A Note on Convexity and Starshapedness

M. Beltagy

Mathematics Department, Faculty of Science Tanta University, Tanta, Egypt beltagy50@yahoo.com

S. Shenawy

Modern Academy for Engineering and Technology in Maadi El-Hadaba El-Wosta, Mokatem Close to Te. Ph. Exchange, Maadi, Egypt s.shenawy@s-math.org, sshenawy08@yahoo.com

Abstract

We establish sufficient and necessary conditions for a set to be affine or convex. The concepts of weak near convexity and affine starshapedness are studied. A characterization of the (affine) kernel of (affinely) starshaped sets and their radial contraction is discussed.

Mathematics Subject Classification: 53C20, 53C21

Keywords: Convex sets, *wn*-convex sets, starshaped sets, affine sets, affinely starshaped sets, radial contraction

1 An introduction

Convexity is a basic notion in geometry but also is widely used in other areas of mathematics [8]. Many mathematicians established a criterion for the convexity a domain in the Euclidean space and in other spaces [3, 5, 11]. In this note we establish sufficient and necessary conditions for a set to be affine or convex.

Let A be a subset of the Euclidian space E^n and let x, y be in A. The closed segment joining x and y is denoted by [xy] where $(xy) = [xy] \setminus \{x, y\}$ denotes the open segment joining x and y. The ray starting from x and passing through y is denoted by \overline{xy} where the straight line determined by x and y is denoted by xy. For points x and y in A, we say that x sees y via A if and only if [xy]is contained in A [4]. A is called *starshaped* if there exists some point $p \in A$ such that p sees each point of A via A [1, 2]. In this case we say that A is starshaped relative to p [1, 2]. The set of all such points p is called kernel of A and is denoted by ker A. A is called *convex* if for each two points p and q in A, p sees q via A. The set ker A is convex [9, 10].

Definition 1 [7]A set $A \subset E^n$ is called weakly nearly convex (in brief wnconvex) if for every x, y in A there exists a real number $\alpha \in (0, 1)$ such that $\alpha x + (1 - \alpha)y$ is in A.

It is clear from the above definition that a wn-convex set is a midpoint convex set if every $\alpha = \frac{1}{2}$. So, every (midpoint) convex set is wn-convex. The intersection of midpoint convex sets is a midpoint convex set where the intersection of wn-convex set is not generally a wn-convex set.

Example 2 Let $A = \{x : x \text{ is a rational number in } [0, 1]\}$ and let

$$B = \{0, 1\} \cup \{x : x \text{ is an irrational number } in(0, 1)\}$$
(1)

Then $A \cap B = \{0, 1\}$ is not wn-convex.

Theorem 3 [7]A closed weakly nearly convex set of E^n is convex.

Definition 4 Let $A \neq \phi$ be a subset of E^n . The midpoint contraction of A about $p \in A$, denoted by $C_p(A)$, is the set of all points $\frac{1}{2}(p+x), x \in A$ i.e.

$$C_p(A) = \left\{ y : y = \frac{1}{2}(p+x), x \in A \right\}$$
(2)

Definition 5 Let $A \neq \phi$ be a subset of E^n . For a fixed point $p \in A$ and a fixed real number $\alpha \in (0, 1)$, we define the λ -radial contraction of A based at p, denoted by $C_p^{\lambda}(A)$, by

$$C_p^{\lambda}(\bar{x}) = \lambda \bar{x} + (1 - \lambda)p, \, \bar{x} \in A \tag{3}$$

The set $C_p^{\lambda}(A)$ is called the λ -radial contraction of A based at p. If $\lambda = \frac{1}{2}$, we get the midpoint contraction.

It is clear that the λ -radial contraction map is a bijection onto its image set which has p as its unique fixed point. We will take $p \in E^n$ and the definition still true but in the case $p \notin A$ the map C_p^{λ} is a translation followed by a contraction of A.

Example 6 The following figures show two contractions of a set A when $p \in A$ and $p \notin A$.

The following proposition lists some properties of the λ -contraction map.

