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Abstract

We establish sufficient and necessary conditions for a set to be affine
or convex. The concepts of weak near convexity and affine starshaped-
ness are studied. A characterization of the (affine) kernel of (affinely)
starshaped sets and their radial contraction is discussed.
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1 An introduction

Convexity is a basic notion in geometry but also is widely used in other areas
of mathematics [8]. Many mathematicians established a criterion for the con-
vexity a domain in the Euclidean space and in other spaces [3, 5, 11]. In this
note we establish sufficient and necessary conditions for a set to be affine or
convex.
Let A be a subset of the Euclidian space En and let x, y be in A. The closed
segment joining x and y is denoted by [xy] where (xy) = [xy] \ {x, y} denotes
the open segment joining x and y. The ray starting from x and passing through
y is denoted by −→xy where the straight line determined by x and y is denoted
by xy. For points x and y in A, we say that x sees y via A if and only if [xy]
is contained in A [4]. A is called starshaped if there exists some point p ∈ A
such that p sees each point of A via A [1, 2]. In this case we say that A is
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starshaped relative to p [1, 2]. The set of all such points p is called kernel of
A and is denoted by ker A. A is called convex if for each two points p and q
in A, p sees q via A. The set ker A is convex [9, 10].

Definition 1 [7]A set A ⊂ En is called weakly nearly convex (in brief wn-
convex) if for every x, y in A there exists a real number α ∈ (0, 1) such that
αx + (1 − α)y is in A.

It is clear from the above definition that a wn-convex set is a midpoint
convex set if every α = 1

2
. So, every (midpoint) convex set is wn-convex.

The intersection of midpoint convex sets is a midpoint convex set where the
intersection of wn-convex set is not generally a wn-convex set.

Example 2 Let A = {x : x is a rational number in [0, 1]} and let

B = {0, 1} ∪ {x : x is an irrational number in (0, 1)} (1)

Then A ∩ B = {0, 1} is not wn-convex.

Theorem 3 [7]A closed weakly nearly convex set of En is convex.

Definition 4 Let A �= φ be a subset of En. The midpoint contraction of A
about p ∈ A, denoted by Cp(A), is the set of all points 1

2
(p + x), x ∈ A i.e.

Cp(A) =
{
y : y =

1

2
(p + x), x ∈ A

}
(2)

Definition 5 Let A �= φ be a subset of En. For a fixed point p ∈ A and a
fixed real number α ∈ (0, 1) , we define the λ-radial contraction of A based at
p, denoted by Cλ

p (A), by

Cλ
p (x̄) = λx̄ + (1 − λ)p, x̄ ∈ A (3)

The set Cλ
p (A) is called the λ-radial contraction of A based at p. If λ = 1

2
, we

get the midpoint contraction.

It is clear that the λ-radial contraction map is a bijection onto its image set
which has p as its unique fixed point. We will take p ∈ En and the definition
still true but in the case p /∈ A the map Cλ

p is a translation followed by a
contraction of A.

Example 6 The following figures show two contractions of a set A when p ∈ A
and p /∈ A.

The following proposition lists some properties of the λ-contraction map.
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Figure 1: Contractions of a set A when p ∈ A and p /∈ A

Proposition 7 Let A be a non-empty subset of En and λ, β be in (0, 1) and
p, q ∈ En. If x, y are in A, then

1. Cλ
p (x + y) = Cλ

p (x) + Cλ
p (y) if p = 0,

2. Cβ
p

(
Cλ

p (x)
)

= Cλβ
p (x),

3. α Cλ
p (x) = Cλ

αp(αx), α is a real number,

4. Cλ
p+q(x + y) = Cλ

p (x) + Cλ
q (y).

Lemma 8 Let x̄, ȳ ∈ A, with Cλ
p (x̄) = x and Cλ

p (ȳ) = y for some p ∈ En and
some λ ∈ (0, 1), then Cλ

p ([x̄ȳ]) = [xy].

Proof. Let z̄ ∈ [x̄ȳ], then there is a real number α ∈ [0, 1], such that z̄ =
αx̄ + (1 − α) ȳ, and so

Cλ
p (z̄) = Cλ

p (αx̄ + (1 − α) ȳ)

= λαx̄ + λ (1 − α) ȳ + (1 − λ) p

= αCλ
p (x̄) + (1 − α)Cλ

p (ȳ)

= αx + (1 − α) y

= z

where z ∈ [xy]. Hence, Cλ
p ([x̄ȳ]) = [xy] .

