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Abstract there is a practical difficulty in the maximization proceelur
when the output results are sensitive to starting values.

We study the performance of the adaptive construction By the recent computer development the Bayesian infer-
scheme for a Bayesian inference on the Quadratic GARCknce implemeneted by Markov Chain Monte Carlo (MCMC)
model which introduces the asymmetry in time series dymethods, which is an alternative approach to estimate
namics. In the adaptive construction scheme a proposaGARCH parameters, has become popular. There exists a
density in the Metropolis-Hastings algorithm is constattt variety of methods proposed to implement the MCMC
adaptively by changing the parameters of the density to fischeme[8][13]. In a recent survéy[12] it is shown that
the posterior density. Using artificial QGARCH data we Acceptance-Rejection/Metropolis-Hastings (AR/MH) algo
infer the QGARCH parameters by applying the adaptiverithm works better than other algorithms. In the AR/MH
construction scheme to the Bayesian inference of QGARCHligorithm the proposal density is assumed to be a multivari-
model. We find that the adaptive construction scheme sanate Student’s t-distribution and the parameters to speleiy
ples QGARCH parameters effectively, i.e. correlations bedistribution are estimated by the ML technique. Recently
tween the sampled data are very small. We conclude thain alternative method to estimate those parameters without
the adaptive construction scheme is an efficient method teelying on the ML technique was proposed][14]. In this

the Bayesian estimation of the QGARCH model. method the parameters are determined by using the data
generated by an MCMC method and updated adaptively
1. Introduction during the MCMC simulation. We call this method "adaptive

construction scheme”.

A notable feature of financial time series is that volatility ~The adaptive construction scheme was tested for artificial
of asset returns varies in time and high (low) volatility GARCH data and it is shown that the adaptive construction
persists, which is called volatility clustering. Moreowee  scheme can significantly reduce the correlation between
return distributions show fat-tailed distributions. Teemm-  sampled data[14]. In this study we apply the adaptive
pirical properties are called stylized facts. There alsistex construction scheme to the QGARCH model. The orignal
further stylized facts seen in financial markets[1]. GARCH model has 3 model parameters. On other hand the

A primary importance in empirical finance is to make QGARCH model has 4 model parameters. We study the
models which mimic the properties of the volatility and thenefficiency of the adaptive construction scheme applied to
to forecast future volatility. The most successful modehs  the QGARCH model and examine whether the efficiency is
Generalized Autoregressive Conditional Heteroscedsgstic still high enough for such a model with many parameters.
(GARCH) model by Englé[2] and Bollerslev[3], which can
](c:aptu_re thg property of volatility clustering and show the2. QGARCH Model
at-tailed distribution.

In the original GARCH model, the process generates
symmetric time series. For stock markets, however, stock The QGARCH model[6],([7] which we employ here is
returns may show significant negative skewness in volatilit Written as

dynamics. In order to incorporate the skewness into the Yt = Oy, (1)
model, some modified models have been proposed[4], [5],

[6], [7]. Among them we focus on the Quadratic GARCH 07 =w+ VY1 + oy, + Boj_y, (2
(QGARCH) modell6],[[7] which includes an additional term

that can capture the property of the skewness. where ¢; is an independent normal erre¢v N(0,1) and

A preferred algorithm to infer GARCH model parametersy; are observations. Here, 3,y andw are the parameters
is the Maximum Likelihood (ML) method which estimates to be estimated in the Bayesian inference. The QGARCH
the parameters by maximaizing the corresponding likelihoo process differs from the GARCH one by the terg;_;
function of the GARCH model. In this algorithm, however, which introduces asymmetry.
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3. Bayesian inference If 2’ is rejected we keep the previous value Then we
repeat these steps.
From the Bayes’ theorem the posterior densit{f|y)

with n observations) = (y1,y2, ..., yn) IS given by 4. Adaptive construction scheme
m(0ly) o< L(y|0)m(6), (3)

where L(y|0) is the likelihood function(6) is the prior
density ford. The functional form ofr(#) is not known
a priori. Here we assume that the prior densit{d) is
constant.

For the QGARCH model the likelihood function is given

by

By choosing an adequate proposal density for the MH
algorithm one may reduce the correlation between the
sampled data. The posterior density of GARCH parameters
often resembles to a Gaussian-like shape. Thus one may
choose a density similar to a Gaussian distribution as the
proposal density. Such attempts have been done by Mit-

1 y sui, Watanabe[11] and Asai[l12]. They used a multivariate

L(y|6) = I —=—== exp (— 5 ), (4)  Student’s t-distribution in order to cover the tails of the
v 2moy 7t posterior density and determined the parameters to specify

whered = (w, a, 3,7) stands for the QGARCH parameters. the distribution by using the ML technique. Here we also

