤ |xj |2 + |xi|2 (46)

we have

rhs of (45) ≤ vmax · |x|2 (47)

and hence

|(x, Ax)| ≤ vmax(x, x) (48)
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Strictly speaking we have the norm-bound up to now only proved for the above
quadratic form. The well-known Riesz-lemma associates the form with a unique
bounded operator which is the adjacency matrix we started with. This proves
the first estimate.

To prove the lower bound, we label the nodes or the corresponding orthonor-
mal basis by (e1, e2, . . . ), and introduce the respective adjacency matrices on the
corresponding subspaces, Xn, belonging to the induced subgraphs, Gn, spanned
by (e1, . . . , en). We choose a normalized vector, xn, in Xn with all its entries
being n−1/2. We then have

‖A‖ = sup
‖x‖=1

|(x, Ax)| ≥ |(xn, Axn)| = |(xn, Anxn)| = n−1
n

∑

1

vi (49)

This proves the theorem.

Lemma 3.9 The adjacency matrices, An, converge strongly to A and we have
in particular ‖An‖ ր ‖A‖.

Remark 3.10 To prove strong convergence of operators is of some relevance
for the limit behavior of spectral properties of the operators An, A. That is (cf.
e.g. [30] section VIII.7), we have in that case (An, A selfadjoint and uniformly
bounded) An → A in strong resolvent sense, which implies that the spectrum of
the limit operator, A, cannot suddenly expand, i.e.

λ ∈ spec(A) ⇒ ∃ λn ∈ spec(An) with λn → λ (50)

and for a, b 6∈ specpp(A)

P(a,b)(An) → P(a,b)(A) strongly (51)

Proof of the Lemma: Strong convergence can be proved as follows. A − An has
the matrix representation

A − An =

(

0 Bn

Bt
n Cn

)

(52)

with

(A − An)x =

(

Bnx′
n

0

)

+

(

0
Bt

nxn

)

+

(

0
Cnx

′
n

)

(53)

where

x =

(

xn

x′
n

)

with xn =
n

∑

1

xiei , x′
n =

∞
∑

n+1

xiei (54)
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(and the Bn not to be confused with the incidence matrices of section 2) Multi-
plying from the left with x we easily establish weak convergence since

(x|(A − An)x) = (xn|Bnx
′
n) + (x′

n|Bt
nxn) + (x′

n|Cnx
′
n) (55)

and with n → ∞ all the terms on the rhs go to zero, as ‖x′
n‖ → 0 for n → ∞

since ‖x‖ < ∞ and Bn, Bt
n are again uniformly bounded.

To show strong convergence the critical term is Bt
nxn. Bt

n maps the vector
xn ∈ Xn into X ′

n = X ⊖ Xn, Xn, X
′
n living on the node sets Vn, V − Vn. As

vmax < ∞ we can find for each given n a finite, minimal mn so that all bonds
beginning at nodes of Vn end in Vmn

, in other words:

∀ n ∃ mn ≥ n with Bt
nxn ∈ Xmn

⊖ Xn (56)

or

Bt
mn

xmn
= Bt

mn
(xmn

− xn) (57)

as Bt
mn

xn = 0 by construction.
The Bt

n are uniformly bounded and ‖xmn
− xn‖ → 0 for n → ∞, hence

‖Bt
mn

xmn
‖ → 0 with n → ∞ (58)

Each l ∈ N lies between some mn and m(n+1) and we have

Bt
l xl = Bt

l (xn + (xl − xn)) = Bt
l (xl − xn) (59)

as Bt
l xn = 0 for all l ≥ mn ≥ n.

l → ∞ ⇒ mn → ∞ ⇒ n → ∞ hence ‖xl − xn‖ → 0 (60)

which shows that

s − lim(Bt
l xl) = s − lim(Bt

l x) = 0 (61)

2

Remark 3.11 A slightly simpler but perhaps less instructive proof can be given
by exploiting the already established weak convergence together with special prop-
erties of An, Bn etc., yielding

lim
n

((A − An)x|(A − An)x) = − lim
n

(Anxn|Bnx
′
n) = 0 (62)

