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Abstract

This paper examines a heterogeneous beliefs model in which there is a process
that is only partially observed by the agents. The economy contains a risky as-
set producing dividends continuously in time. The dividends are observed by the
agents. The dividends are assumed to be a known function of some other unob-
served process. The agents use filtering to estimate the value of this unobserved
process. The agents have different beliefs about the dynamics of the unobserved
process and therefore form different estimates. We analyse this model and derive
the state price density. We use this to derive the riskless rate. We also charac-
terise the price of the risky asset in terms of the solution of a series of differential
equations.

1 Introduction

This paper will build on the theory outlined in Brown & Rogers (2009a). We
consider an economy with unit supply of a risky asset and zero net supply of a
riskless asset. The risky asset produces dividends continuously in time and these
dividends are observed by all the agents. The dividend process is assumed to be
a function of another process, X, which is not observed by the agents. In order
for the agents to determine how to behave, they will use filtering to estimate the
unobserved process. Since the agents never observe this process, we will obtain a
non-trivial steady state.

The model assumes that the dividend process is a linear function of the first
component of the process X; this linear function is known to all the agents. We will
assume that X is a multidimensional Ornstein-Uhlenbeck (OU) process. Since X is
a multidimensional OU process, all the components of X will potentially affect the
behaviour of the first component. Agents can easily work out the first component
of X by looking at the dividend process, but they will be unable to work out the
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other components. Since they need to know the other components to predict the
behaviour of the dividend process, they will need to use filtering.

We will assume that the agents have different beliefs about the stochastic differ-
ential equation that governs X. Specifically, the agents each have a different belief
for the matrix that determines the dynamics of the OU process. They will therefore
each compute different estimates of X. This will therefore affect how they behave.

The agents maximise the discounted expected utility of future consumption.
They each have CARA utility. We can use the optimisation problem to characterise
the equilibrium as in Brown & Rogers (2009a). Using market clearing we may then
determine the state price density. We then use this to work out the interest rate
process. We can also explore the stock price, although we are unable to obtain a
closed form expression.

There is a large literature on heterogeneous beliefs, which has been discussed in
detail in Brown & Rogers (2009a). Work includes Kurz (2008b), Kurz (1994), Kurz
(1997), Kurz & Motolese (2006), Kurz (2008a), Kurz et al. (2005), Fan (2006),
Harrison & Kreps (1978), Morris (1996), Wu & Guo (2003), Wu & Guo (2004),
Harris & Raviv (1993), Kandel & Pearson (1995), Buraschi & Jiltsov (2006), Jouini & Napp
(2007). We will now briefly review some of the filtering models that are of a similar
flavour to the one presented here.

Xiong & Yan (2008) consider a model in which there is a risky technology whose
instantaneous return, ft, obeys an OU process, but the mean of this OU process is
not fixed. This mean is unobserved by the agents and follows a different OU process.
Agents observe f and another information process which is in fact independent of
all the other processes in the system. However, agents think the information process
is correlated to the Brownian motion driving the unobserved OU process. The two
groups of agents have different beliefs about whether this correlation is positive or
negative. The paper shows that trading volume increases with belief diversity. The
paper also looks at bond yields and uses the model to explain some effects that
are observed in bond data. Dumas et al. (2005) consider a similar model in which
agents observe a dividend process which is obeying some SDE. The agents do not
know the drift of this SDE. This drift is random and obeys some other SDE. Agents
also observe an information signal. One group of agents thinks that this signal is
positively correlated with the dividend process. The other group correctly thinks
that it is not. Agents must perform filtering to deal with the unknown drift. The
authors derive asset prices and show that the presence of irrational agents leads to
lower stock prices that are more volatile.

Brennan & Xia (2001) consider a representative agent model in which the div-
idend process of a stock satisfies an SDE that has an unobserved drift. The drift
satisfies an OU process. The agent maximises the expected discounted utility of
future consumption. The authors solve for the stock price and hence deduce quan-
tities such as the equity premium and price dividend ratio. They then calibrate the
driving SDEs of their model to the Shiller data set and calculate various derived
quantities. Their results provide good agreement with the data, but they assume a
constant of relative risk aversion of 15 and negative discounting, both of which are
undesirable.