Moreover, the λ-radial contraction of a straight line �r = �a + α�v, α ∈ �
passing through �a and parallel to �v is

Cλ
p (�r) = Cλ

p (�a) + αλ�v (4)

which is a straight line passing through Cλ
p (�a) and also parallel to �v i.e. the

radial contraction of a straight line is a straight line parallel to the old one.
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2 Radial contraction and convexity

In this section, we get necessary and sufficient conditions for a subset of En to
be convex. Some results related to starshapedness are derived.

The following theorems(Theorem 9,10) show that λ-radial contraction pre-
serves convexity, midpoint convexity and weak near convexity. Their proofs
depend on Lemma 8.

Theorem 9 Let A �= φ be a subset of En. Then Cλ
p (A) is wn-convex for some

p ∈ En and any λ ∈ (0, 1) if and only if A is.

Theorem 10 Let A be a non-empty subset of En, and let p ∈ En and λ ∈
(0, 1). Then A is convex if and only if Cλ

p (A) is.

It is clear that if A is convex, p ∈ A, then Cλ
p (A) is contained in A. Now,

starshapedness is discussed in the following two theorems.

Theorem 11 Let A be a nonempty subset of En, and let p ∈ En and λ ∈
(0, 1). Then Cλ

p (A) is a starshaped set if and only if A is a starshaped set.

Theorem 12 Let A be a non-empty starshaped subset of En. Then ker Cλ
p (A)

= Cλ
p (ker A), for any p ∈ En and λ ∈ (0, 1).

Proof. Let x ∈ ker Cλ
p (A). Then there is x̄ in A with Cλ

p (x̄) = x. Let ā ∈ A,
then a = Cλ

p (ā) ∈ Cλ
p (A) and hence [xa] ⊂ Cλ

p (A), since it is starshaped
relative to x. By definition of Cλ

p , we get [x̄ā] ⊂ A i.e. x̄ ∈ ker A and so
x ∈ Cλ

p (ker A) i.e. ker Cλ
p (A) ⊂ Cλ

p (ker A).

Cp(ker A)

p

A

Cp(A)
Ker A

Figure 2: The radial contraction of the kernel

Let x ∈ Cλ
p (ker A), then there is x̄ ∈ ker A with Cλ

p (x̄) = x. Now,
let c ∈ Cλ

p (A), then c̄ with c = Cλ
p (c̄) is in A and hence [c̄x̄] ⊂ A. Also,

Cλ
p ([c̄x̄] = [cx] ⊂ Cλ

p (A) i.e. x ∈ Cλ
p (A) i.e. Cλ

p (kerA) ⊂ ker Cλ
p (A). This

completes the proof.
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Remark 13 If p ∈ ker A, we get that Cλ
p (ker A) = ker Cλ

p (A) ⊂ ker A since
ker A is convex.

The λ-radial contraction of a convex set A where p ∈ A and λ ∈ (0, 1) is
a subset of A. The intersection of Cλ

p (A) and ∂A characterizes the convexity
and strict convexity of A.

Example 14 The following examples(see Figure 3) show the intersection of
Cλ

p (A) and ∂A.

p

p

p

p p

p

C p(A) Cp(A)Cp(A)

Cp (A)

Figure 3: The intersection of Cλ
p (A) and ∂A

Theorem 15 Let A be a closed strictly convex set in En. Then Cλ
p (A)∩∂A =

{p}, for all p ∈ ∂A, and some λ ∈ (0, 1).

Proof. Suppose that Cλ
p (A) ∩ ∂A contains a point x �= p. Then there exists

x̄ ∈ A such that Cλ
p (x̄) = x.

Now, we have the following cases:

1. x̄ ∈ ∂A: in this case the pointsp, x and x̄ are all in ∂A and hence the
segment (px̄) contains x ∈ ∂A. This contradicts the strict convexity of
A.