To prove the monotone convergence of ‖An‖ to ‖A‖, we proceed as follows.
For the principal minors we have

An = PnAPn and An = PnAmPn (63)
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with Pn projecting on the subspace spanned by e1, . . . , en and m ≥ n. Hence

‖An‖ ≤ ‖A‖ and ‖An‖ ≤ ‖Am‖ (64)

as ‖Pn‖ = 1. From this we see that ‖An‖ is monotonely increasing with n → ∞
and uniformly bounded by ‖A‖. In other words:

‖An‖ → a ≤ ‖A‖ (65)

The equality of a and ‖A‖ follows then immediately from the strong convergence
of An towards A. This proves the above lemma.

To test the effectiveness of the upper and lower bounds derived above, we
apply them to a non-trivial model recently discussed in [31], i.e. the infinite binary
tree with root n0 where v0 is two and vi equals three for i 6= 0. The authors show
(among other things) that the spectrum consists of the interval [−2

√
2, 2

√
2],

i.e. ‖A‖ = 2
√

2. vmax is three, we have to calculate lim sup 1/n · ∑n
1 vi. For

simplicity we choose a subsequence so that n := n(N) with N denoting the N -th
level (consisting of 2N nodes) of the tree starting from the root n0. Note that in
the corresponding induced subgraph GN the boundary nodes sitting in the N -th
level have only node degree one with respect to GN but three viewed as nodes in
the full tree.

We then have

n =

N
∑

k=1

2k ,

n(N)
∑

i=0

vi = 2 + 3 ·
N−1
∑

k=1

2k + 2N = 3 ·
N

∑

k=0

2k − 2 · 2N − 1 (66)

Hence

lim
n(N)

1/n(N)

n(N)
∑

i=0

= 3 − 2 lim
N

(
N

∑

0

2k−N)−1 = 2 (67)

That is, our genral estimate imply 2 ≤ ‖A‖ ≤ 3, which is not so bad.

4 The Spectral Triplet on a general (undirected)

Graph

Note what we said at the beginning about our restriction to undirected graphs
(made, however, only for convenience!). Furthermore our Dirac operator inter-
twines node-vectors and bond-vectors while in other examples it maps node-
to node-functions. Our bond-functions have (in some sense) the character of
cotangential-vectors, while in other approaches derivatives of functions are inter-
preted as tangent-vectors. In our view, the latter formalism is effective only in
certain classes of highly regular models (like e.g. lattices) where one has kind of
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global directions and will become cumbersome for general graphs. We developed
this latter approach a little bit in section 3.3 of [1] and showed how these cotan-
gent and tangent vectors can be mapped into each other.

The Hilbert space under discussion in the following is

H = H0 ⊕ H1 (68)

The natural representation of the function algebra F

{f ; f ∈ C0, sup
i

|fi| < ∞} (69)

on H by bounded operators is given by:

H0 : f · f ′ =
∑

fif
′
i · ni for f ′ ∈ H0 (70)

H1 : f ·
∑

gikdik :=
∑

figikdik (71)

From previous work ([1]) we know that C1 carries also a right-module structure,
given by:

∑

gikdik · f :=
∑

gikfk · dik (72)

(For convenience we do not distinguish notationally between elements of F and
their Hilbert space representations).

An important object in various areas of modern analysis on manifolds or in
Connes’ approach to noncommutative geometry is the so-called Dirac operator D
(or rather, a certain version or variant of its classical counterpart; for the wider
context see e.g. [5] or [32] to [34]). As D we will take in our context the operator:

D :=

(

0 d∗

d 0

)

(73)

acting on

H =

(

H0

H1

)

(74)

with

d∗ = (δ1 − δ2) (75)

Note however, that there may exist in general several possibilities to choose such
an operator. On the other hand, we consider our personal choice to be very
natural from a geometrical point of view.
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Lemma 4.1 There exists in our scheme a natural chirality- or grading operator,
χ and an antilinear involution, J . given by