Scheinkman & Xiong (2003) consider a model in which two groups of agents
observe a dividend process that obeys an SDE with drift unknown to the agents.
This drift obeys some other SDE. The agents observe two signals, called A and
B. Agents in group A think that the noise term in the SDE driving signal A is
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correlated to the noise term in the SDE driving the drift process. Similarly, agents
in group B think that the noise term in the SDE driving signal B is correlated to
the noise term in the SDE driving the drift process. In fact, the noise terms in
the SDEs are independent. Using standard filtering theory, the authors deduce the
conditional means of each of the agents for the drift term. They interpret this as
the beliefs of the agents. The authors derive equilibrium prices for the asset. They
then show that each agent is willing to pay more than their perceived fundamental
value of the asset, since when they buy the asset, they are also buying an option to
resell the asset at a possibly inflated price. The authors use this to explain bubbles.

David (2008) introduces a model in which there are two fundamental processes
in the economy. The first is the output of the economy, of which each agent receives
a fraction. The second is a dividend process. The drift of the dividend process and
the economic output obey two SDEs. The drifts of these SDEs are unobserved
by the agents and follow a two-state continuous time Markov chain. Agents form
beliefs about the drifts based on their observations. They then seek to maximise
their expected utility. David derives quantities such as the consumption and in-
terest rate and uses his model to explain why the stock volatility can be so high.
David & Veronesi (2002) also look at a continuous time model in which at any given
time, the economy can be in one of two states; boom and recession. The agents do
not observe this state directly, but instead must infer it from their observations of
the dividend process.

Detemple & Murthy (1994) consider a model with 3 different processes. One
process gives the total amount produced by the economy. This process is observed.
However, its drift is unobserved and obeys a different SDE. Finally, there is a third
information process, observed by the agents. The drift of this process is unobserved.
Agents work under different measures and form beliefs about the unknown drifts.
Agents maximise expected utility. The paper derives an equilibrium for this model.

The structure of this paper is as follows. Section 2 explains the model in detail.
Section 3 then proceeds to analyse the model by deriving a state price density. In
section 4 we look at the riskless rate and stock price. We can proceed far with the
calculation of the stock price, but unfortunately are unable to obtain a closed form
expression. Finally, we conclude in section 5.

2 The Model

We will now describe our model in detail. As in Brown & Rogers (2009a), we
assume that there is unit supply of a single risky asset. This asset produces a
dividend continuously in time. There is also a riskless asset in zero net supply. The
dividend of the risky asset at time t is denoted δt. We will assume that δt is a
function of the unobserved process Xt. Agents disagree about the dynamics of X.
Thus, when they perform filtering they will form different estimates of X, which in
turn will affect their behaviour.

We take our sample space to be Ω = C(R+, Rn) and we let Xt(ω) ≡ ω(t) denote
the canonical process. Let P0 denote the measure under which X is a standard
Brownian motion in Rn.

There are J ≥ 2 agents in our model. Each agent will work under his own
measure. Agent j thinks that the true measure is given by Pj , where Pj is defined
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by:

Λj
t :=

dPj

dP0
= exp

[
−

∫ t

0
(BjXs, dXs) −

1

2

∫ t

0
|BjXs|

2ds

]

where Bj is an NxN matrix1. The Cameron-Martin-Girsanov2 theorem gives that:

dW
j
t := dXt + BjXtdt

is a standard Brownian motion under Pj. Thus, X is an OU process under Pj.
None of the agents can observe X directly, but they do observe the dividend

process, δt. The dividend process is given by:

δt = a0 + σe1 · Xt

for some constants a0 and σ, which are known to the agents3. We assume that all
the agents receive the same signal, namely the dividend process, δt. The important
point is that in general Bi 6= Bj for i 6= j, so their beliefs will differ. For example,
agent 1 may take B1 to be diagonal and hence δt will behave as a one-dimensional
OU process. In contrast, agent 2 may construct B2 in a way that means δt is
affected by all the different components of Xt. There are many different possible
setups, but the exact form of the beliefs is not important at this stage.