2. x̄ /∈ ∂A: then the segment (px̄) cuts A tangentially otherwise A is not
convex. Construct the cone with vertex at p and base contained in
B (x̄, δ) ⊂ A, where B (x̄, δ) is a sufficiently small ball with center at
x̄ and radius δ. This cone is not contained in A which contradicts the
convexity of A as shown in Figure(4).

The above discussion shows that such point does not exist and hence we
get Cλ

p (A) ∩ ∂A = {p}, for all p ∈ ∂A.
The converse of the above theorem is also true. To prove this converse and

other results, we need the following lemma.
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Figure 4: A nonconvex case

Lemma 16 Let A be a closed subset of En. If x, y ∈ A and (xy) is not
contained in A, then there exist p, q ∈ [xy] ∩ A such that (pq) ∩ A = φ.

Proof. Since A and [xy] are closed sets, then [xy]∩A is closed. Suppose that
such points do not exist. Then for every pair of points p, q ∈ [xy] ∩ A, there
is r in (pq) ∩ A ⊂ [xy] ∩ A i.e. [xy] ∩ A is wn-convex and hence convex (by
Theorem 3 ). This shows that [xy] is contained in A and completes the proof.

Remark 17 It is clear that the above two points p, q are elements in ∂A,
otherwise the segment (pq) intersects A.

Theorem 18 Let A be a closed subset of En. If Cλ
p (A) ⊂ A for all p ∈ ∂A,

and some λ ∈ (0, 1), then A is convex.

Proof. Suppose that A is not convex. Then there are x, y in A such that
[xy] is not contained in A. By the above lemma, we get p, q ∈ A such that
(pq) ∩ A = φ. Construct the λ-radial contraction of A based on p, then the
image of q by Cλ

p is in (pq) and hence is not contained in A. This contradiction
completes the proof.

Remark 19 1. In the above theorem, if we replace Cλ
p (A) by Cp (A) we

will get the same result.

2. If, in addition, Cλ
p (A) ∩ ∂A = {p} for every p ∈ ∂A, then A is strictly

convex.

Theorem 20 Let A be a closed starshaped set in En. Then ker A is precisely
the set of points of A that see ∂A via A.
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Proof. Let B be the set of all points of A that see ∂A via A. It is clear that
ker A ⊂ B. Now, we want to prove that B ⊂ kerA. Let x ∈ B, and y ∈ A.
If [xy] is not contained in A, then by Lemma 16 there exist p, q in ∂A such
that (pq) ∩ A = φ and hence x does not see one of the points p and q. This
contradicts the definition of B and the proof is complete.

Theorem 21 A closed starshaped set is convex if and only if ∂A ⊂ ker A.

Proof. If A is convex then ker A = A ⊃ ∂A. Now, let ∂A ⊂ kerA, we want
to prove that A is convex. Suppose that A is not. Then there exists x, y in
A such that [xy] is not contained in A. Since A is closed, then by lemma(16),
there exist p, q in [xy] ∩ A such that (pq) ∩ A = φ and hence p does not see q
via A which contradicts the fact that ∂A ⊂ ker A and so A is convex.

3 Affine and affinely starshaped sets

Definition 22 A set A is said to be affine if x, y ∈ A implies λx+(1 − λ) y ∈
A for all real numbers λ i.e. for each pair of distinct points of A, the straight
xy is in A[9].

Definition 23 A set A is said to be affinely starshaped if there exists p ∈ A
such that λx + (1 − λ) p ∈ A for every x ∈ A and λ 
 0 i.e. the ray −→px is
in A. In this case we say that p affinely sees x via A, and the set of all such
points p is called affine kernel of A, and is denoted by Aker A.

The following remark lists some properties of affine and affinely starshaped
sets.

Remark 24 1. The only affine set with nonempty interior is En itself.

2. Affine sets are closed [6, 9].

3. Every affine set is convex and is affinely starshaped relative to all of its
points.

4. Every affine starshaped set is starshaped. Moreover, the affine kernel is
contained in the kernel(i.e. Aker A ⊂ ker A ).

5. The affine sets in En are precisely the totally geodesic submanifolds (sin-
gletons, lines, planes,...).

6. The intersection of two affine sets is affine.

The kernel of a starshaped set is convex. The following theorem presents a
similar result for affinely starshaped sets.
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Lemma 25 [9]Let x, y, z be three distinct points, and suppose u ∈ (xy). Then
if v ∈ [zu], there exists a point w ∈ [zy] such that v ∈ [xw].