χ :=

(

1 0
0 −1

)

(76)

with

[χ,F ] = 0 χ · D + D · χ = 0 (77)

and

J :

(

x
y

)

→
(

x
y

)

(78)

so that

J · f · J = f (79)

These are some of the ingredients which establish what Connes calls a spectral
triple (cf. e.g. [21] or [22]). We do not want, however, to introduce the full
machinery at the moment as our scheme has an independent geometric meaning
of its own. So, being careful, we call in the following these structures simply
spectral triplets (we were kindly warned by B.Iochum to be more careful with this
concept; note the observation below about the non-compactness of the inverse of
such Dirac-operators on infinite graphs with a uniformly bounded vertex degree).

Definition 4.2 (Spectral Triplets) As spectral triplet on a general (undirected)
graph we take

(H,F , D) (80)

At this point we would like to remark the following. In our general framework
we restricted ourselves, mostly for (possibly subjective) aesthetic reasons – the
mathematics tends to be more transparent – to undirected graphs and a total
Hilbert space being the direct sum of the node space (a function space) and
the bond space (sort of cotangent vectors). A was then selfadjoint and a Dirac
operator emerged naturally as kind of a square root of the Laplacian.

On the other side, if one studies simple models as e.g. in [23] to [25], other
choices are possible. In [23],[24], where the one-dimensional lattice was studied,
the symmetric difference operator was taken as Dirac operator. In [25] the one-
dimensional lattice was assumed to be directed (i.e. only di,i+1 were present)
and the Dirac operator was defined as a certain self adjoint “doubling” of the
(one-sided, i.e. non-symmetric) adjacency matrix. This latter model would fit
in our general approach if we had included more general graphs. All these Dirac

16



operators are different and it is hence no wonder that they lead to different
consequences (see below). It is our opinion that, in the end, an appropriate
choice has to be dictated by physical intuition. Nevertheless, this apparent non-
uniqueness should be studied more carefully.

As can be seen from the above, the connection with the graph Laplacian is
relatively close since:

D2 =

(

d∗d 0
0 dd∗

)

(81)

and

d∗d = −2∆ (82)

dd∗ is the corresponding object on H1. (In the vector analysis of the continuum
the two entries correspond to divgrad , graddiv respectively ).

Observation 4.3 Note that all our operators are bounded, the Hilbert space is
(in general) infinite dimensional, hence there is no chance to have e.g. (D−z)−1

or (D2 − z)−1 compact. At the moment we are sceptical whether this latter phe-
nomenon dissappears generically if the vertex degree is allowed to become infinite.
There are some results on spectra of random graphs which seem to have a certain
bearing on this problem.

We now calculate the commutator [D, f ] applied to an element f ′ ∈ H0:

(d · f)f ′ =
∑

ik

(fkf
′
k − fif

′
i)dik (83)

(f · d)f ′ =
∑

ik

fi(f
′
k − f ′

i)dik (84)

hence

[D, f ]f ′ =
∑

ik

(fk − fi)f
′
kdik (85)

On the other side the right-module structure allows us to define df as an operator
on H0 via:

df · f ′ = (
∑

ik

(fk − fi)dik) · (
∑

k

f ′
knk) =

∑

ik

(fk − fi)f
′
kdik (86)

In a next step we define df as operator on H1 which is not as natural as on H0.
We define:

df |H1
: dik → (fi − fk)nk (87)

and linearly extended. A short calculation shows

df |H1
= −(df̄ |H0

)∗ = [d∗, f ] (88)

This then has the following desirable consequence:
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Observation 4.4 With the above definitions the representation of df on H is
given by

df |H =

(

0 df |H1

df |H0
0

)

=

(

0 −(df̄ |H0
)∗

df |H0
0

)

(89)

and it immediately follows

df |H =

(

0 [d∗, f ]
[d, f ] 0

)

= [D, f ] (90)

5 The Connes-Distance Function on Graphs

From the general theory we know that:

‖T‖ = ‖T ∗‖ (91)

Hence

Lemma 5.1

‖[d, f ]‖ = ‖[d, f̄ ]‖ = ‖[d∗, f ]‖ (92)

and

‖[D, f ]‖ = ‖[d, f ]‖ (93)

Proof: The left part of (92) is shown below and is a consequence of formula (99);
the right identity follows from (91). With

X :=

(

x
y

)

(94)

and T1 := [d, f ], T2 := [d∗, f ], the norm of [D, f ] is:

‖[D, f ]‖2 = sup{‖T1x‖2 + ‖T2y‖2; ‖x‖2 + ‖y‖2 = 1} (95)

Normalizing now x, y to ‖x‖ = ‖y‖ = 1 and representing a general normalized
vector X as:

X = λx + µy , λ, µ > 0 and λ2 + µ2 = 1 (96)

we get:

‖[D, f ]‖2 = sup{λ2‖T1x‖2 + µ2‖T2y‖2; ‖x‖ = ‖y‖ = 1, λ2 + µ2 = 1} (97)
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where now x, y can be varied independently of λ, µ in their respective admissible
sets, hence:

‖[D, f ]‖2 = sup{λ2‖T1‖2 + µ2‖T2‖2} = ‖T1‖2
2 (98)

(as a consequence of equation (92)).
It follows that in calculating ‖[D, f ]‖ one can restrict oneself to the easier to

handle ‖[d, f ]‖. For the latter expression we then get from the above (x ∈ H0):

‖df · x‖2 =
∑

i

(

vi
∑

k=1

|fi − fk|2 · |xi|2 (99)

Abbreviating

vi
∑

k=1

|fk − fi|2 =: ai ≥ 0 (100)

and calling the supremum over i as, it follows:

‖df · x‖2 = as · (
∑

i

ai/as · |xi|2) ≤ as (101)

for ‖x‖2 =
∑

i |xi|2 = 1.
On the other side, choosing an appropriate sequence of normalized basis vec-

tors eν so that the corresponding aν converge to as we get:

‖df · eν‖2 → as (102)

We hence have

Theorem 5.2

‖[D, f ]‖ = sup
i

(

vi
∑

k=1

|fk − fi|2)1/2 (103)

The Connes-distance functional between two nodes, n, n′, is now defined as
follows:

Definition 5.3 (Connes-distance function)

distC(n, n′) := sup{|fn′ − fn|; ‖[D, f ]‖ = ‖df‖ ≤ 1} (104)

Remark 5.4 It is easy to prove that this defines a metric on the graph.
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Corollary 5.5 It is sufficient to vary only over the set {f ; ‖df‖ = 1}.

Proof: This follows from

|fk − fi| = c · |fk/c − fi/c| ; c = ‖df‖ (105)

and

‖d(f/c)‖ = c−1‖df‖ = 1 (106)

with c ≤ 1 in our case. 2

It turns out to be a nontrivial task (in general) to calculate this distance on
an arbitrary graph as the above constraint is quite subtle . The underlying reason
is that the constraint is, in some sense, inherently non-local. As f is a function,
fn′−fn has to be the same independently of the path connecting n′ and n. On the
other side, in a typical optimization process one deals with the individual jumps,
fk − fi, along some path. It is then not at all clear that these special choices can
be extended to a global function without violating the overall constraint on the
expression in theorem 5.2. Nevertheless we think the above closed form is a solid
starting point for the calculation of distC on various classes of graphs or lattices.
We discuss two examples below but refrain at this place from a more complete
treatment, adding only some observations concerning the relation to the ordinary
(combinatorial) distance function introduced in the beginning of the paper.

Having an admissible function f so that supi(
∑vi

k=1 |fk − fi|2)1/2 ≤ 1, this
implies that, taking a minimal path γ from, say, n to n′, the jumps |fν+1 − fν |
between neighboring nodes along the path have to fulfill:

|fν+1 − fν | ≤ 1 (107)

and are typically strictly smaller than 1 as long as there are not a sufficient
number of “zero-jumps” ending at the same node.