We define the observation filtration to be Yt := σ(e1 ·Xs : s ≤ t) . The objective
of the agent j is:

max Ej

[∫ ∞

0
Uj(t, c

j
t )dt

]

where c
j
t is the consumption of agent j at time t and Uj(t, c

j
t ) = − 1

γj
e−γjxe−ρt is

the discounted CARA utility. Alternatively, we may write the objective as:

max E0

[∫ ∞

0
Uj(t, c

j
t )Λ̂

j
tdt

]
(2.1)

where Λ̂j
t is defined by:

Λ̂j
t := E0[Λj

t |Yt] (2.2)

This completely specifies our model and we can now proceed to deduce a state price
density.

3 Deriving the State Price Density

Now that we have the objective in the form (2.1), we are in the same case as in the
paper of Brown & Rogers (2009b). Thus, we may proceed in exactly the same way
to deduce the state price density. We do this in two steps (see Brown & Rogers

1We will assume that all the eigenvalues of Bj have negative real part. This implies that under the
measure Pj, X is stable in distribution (see Corollary 2.2 of Basak & Bhattacharya (1992)).

2See Rogers & Williams (2000), IV.38 for an account
3Here, e1 is the vector with 1 in the first position and zeros elsewhere
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(2009a) for more details). Firstly, by looking at the price of an arbitrary contingent
claim we can deduce that:

ζtνi = U ′
i(t, c

i
t)Λ

i
t

where νi is some some constant, different for each agent. Taking logarithms and
using market clearing, we may then deduce that:

log ζt = G − ρt − ΓσXt +
Γ

J

∑ 1

γj
log Λ̂j

t

where Γ−1 =
∑

j γ−1
j and G is some constant. We can use this state price density

to deduce the interest rate and the stock price.

3.1 Calculating Λ̂t

In order to understand the state price density, we need to obtain an expression for
Λ̂j

t . For the analysis that follows, we will omit the superscript j unless doing so
would cause confusion.

First note that Yt is generated by the process X1 and furthermore that X1 is a
Yt-Brownian motion under P0. Since Λ̂t is a Yt-martingale, we may therefore apply
the martingale integral representation theorem4 to deduce that:

Λ̂t = 1 +

∫ t

0
HsdX1

s (3.1)

for some Yt process Ht.
We will now determine the process H. To do this, we introduce an arbitrary

process θt, which is assumed to be bounded and adapted to the filtration (Yt)t≥0.
We have:

E0[Λ̂t

∫ t

0
θudX1

u] = E0[Λt

∫ t

0
θudX1

u]

= E0[

∫ t

0
Λs(−BXs, dXs)

∫ t

0
θudX1

u]

= E0[

∫ t

0
Λuθue′1(−BXu)du]

= E0[

∫ t

0
θue′1

̂(−ΛuBXu)du]

where Ŷu denotes E0[Yu|Yu] and ei denotes the column-vector with 1 in the i-
th position and zeroes elsewhere. Here, we have used the definition of conditional
expectation in the first and final lines, the integral representation of Λ in the second
line and the fact that EAB = E[A,B] in the third line. However, we may also use
(3.1) to deduce that the above expression is:

E0[

∫ t

0
Huθudu]

4See Rogers & Williams (2000) IV.36
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Thus we obtain:

E0

[∫ t

0
θu

(
Hu + e′1

̂(ΛuBXu)
)
du

]
= 0

But since (θt)t≥0 is just an arbitrary (Yt)t≥0-process, we deduce that

Hu = −e′1
̂(ΛuBXu)

=
E0[−Λue′1BXu|Yu]Λ̂u

E0[Λu|Yu]

= E[−e′1BXu|Yu]Λ̂u

= −e′1BX̂uΛ̂u

where E denotes expectation under the agent’s measure. Combining this with (3.1),
we have:

dΛ̂u = −Λ̂ue′1BX̂udX1
u (3.2)

We therefore need to develop X̂ in order to better understand Λ̂.