Figure 1: Contractions of a set A when $p \in A$ and $p \notin A$

Proposition 7 Let A be a non-empty subset of E^n and λ, β be in (0,1) and $p,q \in E^n$. If x, y are in A, then

1. $C_p^{\lambda}(x+y) = C_p^{\lambda}(x) + C_p^{\lambda}(y)$ if p = 0,

2.
$$C_p^{\beta}\left(C_p^{\lambda}(x)\right) = C_p^{\lambda\beta}(x),$$

3. $\alpha C_p^{\lambda}(x) = C_{\alpha p}^{\lambda}(\alpha x), \alpha$ is a real number,

4.
$$C_{p+q}^{\lambda}(x+y) = C_p^{\lambda}(x) + C_q^{\lambda}(y).$$

Lemma 8 Let $\bar{x}, \bar{y} \in A$, with $C_p^{\lambda}(\bar{x}) = x$ and $C_p^{\lambda}(\bar{y}) = y$ for some $p \in E^n$ and some $\lambda \in (0, 1)$, then $C_p^{\lambda}([\bar{x}\bar{y}]) = [xy]$.

Proof. Let $\bar{z} \in [\bar{x}\bar{y}]$, then there is a real number $\alpha \in [0,1]$, such that $\bar{z} =$ $\alpha \bar{x} + (1 - \alpha) \bar{y}$, and so

$$C_p^{\lambda}(\bar{z}) = C_p^{\lambda}(\alpha \bar{x} + (1 - \alpha) \bar{y})$$

= $\lambda \alpha \bar{x} + \lambda (1 - \alpha) \bar{y} + (1 - \lambda) p$
= $\alpha C_p^{\lambda}(\bar{x}) + (1 - \alpha) C_p^{\lambda}(\bar{y})$
= $\alpha x + (1 - \alpha) y$
= z

where $z \in [xy]$. Hence, $C_p^{\lambda}([\bar{x}\bar{y}]) = [xy]$. Moreover, the λ -radial contraction of a straight line $\vec{r} = \vec{a} + \alpha \vec{v}, \alpha \in \Re$ passing through \vec{a} and parallel to \vec{v} is

$$C_p^{\lambda}(\vec{r}) = C_p^{\lambda}(\vec{a}) + \alpha \lambda \vec{v} \tag{4}$$

which is a straight line passing through $C_p^{\lambda}(\vec{a})$ and also parallel to \vec{v} i.e. the radial contraction of a straight line is a straight line parallel to the old one.

2601

2 Radial contraction and convexity

In this section, we get necessary and sufficient conditions for a subset of E^n to be convex. Some results related to starshapedness are derived.

The following theorems (Theorem 9,10) show that λ -radial contraction preserves convexity, midpoint convexity and weak near convexity. Their proofs depend on Lemma 8.

Theorem 9 Let $A \neq \phi$ be a subset of E^n . Then $C_p^{\lambda}(A)$ is wn-convex for some $p \in E^n$ and any $\lambda \in (0, 1)$ if and only if A is.

Theorem 10 Let A be a non-empty subset of E^n , and let $p \in E^n$ and $\lambda \in (0,1)$. Then A is convex if and only if $C_p^{\lambda}(A)$ is.

It is clear that if A is convex, $p \in A$, then $C_p^{\lambda}(A)$ is contained in A. Now, starshapedness is discussed in the following two theorems.

Theorem 11 Let A be a nonempty subset of E^n , and let $p \in E^n$ and $\lambda \in (0,1)$. Then $C_p^{\lambda}(A)$ is a starshaped set if and only if A is a starshaped set.

Theorem 12 Let A be a non-empty starshaped subset of E^n . Then ker $C_p^{\lambda}(A) = C_p^{\lambda}(\ker A)$, for any $p \in E^n$ and $\lambda \in (0, 1)$.

Proof. Let $x \in \ker C_p^{\lambda}(A)$. Then there is \bar{x} in A with $C_p^{\lambda}(\bar{x}) = x$. Let $\bar{a} \in A$, then $a = C_p^{\lambda}(\bar{a}) \in C_p^{\lambda}(A)$ and hence $[xa] \subset C_p^{\lambda}(A)$, since it is starshaped relative to x. By definition of C_p^{λ} , we get $[\bar{x}\bar{a}] \subset A$ i.e. $\bar{x} \in \ker A$ and so $x \in C_p^{\lambda}(\ker A)$ i.e. $\ker C_p^{\lambda}(A) \subset C_p^{\lambda}(\ker A)$.