On the other side the Connes distance would only become identical to the
ordinary distance d(n, n′) if there exist a sequence of admissible node functions
with all these jumps approaching the value 1 along such a path, which is however
impossible in general as can be seen from the structure of the constraint on the
expression in theorem 5.2 . Only in this case one may have a chance to get:

|
∑

γ

(fν+1 − fν)| →
∑

γ

1 = length(γ) (108)

We express this observation in the following way

Observation 5.6 (Connes-distance) One has within our general scheme the
following inequality

distC(n, n′) ≤ d(n, n′) (109)
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A fortiori one can prove that distC between two nodes in an arbitrary graph is even
smaller than or equal to the corresponding Connes-distance taken with respect to
the (one-dimensional) sub-graph formed by a minimal path between these nodes,
i.e.

distC(n, n′) ≤ distC(min.path)(n, n′) (110)

The simple reason is that one has more admissible functions at ones disposal
for a subgraph, hence the supremum may become larger. This latter distance,
on the other side, can be rigorously calculated (see Example 2 below) and is for
non-neighboring nodes markedly smaller than the ordinary distance.

Corollary 5.7 The last inequality implies also that with G′ an induced subgraph
of G it holds (n, n′ ∈ V ′ ⊂ V ):

distC(n, n′; G′) ≤ distC(n, n′; G) (111)

We remarked above that the calculation of the Connes distance on graphs
is to a large part a continuation problem for admissible functions, defined on
subgraphs. Then the following question poses itself.

Problem 5.8 For what classes of graphs and/or subgraphs do we have an equality
in the above corollary?

Remark 5.9 Equality can e.g. be achieved for trees. Other results in this direc-
tion are in preparation.

These general results should be contrasted with the results in [23] to [25].
Choosing e.g. the symmetric difference operator as Dirac operator in the case of
the one-dimensional lattice the authors got in [23, 24] a distance which is strictly
greater than the ordinary distance but their choice does not fulfill the above
natural constraint given in Theorem 5.2. Note in particular that our operator
d is a map from node- to bond-functions which is not the case in the other
examples. In [25] the authors employed a symmetric doubling of the upper half
of our symmetric adjacency matrix as Dirac operator. In the case of the one-
dimensional (directed) lattice this then leads (so to say) to only one (directed)
bond per node and makes the optimization process quite simple, hence leading
to the ordinary distance which would have been also the case in our general
scheme had we admitted directed graphs. We conjecture however that for more
general graphs a relation related to the one given in Theorem5.2 would enforce
the Connes-distance to be again strictly smaller than the ordinary distance for
non-neighboring points. This is however an interesting point and we plan to
discuss generalisations of our framework and more general examples elsewhere.
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We want to close this paper with the discussion of two examples. The first
one is a simple warm-up exercise, the second one is the one-dimensional lattice
discussed also by the other authors mentioned above (treated however within their
respective schemes) and is not so simple. The technique used in approaching the
second problem may be interseting in general. While we solved it starting, so to
speak, from first principles, the real mathematical context, to which the strategy
is belonging, is the field of (non-)linear programming or optimization (see e.g.
[35] or any other related textbook). This can be inferred from the structure of
our constraint on the expression in theorem 5.2. This means that the techniques
developed in this field may be of use in solving such quite intricate problems.

Example 1: The square with vertices and edges:

x1 − x2 − x3 − x4 − x1 (112)

Let us calculate the Connes-distance between x1 and x3. As the sup is taken
over functions(!) the summation over elementary jumps is (or rather: has to be)
pathindependent (this is in fact both a subtle and crucial constraint for practical
calculations). It is an easy exercise to see that the sup can be found in the class
where the two paths between x1, x3 have the valuations (1 ≥ a ≥ 0):

x1 − x2 : a , x2 − x3 : (1 − a2)1/2 (113)

x1 − x4 : (1 − a2)1/2 , x4 − x3 : a (114)