3.2 Deriving X̂u

First define:

hi
t = −e′i(BXt)

Then we have that:

dX1
t = dW 1

t + h1
t dt

Also define:

Nt = X1
t −

∫ t

0
ĥ1

sds (3.3)

Furthermore, define the conditional covariance matrix V by:

V
ij
t =

̂
Xi

tX
j
t − X̂i

tX̂
j
t

We wish to derive the distribution of X̂t. Note that since (X1
t ,Xt) is a Gaus-

sian process, the conditional law of Xt given Yt will be Gaussian. Thus, we just
need to determine the conditional mean and conditional covariance matrix. It is
straightforward to deduce5 that:

X̂i
t = X̂i

0 −

∫ t

0
(BX̂s)ids −

∫ t

0
((BV )1i − δi1) dNs (3.4)

Alternatively, in vector notation:

X̂t = X̂0 −

∫ t

0
(BX̂s)ds −

∫ t

0

(
((BV )′)·1 − e1

)
dNs

5See the appendix
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We may also deduce that:

dV ij
s = − [(BV )ji + (BV )ij − δij + ((BV )1i − δi1)((BV )1j − δj1)] ds (3.5)

Note that there is no dN term in the above SDE and thus V is in fact deterministic.
We may also use (3.5) to specialise to the case in which V̇ = 0, but we first introduce
some notation.

3.2.1 Notation

Since V
1j
t = V i1

t = 0, we may write:

Vt =

(
0 0′n−1

0n−1 Ṽt

)

where 0n−1 denotes the zero-vector of length n − 1. Similarly, we may write:

B =

(
b11 C ′

A B̃

)

Furthermore, we may define xt and x̂t by X̂t = (xt, x̂t)
′. We are of course only

interested in working out x̂t. From (3.4) we deduce that:

dx̂t = −(Axt + B̃x̂t)dt − (Ṽ C)dNt

But,

dNt = dxt + (b11xt + C ′x̂t)dt

so we learn that:

dx̂t = −(A + Ṽ Cb11)xtdt − Ṽ Cdxt − (B̃ + Ṽ CC ′)x̂tdt (3.6)

3.2.2 Stationarity

We now can examine the steady state in which V is not changing. We want to solve
V̇ = 0, or equivalently:

[(BV )ji + (BV )ij − δij + ((BV )1i − δi1)((BV )1j − δj1)] = 0 (3.7)

This equation is automatically satisfied whenever i = 1 or j = 1. For i, j > 1, we
have:

(BV )ij =
n∑

k=1

BikVkj =
n∑

k=2

B̃i(k−1)Ṽ(k−1)j = B̃Ṽij

and:

BV1i =
∑

k

B1kVki =

n−1∑

k=1

CkṼki = (C ′Ṽ )i

Substituting in (3.7) we see that the stationary covariance matrix is specified by:

B̃Ṽ + Ṽ ′B̃′ + Ṽ ′CC ′Ṽ = In−1
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3.3 The State Price Density

3.3.1 Notation for multiple agents

Now that we have developed our expressions for Λ̂ and X̂ , we may use these to
shed light on the state price density.

Before we do this, we define some further notation to deal with the J different
agents. Recall that each agent has a different B matrix, and hence a different B̃, C

and A matrix. Let x̂
j
t be the estimate of (X2

t ,X3
t , ...,Xn

t )′ according to agent j.
Then we may define:

Zt = (x̂1
t , x̂

2
t , ..., x̂

J
t )′

to be the concatenation of the estimates of all the different agents of the unknown
components of X. Using equation (3.6) we see that Zt satisfies the SDE:

dZt = (A1xt + B1Zt)dt + Q1dxt

Here, A1 is the stacked version of −(A+ Ṽ Cb11) for each agent and Q1 is a stacked
version of −Ṽ C for all the different agents (recall that these matrices are different
for each agent). B1 is the ((n − 1)J)x((n − 1)J) block diagonal matrix with each
of the −(B̃ + Ṽ CC ′) of each of the different agents in the J blocks.

We also define Z̄t = (xt, Zt)
′. Then we have that:

dZ̄t = B̄Z̄tdt + Q̄dxt

where Q̄ = (1, Q′
1)

′ and

B̄ =

(
0 0J(n−1)

A1 B1

)

3.3.2 Final expression for the state price density

Having defined this notation, we may now use it to derive our final expression for
the state price density.