Theorem 26 Let A ⊂ En be an affinely starshaped set. Then Aker A is an
affine set.

Proof. Let x, y be in Aker A. Let p ∈ xy and z ∈ A, we want to prove that−→pz is a subset of A. Let w ∈ −→pz, then we have the following cases.

1. p ∈ (xy), w ∈ (pz) : Since A is affine, then (yz) ⊂ A. By the above
lemma, we find m ∈ (yz) such that w ∈ (xm). Also, x ∈ Aker A, then
w ∈ (xm) ⊂ A i.e. w ∈ A(see Figure 5, case 1).

2. p ∈ (xy), w /∈ [pz] : Since A is affine, then −→xz ⊂ A. By the above
lemma, we get m ∈ (yw) such that m ∈ −→xz ⊂ A. But y ∈ Aker A and
so −→ym ⊂ A i.e. w ∈ A(see Figure 5, case 2).

x p y

m

w

z

Case 1
Case 2

x p
y

w

z
m

Figure 5: Affine kernel

Similarly, by using the same lemma, we can prove the rest two cases(p /∈ [xy],
w ∈ (pz), and p /∈ [xy], w /∈ [pz]) and get w ∈ A, i.e., −→pz ⊂ A and hence
xy ⊂ Aker A. Then Aker A is affine.

In the following, we try to get sufficient conditions for a set to be affine.
Without loss of generality, we will consider only the midpoint contraction.

Theorem 27 If p ∈ En, A is affine then Cp(A) is affine. Moreover, Cp(A) =
A for all p ∈ A.

Proof. Suppose that A is affine. Let x, y be in Cp(A), then there are x̄, ȳ
in A such that Cp(x̄) = x and Cp(ȳ) = y. Now, let z ∈ xy, then there
is a real number α such that z = αx + (1 − α) y = 1

2
(p + αx̄ + (1 − α) ȳ).

Since A is affine, then the point z̄ = αx̄ + (1 − α) ȳ is in x̄ȳ ⊂ A and hence
z = Cp(z̄) ∈ Cp(A). So Cp(A) is affine.



A note on convexity and starshapedness 2607

It is clear that Cp(A) ⊂ A since A is affine and p ∈ A. Let x̄ ∈ A, then
px̄ is in A i.e. for any real number α, the point αp + (1 − α) x̄ is in A. Let
α = −1, then −p + 2x is in A. Therefore, Cp(−p + 2x) = x is in Cp(A). Thus
Cp(A) = A.

Similar proof will lead to the converse of the above theorem and hence we
get the following theorem.

Theorem 28 Let A be a subset of En. Then A is affine if and only if Cp(A)
is.

Theorem 29 Let A be a convex subset of En. If Cp(A) = A for any p ∈ A,
then A is affine.

Proof. Let x, y ∈ A. Since A is convex, then [xy] ⊂ A and [xy] ⊂ Cx (A) = A.
Therefore, there exists y1 = 2y − x satisfying Cx (y1) = y i.e. y1 ∈ A and so
[xy1] ⊂ A = Cx (A). Again, there exists y2 = 2y1 − x satisfying Cx (y2) = y1

i.e. y2 ∈ A and so [xy2] ⊂ A = Cx (A). By repeating this process we get that−→xy ⊂ A. Similarly, −→yx ⊂ A and hence A is affine.

Corollary 30 Let A be an affine subset of En. Then Cp(A)∩A = φ, for each
p /∈ A.

Proof. First, p /∈ Cp(A) since Cp(x̄) = p implies x̄ = p. Suppose that
Cp(A) ∩ A �= φ i.e. there is x̄ ∈ Cp(A) ∩ A. Then Cp(x̄) = y = 1

2
(p + x̄)

is in Cp(A) i.e. x̄ and y = 1
2
(p + x̄) are in Cp(A) which by Theorem 27 is

affine. Hence x̄y is in Cp(A) and so p is in Cp(A) which is a contradiction.
This contradiction completes the proof.

Theorem 31 Let A be an affinely starshaped subset of En. Then Cp(A) is
affinely starshaped. Moreover, Cp(A ker A) = A ker Cp(A).
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