Figure 2: The radial contraction of the kernel

Let $x \in C_p^{\lambda}(\ker A)$, then there is $\bar{x} \in \ker A$ with $C_p^{\lambda}(\bar{x}) = x$. Now, let $c \in C_p^{\lambda}(A)$, then \bar{c} with $c = C_p^{\lambda}(\bar{c})$ is in A and hence $[\bar{c}\bar{x}] \subset A$. Also, $C_p^{\lambda}([\bar{c}\bar{x}] = [cx] \subset C_p^{\lambda}(A)$ i.e. $x \in C_p^{\lambda}(A)$ i.e. $C_p^{\lambda}(\ker A) \subset \ker C_p^{\lambda}(A)$. This completes the proof. **Remark 13** If $p \in \ker A$, we get that $C_p^{\lambda}(\ker A) = \ker C_p^{\lambda}(A) \subset \ker A$ since ker A is convex.

The λ -radial contraction of a convex set A where $p \in A$ and $\lambda \in (0, 1)$ is a subset of A. The intersection of $C_p^{\lambda}(A)$ and ∂A characterizes the convexity and strict convexity of A.

Example 14 The following examples (see Figure 3) show the intersection of $C_p^{\lambda}(A)$ and ∂A .

Figure 3: The intersection of $C_p^{\lambda}(A)$ and ∂A

Theorem 15 Let A be a closed strictly convex set in E^n . Then $C_p^{\lambda}(A) \cap \partial A = \{p\}$, for all $p \in \partial A$, and some $\lambda \in (0, 1)$.

Proof. Suppose that $C_p^{\lambda}(A) \cap \partial A$ contains a point $x \neq p$. Then there exists $\bar{x} \in A$ such that $C_p^{\lambda}(\bar{x}) = x$.

Now, we have the following cases:

- 1. $\bar{x} \in \partial A$: in this case the points p, x and \bar{x} are all in ∂A and hence the segment $(p\bar{x})$ contains $x \in \partial A$. This contradicts the strict convexity of A.
- 2. $\bar{x} \notin \partial A$: then the segment $(p\bar{x})$ cuts A tangentially otherwise A is not convex. Construct the cone with vertex at p and base contained in $B(\bar{x}, \delta) \subset A$, where $B(\bar{x}, \delta)$ is a sufficiently small ball with center at \bar{x} and radius δ . This cone is not contained in A which contradicts the convexity of A as shown in Figure(4).

The above discussion shows that such point does not exist and hence we get $C_p^{\lambda}(A) \cap \partial A = \{p\}$, for all $p \in \partial A$.

The converse of the above theorem is also true. To prove this converse and other results, we need the following lemma.

Figure 4: A nonconvex case

Lemma 16 Let A be a closed subset of E^n . If $x, y \in A$ and (xy) is not contained in A, then there exist $p, q \in [xy] \cap A$ such that $(pq) \cap A = \phi$.

Proof. Since A and [xy] are closed sets, then $[xy] \cap A$ is closed. Suppose that such points do not exist. Then for every pair of points $p, q \in [xy] \cap A$, there is r in $(pq) \cap A \subset [xy] \cap A$ i.e. $[xy] \cap A$ is *wn*-convex and hence convex (by Theorem 3). This shows that [xy] is contained in A and completes the proof.

Remark 17 It is clear that the above two points p,q are elements in ∂A , otherwise the segment (pq) intersects A.

Theorem 18 Let A be a closed subset of E^n . If $C_p^{\lambda}(A) \subset A$ for all $p \in \partial A$, and some $\lambda \in (0, 1)$, then A is convex.

Proof. Suppose that A is not convex. Then there are x, y in A such that [xy] is not contained in A. By the above lemma, we get $p, q \in A$ such that $(pq) \cap A = \phi$. Construct the λ -radial contraction of A based on p, then the image of q by C_p^{λ} is in (pq) and hence is not contained in A. This contradiction completes the proof.

Remark 19 1. In the above theorem, if we replace $C_p^{\lambda}(A)$ by $C_p(A)$ we will get the same result.

2. If, in addition, $C_p^{\lambda}(A) \cap \partial A = \{p\}$ for every $p \in \partial A$, then A is strictly convex.

Theorem 20 Let A be a closed starshaped set in E^n . Then ker A is precisely the set of points of A that see ∂A via A. **Proof.** Let *B* be the set of all points of *A* that see ∂A via *A*. It is clear that ker $A \subset B$. Now, we want to prove that $B \subset \ker A$. Let $x \in B$, and $y \in A$. If [xy] is not contained in *A*, then by Lemma 16 there exist p, q in ∂A such that $(pq) \cap A = \phi$ and hence *x* does not see one of the points *p* and *q*. This contradicts the definition of *B* and the proof is complete.