We know from (3.2) that the Λ̂j satisfies the SDE:

dΛ̂j
u = −Λ̂j

ue′1B
jX̂

j
udX1

u

The solution to this SDE is given by:

Λ̂j
T = Λ̂j

0 exp

[∫ T

0
−(e′1B

j)X̂j
udxu −

1

2

∫ T

0
(e′1B

jX̂j
u)2du

]

In view of the expression we have for the state price density, we will need:

1

γj

log Λ̂j
T =

1

γj

log Λ̂j
0 +

∫ T

0
−

(e′1B
j)

γj

X̂j
udxu −

1

2

∫ T

0

(e′1B
jX̂

j
u)2

γj

du

=
1

γj
log Λ̂j

0 +

∫ T

0

(
−

b
j
11

γj
xu −

(Cj)′

γj
x̂j

u

)
dxu −

1

2

∫ T

0
γj

(bj
11

γj
xu +

(Cj)′

γj
x̂j

u

)2
du

8



Specifically, we are interested in the sum of these terms, which can be expressed as:

J∑

j=1

1

γj
log Λ̂j

T = const. +

∫ T

0

(
−
∑

j

b
j
11

γj
xu −

∑

j

(Cj)′

γj
x̂j

u

)
dxu

−
1

2

∫ T

0

(∑

j

(bj
11)

2

γj
x2

u + 2
∑

j

b
j
11(C

j)′

γj
xux̂j

u +
∑

j

(x̂j
u)′Cj(Cj)′x̂j

u

γj

)
du

= const. +

∫ T

0
ᾱ′Z̄tdxt −

1

2

∫ T

0
Z̄t

′
β̄Z̄tdt

where ᾱ is a 1 + J(n − 1) dimensional vector given by:

ᾱ = −(
∑

j

b
j
11

γj

,
(C1)′

γ1
,
(C2)′

γ2
, ...,

(CJ)′

γJ

)′

and

β̄ =




∑
j

(bj
11

)2

γj

b1
11

(C1)′

γ1

b2
11

(C2)′

γ2
...

bJ
11

(CJ )′

γJ

b1
11

C1

γ1

C1(C1)′

γ1
0n−1,n−1 ... 0n−1,n−1

b2
11

C2

γ2
0n−1,n−1

C2(C2)′

γ2
... 0n−1,n−1

...
...

. . .
...

bJ
11

CJ

γJ
0n−1,n−1 0n−1,n−1 ...

CJ (CJ )′

γJ




where 0n−1,n−1 denotes the zero matrix of dimension (n−1)x(n−1). Note that in the
above notation the first row and column have dimension 1, whereas all subsequent
rows and columns have dimension n − 1.

The final expression we obtain for the state price density is given by:

log ζT = const. − ρT − ΓσxT +
Γ

J

( ∫ T

0
ᾱ′Z̄tdxt −

1

2

∫ T

0
Z̄t

′
β̄Z̄tdt

)

4 Using the State Price Density

We now have a very explicit form for the state price density, which can be used to
price any assets. We will derive the riskless rate in this model and also illustrate
the method for calculating the stock price.

4.1 Riskless rate

Recall that there is a single riskless asset in the model, which is in zero net supply.
The interest rate must satisfy:

dζt = ζt(−rtdt − κtdxt)

where (rt)t≥0 is the interest rate process and (κt)t≥0 is some other process, not
currently of interest to us. Applying Itô’s formula to our expression for the state
price density, we may simply read off the interest rate process as:

rt = ρ +
Γ

2J
Z̄ ′

tβ̄Z̄t −
Γ

2
(
1

J
ᾱ′Z̄t − σ)2

9



4.1.1 Remarks on the riskless rate

We see that if the agents are impatient (ρ large) then the riskless rate offered to
them must be higher to stop them simply consuming their wealth. If we consider

the case in which Z̄t = 0, we see that the riskless rate is simply ρ −
Γ

2
σ2, so that a

larger volatility in the dividend process means that the riskless rate is lower. The
dependence on Z̄ is more complex, since it will in turn depend on our assumptions
for ᾱ and β̄.