Hence one has to find sup0≤a≤1(a+
√

1 − a2). Setting the derivative with respect

to a to zero one gets a =
√

1/2. Hence:

Example 5.10 (Connes-distance on a square)

distC(x1, x3) =
√

2 < 2 = d(x1, x3) (115)

Example 2: The undirected one-dimensional lattice:

The nodes are numbered by Z. We want to calculate distC(0, n) within our
general framework. The calculation will be done in two main steps. In the first
part we make the (in principle quite complicated) optimization process more
accessible. For the sake of brevity we state without proof that it is sufficient to
discuss real monotonely increasing functions with

f(k) =

{

f(0) for k ≤ 0

f(n) for k ≥ n
(116)
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and we write

f(k) = f(0) +

k
∑

i=1

hi for 0 ≤ k ≤ n hi ≥ 0 (117)

The above optimization process then reads:

Observation 5.11 Find sup
∑n

i=1 hi under the constraint

h2
1 ≤ 1, h2

2 + h2
1 ≤ 1, . . . , h2

n + h2
n−1 ≤ 1, h2

n ≤ 1 (118)

The simplifying idea is now the following. Let h := (hi)
n
i=1 be an admissible

sequence with all h2
i+1 + h2

i < 1. We can then find another admissible sequence
h′ with

∑

h′
i >

∑

hi (119)

Hence the supremum cannot be taken on the interior. We conclude that at least
some h2

i+1 + h2
i have to be one. There is then a minimal i for which this holds.

We can convince ourselves that the process can now be repeated for the substring
ending at i+1. Repeating the argument we can fill up all the entries up to place
i + 1 with the condition h2

l+1 + h2
l = 1 and proceeding now upwards we end up

with

Lemma 5.12 The above supremum is assumed within the subset

h2
1 ≤ 1, h2

1 + h2
2 = 1, . . . , h2

n−1 + h2
n = 1, h2

n ≤ 1 (120)

This concludes the first step.
In the second step we calculate sup |f(0)− f(n)| on this restricted set. From

the above we now have the constraint:

h2
1 ≤ 1, h2

2 = 1 − h2
1, h

2
3 = h2

1, h
2
4 = 1 − h2

1, . . . , h2
n = 1 − h2

1 or h2
1 (121)

depending on n being even or uneven. This yields

sup |f(0) − f(n)| =











1 for n = 1

(n/2) · sup(h1 +
√

1 − h2
1) = (n/2) ·

√
2 for n even

sup([n/2] · (h1 +
√

1 − h2
1) + h1) for n uneven

(122)

In the even case the rhs can be written as
√

n2/2 =
√

[n2/2]. In the uneven case
we get by differentiating the rhs and setting it to zero:

hmax
1 = An/

√

1 + A2
n ,

√

1 − (hmax
1 )2 = 1/

√

1 + A2
n (123)
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with An = 1 + 1/[n/2]. We see that for increasing n both terms approach 1/
√

2,
the result in the even case. Furthermore we see that the distance is monotonely
increasing with n as should be the case for a distance. This yields in the uneven
case

distC(0, n) =
([n/2] + 1)An + [n/2]

√

1 + A2
n

(124)

which is a little bit nasty. Both expressions can however be written in a more
elegant and unified way (this was a conjecture by W.Kunhardt, inferred from
numerical examples). For n uneven a short calculation yields

[n2/2] = (n2 − 1)/2 = 1/2 · (n − 1)(n + 1) = 2[n/2]([n/2] + 1) (125)

(with the floor-,ceiling-notation the expressions would become even more ele-
gant). With the help of the latter formula the rhs in (124) can be transformed
into

rhs of (124) =
√

[n2/2] + 1 (126)

Conclusion 5.13 For the one-dimensional undirected lattice we have

distC(0, n) =

{

√

[n2/2] for n even
√

[n2/2] + 1 for n uneven
(127)

Remark: With the help of the methods, introduced above, we can now estimate
or rigorously calculate the Connes-distance for other classes of graphs.
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