Theorem 21 A closed starshaped set is convex if and only if $\partial A \subset \ker A$.

Proof. If A is convex then ker $A = A \supset \partial A$. Now, let $\partial A \subset \ker A$, we want to prove that A is convex. Suppose that A is not. Then there exists x, y in A such that [xy] is not contained in A. Since A is closed, then by lemma(16), there exist p, q in $[xy] \cap A$ such that $(pq) \cap A = \phi$ and hence p does not see q via A which contradicts the fact that $\partial A \subset \ker A$ and so A is convex.

3 Affine and affinely starshaped sets

Definition 22 A set A is said to be affine if $x, y \in A$ implies $\lambda x + (1 - \lambda) y \in A$ for all real numbers λ i.e. for each pair of distinct points of A, the straight xy is in A[9].

Definition 23 A set A is said to be affinely starshaped if there exists $p \in A$ such that $\lambda x + (1 - \lambda) p \in A$ for every $x \in A$ and $\lambda \succeq 0$ i.e. the ray $p\vec{x}$ is in A. In this case we say that p affinely sees x via A, and the set of all such points p is called affine kernel of A, and is denoted by Aker A.

The following remark lists some properties of affine and affinely starshaped sets.

Remark 24 1. The only affine set with nonempty interior is E^n itself.

- 2. Affine sets are closed [6, 9].
- 3. Every affine set is convex and is affinely starshaped relative to all of its points.
- 4. Every affine starshaped set is starshaped. Moreover, the affine kernel is contained in the kernel(i.e. Aker $A \subset \ker A$).
- 5. The affine sets in E^n are precisely the totally geodesic submanifolds (singletons, lines, planes,...).
- 6. The intersection of two affine sets is affine.

The kernel of a starshaped set is convex. The following theorem presents a similar result for affinely starshaped sets.

Lemma 25 [9]Let x, y, z be three distinct points, and suppose $u \in (xy)$. Then if $v \in [zu]$, there exists a point $w \in [zy]$ such that $v \in [xw]$.

Theorem 26 Let $A \subset E^n$ be an affinely starshaped set. Then Aker A is an affine set.

Proof. Let x, y be in Aker A. Let $p \in xy$ and $z \in A$, we want to prove that $p\vec{z}$ is a subset of A. Let $w \in p\vec{z}$, then we have the following cases.

- 1. $p \in (xy), w \in (pz)$: Since A is affine, then $(yz) \subset A$. By the above lemma, we find $m \in (yz)$ such that $w \in (xm)$. Also, $x \in Aker A$, then $w \in (xm) \subset A$ i.e. $w \in A$ (see Figure 5, case 1).
- 2. $p \in (xy), w \notin [pz]$: Since A is affine, then $\overline{xz} \subset A$. By the above lemma, we get $m \in (yw)$ such that $m \in \overline{xz} \subset A$. But $y \in Aker A$ and so $\overline{ym} \subset A$ i.e. $w \in A$ (see Figure 5, case 2).

Figure 5: Affine kernel

Similarly, by using the same lemma, we can prove the rest two cases $(p \notin [xy], w \in (pz))$, and $p \notin [xy], w \notin [pz])$ and get $w \in A$, i.e., $\overline{pz} \subset A$ and hence $xy \subset Aker A$. Then Aker A is affine.

In the following, we try to get sufficient conditions for a set to be affine. Without loss of generality, we will consider only the midpoint contraction.

Theorem 27 If $p \in E^n$, A is affine then $C_p(A)$ is affine. Moreover, $C_p(A) = A$ for all $p \in A$.

Proof. Suppose that A is affine. Let x, y be in $C_p(A)$, then there are \bar{x}, \bar{y} in A such that $C_p(\bar{x}) = x$ and $C_p(\bar{y}) = y$. Now, let $z \in xy$, then there is a real number α such that $z = \alpha x + (1 - \alpha) y = \frac{1}{2} (p + \alpha \bar{x} + (1 - \alpha) \bar{y})$. Since A is affine, then the point $\bar{z} = \alpha \bar{x} + (1 - \alpha) \bar{y}$ is in $\bar{x}\bar{y} \subset A$ and hence $z = C_p(\bar{z}) \in C_p(A)$. So $C_p(A)$ is affine.