4.2 The Stock Price

The stock price is given by:

St = E0
t

[ ∫ ∞

t

ζT δT

ζt

dT
]

=

∫ ∞

t

e−ρ(T−t)E0
t

[
exp

(
− Γσ(xT − xt)

+
Γ

J

( ∫ T

t

ᾱ′Z̄udxu −
1

2

∫ T

t

Z̄u
′
β̄Z̄udu

))
(σxT + a0)

]
dT

If we can calculate:

E0
t

[
exp

(
− Γσ(xT − xt) +

Γ

J

( ∫ T

t

ᾱ′Z̄udxu −
1

2

∫ T

t

Z̄u
′
β̄Z̄udu

)
+ θ(σxT + a0)

)]

then we may differentiate with respect to θ to obtain the conditional expectation
that we require.

4.2.1 Calculating the conditional expectation

We will calculate:

V T (t, Z̄t; θ) := E0
t

[
exp{−Γσ(xT − xt) +

Γ

J

( ∫ T

t

ᾱ′Z̄udxu

−
1

2

∫ T

t

Z̄u
′
β̄Z̄udu

)
+ θ(σxT + a0)}

]
(4.1)

We will show that:

V T (t, Z̄t; θ) = exp
(1
2
(Z̄t)

′a(τ)Z̄t + b(τ)Z̄t + c(τ)
)

where τ = T − t and a(τ) is a symmetric (J(n − 1) + 1)x(J(n − 1) + 1) matrix,
b(τ) is a (J(n − 1) + 1) row vector and c(τ) is a scalar. We will omit the explicit
dependence on τ except where we specifically require it. In order to calculate a, b

and c, we will use a martingale argument. We define:

MT
t = E0

t

[
exp{−ΓσxT +

Γ

J

( ∫ T

0
ᾱ′Z̄udxu −

1

2

∫ T

0
Z̄u

′
β̄Z̄udu

)
+ θ(σxT + a0)}

]

= V T (t, Z̄t; θ) exp
[
− Γσxt +

Γ

J

( ∫ t

0
ᾱ′Z̄udxu −

1

2

∫ t

0
Z̄u

′
β̄Z̄udu

)]

10



Since (MT
t )0≤t≤T is a martingale we will apply Itô’s formula to it and deduce that

the term in dt is zero. This will enable us to get a series of three differential
equations for a, b and c. Firstly, we have that:

d(
1

2
Z̄ ′

taZ̄t + bZ̄t + c) =
(
−

1

2
Z̄ ′

tȧZ̄t − ḃZ̄t − ċ + bB̄Z̄t + Z̄ ′
taB̄Z̄t +

1

2
Q̄′aQ̄

)
dt

+
(
bQ̄ + Z̄ ′aQ̄

)
dxt

Thus,

dV

V
=
(
−

1

2
Z̄ ′

tȧZ̄t − ḃZ̄t − ċ + bB̄Z̄t + Z̄ ′
taB̄Z̄t +

1

2
Q̄′aQ̄ +

1

2
(bQ̄ + Z̄ ′aQ̄)2

)
dt

+
(
bQ̄ + Z̄ ′aQ̄

)
dxt

Now define:

K(t, Z̄t) = −Γσxt +
Γ

J

( ∫ t

0
ᾱ′Z̄udxu −

1

2

∫ t

0
Z̄ ′

uβ̄Z̄udu
)

Then, we have

d(exp{K(t, Z̄t)})

exp{K(t, Z̄t)}
= Γ(

ᾱ′Z̄t

J
− σ)dxt +

(
−

Γ

2J
Z̄ ′

tβ̄Z̄t +
1

2
Γ2
( ᾱ′Z̄t

J
− σ

)2)
dt

So finally we may calculate dM :

dMT
t

MT
t

=
(
−

1

2
Z̄ ′

tȧZ̄t − ḃZ̄t − ċ + bB̄Z̄t + Z̄ ′
taB̄Z̄t +

1

2
Q̄′aQ̄ +

1

2
(bQ̄ + Z̄ ′aQ̄)2

)
dt

+
(
−

Γ

2J
Z̄ ′

tβ̄Z̄t +
1

2
Γ2
( ᾱ′Z̄t

J
− σ

)2)
dt + Γ(

ᾱ′Z̄t

J
− σ)