It is clear that $C_p(A) \subset A$ since A is affine and $p \in A$. Let $\bar{x} \in A$, then $p\bar{x}$ is in A i.e. for any real number α , the point $\alpha p + (1 - \alpha)\bar{x}$ is in A. Let $\alpha = -1$, then -p + 2x is in A. Therefore, $C_p(-p + 2x) = x$ is in $C_p(A)$. Thus $C_p(A) = A$.

Similar proof will lead to the converse of the above theorem and hence we get the following theorem.

Theorem 28 Let A be a subset of E^n . Then A is affine if and only if $C_p(A)$ is.

Theorem 29 Let A be a convex subset of E^n . If $C_p(A) = A$ for any $p \in A$, then A is affine.

Proof. Let $x, y \in A$. Since A is convex, then $[xy] \subset A$ and $[xy] \subset C_x(A) = A$. Therefore, there exists $y_1 = 2y - x$ satisfying $C_x(y_1) = y$ i.e. $y_1 \in A$ and so $[xy_1] \subset A = C_x(A)$. Again, there exists $y_2 = 2y_1 - x$ satisfying $C_x(y_2) = y_1$ i.e. $y_2 \in A$ and so $[xy_2] \subset A = C_x(A)$. By repeating this process we get that $\overrightarrow{xy} \subset A$. Similarly, $\overrightarrow{yx} \subset A$ and hence A is affine.

Corollary 30 Let A be an affine subset of E^n . Then $C_p(A) \cap A = \phi$, for each $p \notin A$.

Proof. First, $p \notin C_p(A)$ since $C_p(\bar{x}) = p$ implies $\bar{x} = p$. Suppose that $C_p(A) \cap A \neq \phi$ i.e. there is $\bar{x} \in C_p(A) \cap A$. Then $C_p(\bar{x}) = y = \frac{1}{2}(p + \bar{x})$ is in $C_p(A)$ i.e. \bar{x} and $y = \frac{1}{2}(p + \bar{x})$ are in $C_p(A)$ which by Theorem 27 is affine. Hence $\bar{x}y$ is in $C_p(A)$ and so p is in $C_p(A)$ which is a contradiction. This contradiction completes the proof.

Theorem 31 Let A be an affinely starshaped subset of E^n . Then $C_p(A)$ is affinely starshaped. Moreover, $C_p(A \ker A) = A \ker C_p(A)$.

References

- Beltagy, M. and ElAraby, A. On convex and starshaed hulls, Kyungpook Mathematical Journal, 40 (2000), no. 2, 313–321.
- [2] Beltagy, M., On starshaped sets, Bull. Malaysian Math. Soc. 11 (1988), 49–57.
- [3] H. Haghshenas and M. R. Farmani, Convexity of Cebysev Sets in Hilbert Spaces, Int. J. Contemp. Math. Sciences, 4 (2009), no. 9-12, 573–576.
- Breen, M., Sets with (d-2)-dimensional kernels, Pacific Journal of Mathematics 77 (1978), 51–55.

- [5] Michael Langberg and L. J. Schulman, Contraction and Expansion of Convex Sets, Discrete Comput Geom, 42 (2009), 594–614.
- [6] Paul J. Kelly and Max L. Weiss, *Geometry and convexity*, John Wiley and Sons, New York, 1979.
- [7] Kuang and Hua Wu, Weak nearly convex sets and their applications, Sichuan Daxue Xuebao, 67 (2004), no. 3, 263–275.
- [8] Roman J. Dwilewiez, A short history of convexity, Differential Geometry
 Dynamical Systems, 11 (2009), 112–129.
- [9] Steven R. Lay, *Convex sets and their applications*, John Wiley and Sons, New York, 1982.
- [10] Valentine, A. F., *Convex sets*, McGraw-Hill, Inc., New York, 1964.
- [11] Yu. B. Zelinskii and I. Yu. Vygovskaya, Criterion for convexity of a domain a a Euclidean space, Ukrainian Mathematical Journal, 60 (2008), no. 5, 816–818.

Received: March, 2010