(
bQ̄ + Z̄ ′aQ̄

)
dt + {...}dxt

Since M is a martingale, the dt term in the above equation must be zero. Thus we
obtain:

1

2
Z̄ ′

t{−ȧ + 2aB̄ −
Γ

J
β̄ + aQ̄Q̄′a +

Γ2

J2
ᾱᾱ′ +

2ΓaQ̄ᾱ′

J
}Z̄t

+ {−ḃ + bB̄ + bQ̄Q̄′a −
Γ2σᾱ′

J
+

ΓbQ̄ᾱ′

J
− ΓσQ̄′a}Z̄t

+ {−ċ +
1

2
Q̄′aQ̄ +

1

2
bQ̄Q̄′b′ +

1

2
Γ2σ2 − ΓσbQ̄} = 0 (4.2)

Each of the above expressions in the parentheses must be equal to zero. We also
have some boundary conditions; note from (4.1) that:

V T (T, Z̄T ; θ) = exp (θσxT + θa0)

Thus, we have the boundary conditions:

a(0) = 0J(n−1),J(n−1) b(0) = (θσ, 0J(n−1))
′ c(0) = θa0

Unfortunately, the first line of (4.2) gives us a matrix Riccati equation. It seems
that solving this equation is intractable, and thus we are unable to proceed further
with the stock price.
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4.2.2 A PDE approach

An alternative method for tackling the stock price is to use a PDE approach. We
may argue that ζtSt +

∫ t

0 ζsδsds is a martingale. We can then apply Itô’s formula
and deduce that the dt term is zero. This will give us a PDE for the stock price.

Proceeding in this way, first define St = h(Z̄t). Then we may deduce that the
stock price must satisfy the PDE:

▽h(Z̄t) · (B̄Z̄) +
1

2
Q̄′H(Z̄t)Q̄ + (

Γ

J
ᾱ′Z̄ − Γσ)▽h(Z̄t) · Q̄ − rth(Z̄t) + δt = 0

where H denotes the Hessian of h. Unfortunately, there seems to be little hope of
solving this PDE, given that the dimension of this problem is J(n − 1) + 1.

5 Conclusions

We have introduced a very general model for dealing with heterogeneous beliefs of
agents. This model assumes that there is some unobserved process X that drives the
dividend process. Agents differ in their views about the SDE that X obeys. This
affects their behaviour. We are able to proceed far with the analysis of this model,
in particular, deriving the riskless rate in this model. However, the calculation of
the stock price appears intractable because it requires a solution of a matrix Riccati
equation.
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APPENDIX

A Deriving expressions (3.4) and (3.5)

We seek to determine an SDE for X̂ . In order to do this, we will follow section
VI.8-9 of Rogers & Williams (2000).

First recall that N was defined in (3.3) by:

Nt = X1
t −

∫ t

0
ĥ1

sds

By Theorem VI.8.4 of Rogers & Williams (2000) we know that Nt is a Yt Brownian
motion.

Let f : Rn 7→ R and let ft := f(Xt). Let Gft be the function such that:

Mt = ft − f0 −

∫ t

0
Gfsds

is an Ft-martingale. Further, let αt be such that:

dftdX1
t = αtdt

Then by (VI.8.16) of Rogers & Williams (2000), we have:

f̂t = f̂0 +

∫ t

0
Ĝfsds +

∫ t

0

(
f̂sh1

s − f̂sĥ1
s + α̂s

)
dNs (A.1)

We will use (A.1) to derive the distribution of X̂t. Note that since (X1
t ,Xt) is a

Gaussian process, the conditional law of Xt given Yt will be Gaussian. Thus, we
just need to determine the conditional mean and conditional covariance matrix. We
do this by applying (A.1) to the functions:

f i : x 7→ xi

f ij : x 7→ xixj

Firstly, working on the f i, we have:

dXi
t = dW i

t + hi
tdt

Noting that df i
tdX1

t = dW i
t dW 1

t = δi1dt, we have that:

Gf i
t = hi

t αi = δi1

If we put all this in (A.1), we obtain:

X̂i
t = X̂i

0 −

∫ t

0
e′iBX̂sds −

∫ t

0
e′1

(
X̂i

sBXs − X̂i
se

′
1BX̂s − δi1

)
dNs

Upon substituting for V , we obtain (3.4).
We now move onto f ij. First note that:

d(Xi
tX

j
t ) = Xi

tdW
j
t + X

j
t dW i

t + [Xi
th

j
t + X

j
t h

i
t + δij ]dt
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and that:

df
ij
t dX1

t = Xi
tδj1dt + X

j
t δi1dt

Thus, we obtain:

Gf
ij
t = Xi

th
j
t + X

j
t hi

t + δij α
ij
t = Xi

tδj1 + X
j
t δi1

Applying (A.1), we obtain:

̂
Xi

tX
j
t =

̂
Xi

0X
j
0 +

∫ t

0

(
̂
Xi

sh
j
s +

̂
X

j
shi

s + δij

)
ds

+

∫ t

0

[
̂

Xi
sX

j
sh1

s −
̂
Xi

sX
j
s ĥ1

s + X̂i
sδj1 + X̂

j
sδi1

]
dNs

=
̂
Xi

0X
j
0 −

∫ t

0

(
(BX̂s)jXi

s + (B
̂

Xs)iX
j
s − δij

)
ds

−

∫ t

0

[∑

k

B1k
̂

Xk
s Xi

sX
j
s −

∑

k

B1kX̂k
s

̂
Xi

sX
j
s − X̂i

sδj1 − X̂
j
sδi1

]
dNs

We need to work out terms of the form
̂

Xi
sX

j
sXk

s . However, since X is a Gaussian
process, we have that:

̂
Xi

sX
j
sXk

s = X̂i
sV

jk
s + X̂

j
sV ik

s + X̂k
s V ij

s + X̂i
sX̂

j
s X̂k

s

If we now define M
ij
t := X̂i

tX̂
j
t , we obtain:

̂
Xi

tX
j
t =

̂
Xi

0X
j
0 −

∫ t

0

(∑

k

BjkX̂k
s Xi

s +
∑

k

Bik
̂
Xk

s X
j
s − δij

)
ds

−

∫ t

0

[∑

k

B1kX̂i
sV

jk
s +

∑

k

B1kX̂
j
sV ik

s +
∑

k

B1kX̂k
s V ij

s

+
∑

k

B1kX̂i
sX̂

j
s X̂k

s −
∑

k

B1kX̂k
s

̂
Xi

sX
j
s − X̂i

sδj1 − X̂
j
sδi1

]
dNs

=
̂
Xi

0X
j
0 −

∫ t

0

(∑

k

Bjk(V + M)ki +
∑

k

Bik(V + M)kj − δij

)
ds

−

∫ t

0

[
(BV )1jX̂i

s + (BV )1iX̂
j
s + (BX̂s)1V

ij
s

− (BX̂s)1V
ij
s − X̂i

sδj1 − X̂
j
sδi1

]
dNs

Thus,

d
̂
Xi

sX
j
s = −

[
(B(V + M))ji + (B(V + M))ij − δij

]
ds

−
[
(BV )1jX̂i

s + (BV )1iX̂
j
s − X̂i

sδj1 − X̂
j
sδi1

]
dNs (A.2)
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We now proceed to calculate:

dV ij
s = d(

̂
Xi

sX
j
s − X̂i

sX̂
j
s )

Noting that

dX̂i
s = −(BX̂s)ids − ((BV )1i − δi1)dNs

we see that:

d(X̂i
sX̂

j
s ) =

[
− X̂i

s(BX̂s)j − X̂
j
s (BX̂s)i + ((BV )1i − δi1)((BV )1j − δj1)

]
ds

−
[
X̂i

s((BV )1j − δj1) + X̂
j
s ((BV )1i − δi1)

]
dNs

Putting this together with (A.2) gives:

dV ij
s = −

[
(B(V + M))ji + (B(V + M))ij − δij − X̂i

s(BX̂s)j − X̂
j
s (BX̂s)i

+ ((BV )1i − δi1)((BV )1j − δj1)
]
ds

But, we note that:

X̂i
s(BX̂s)j =

∑

k

BjkX̂k
s X̂i

s = (BM)ji

so finally, we deduce (3.5) as required.
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