Using m(fly) the QGARCH parameters are inferred asuse a multivariate Student's t-distribution but determine

the expectation values given by parameters through MCMC simulations.
1 The (p-dimensional) multivariate Student’s t-distribution
whereZ = [ 7(|y)df is a normalization constant irrelevant 0 (v +p)/2)/T(v/2)
to MCMC estimations. 9(6) = det X1/2(ymr)p/2
The MCMC technique gives a method to estimate[&q.(5) (0 — M)S-1(0 — M) —(v+p)/2
numerically. The basic procedure of the MCMC method x |14 ,(8)
is as follows. First we samplé drawn from a probability v
distribution7(0|y). Sampling is done by a technique which wheref and M are column vectors,
produces a Markov chain. After sampling some data, we 0, M,
evaluate the expectation value as an average value over the P M
sampled datd®, g—| ° M = 2 : (9)
hm - Z o) (6) Op My,
_ ~andM; = E(6;). X is the covariance matrix defined as
wherek is the number of the sampled data. The statistical
error for k independent data is proportional td-. In 22 = E[(6 — M)(0 — M) (10)
general, however, the data generated by the MCMC method v=2
are correlated. As a result the statistical error will bev is a parameter to tune the shape of Student’s t-distribution
proportional to,/2” where 7 is the autocorrelation time Wheny — oo the Student’s t-distribution goes to a Gaussian

between the sampled data. The autocorrelation time depen@istribution. At smallv Student's t-distribution has a fat-tail.
on the MCMC method we employ. Thus it is desirable toWe also define the matrik by V = E[(§ — M)(0 — M)"]
choose a MCMC method which can generate data with 4or later use.

small r. There are 4 parameters in the QGARCH model. Thus
p = 4, 0 = (91,92,93,94) = (a,ﬁ,w,v) and,> and V
3.1. Metropolis-Hastings algorithm are4 x 4 matrices. The unknown parametersifi and &

are determined by using the data obtained from MCMC
The MH algorithm[16] is a generalized version of the simulations. First we make a short run by the Metropolis
Metropolis algorithmi[15]. Let us consider to generate dataalgorithm and accumulate some data. Then we estithéte
x from a probability distributionP(:v). The MH algorithm and 2. Note that there is no need to estimaté and &
consists of the following steps. First starting frawe pro-  accurately. Second we perform a MH simulation with the
pose a candidateg which is drawn from a certain probability proposal density of e8) with the estimatdd and X.
distributiong(z’|) which we call proposal density. Then we After accumulating more data, we recalculaté and ¥,
accept the candidaté with a probabilityPyrx (2, 2") asthe  and updatel/ andX: of eq.[8). By doing this, we adaptively

next value of the Markov chain: change the shape of €d.(8) to fit the posterior density. We
N P(z") g(x|z") call eq.[(8) with the estimated/ and X "adaptive proposal
Pyp(z,2") = min {1, P@) o) (7 density”.
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Figure 1. The times series generated by the QGARCH Figure 3. Monte Carlo history of o from the adaptive

process with « = 0.07, 8 = 0.8, v = —0.05 and w = 0.1. construction scheme.
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Figure 2. Histograms of o from the adaptive construc- ~ Figure 4. Monte Carlo history of « from the Metropolis
tion scheme and the Metropolis algorithm. algorithm.
5. Numerical results struction scheme and Metropolis algorithm are summarized
in Table 1.

We examine the adaptive construction scheme by usingn Fig. 2 compares the histogram of the sampled datay
artificial QGARCH data generated with known parameterstn€ adaptive construction scheme with that by the Metrspoli
The QGARCH parameters are setdo= 0.07, 3 = 0.8, algorithm. The histograms from the two MCMC techniques

v = —0.05 andw = 0.1. We have generated 2000 data by S€€m t0 coincide each others. However the property of the
the QGARCH process with these parameters as displayed gampled data is very different, which will be analyzed in the
Fig.1. followings.

The adaptive construction scheme is implemented as Fi9- 3-4 show Monte Carlo time histories from the
follows. First we start a run by the Metropolis algorithmerh adaptive construction scheme and Metropolis algorithm. It
first 3000 data are discarded as burn-in process or in othd? clearly seen that the data sampled by the Metropolis
words thermalization. Then we accumulate 1000 datafor glgorlthm are substantially correlated. The similar bébrav
and ¥ estimations. The estimateld and¥ are substituted S @S0 seen for the sampled data for other parameters.
to g(d). In this study we taker = 10. We re-start a run The correlations between the data can be measured by
by the MH algorithm withg(6). Every 1000 updates we re- the autqcorrelat(i_on func_tion (ACF). The ACF of certain
calculateM andY and updatey(d). We accumulate 100000 Successive daté ! is defined by

data for analysis. _ L Z;Vﬂ(g(j) —(0))(0UTD) — (h))
For comparison we also use a standard Metropolis al- ACF(t) = : = , (12)
0

gorithm to infer the GARCH parameters and accumulate
100000 data for analysis. where(f) ando} are the average value and the variance of
The results of the parameters inferred by the adaptive cor¢ respectively.



Table 1. Results of QGARCH parameters. SD and SE

stand for standard deviation and statistical error [ ‘
respectively. 0.8 i
a [ w v
true 0.07 038 0.1 -0.05 w 0.6 ]
Adaptive  0.07143 0.7905 0.1054 -0.04643 O
SD 0.018 0.056 0.035 0.019 <p.4 i
SE 0.00012 0.0005 0.0004 0.00010 ‘
27 41+13 10+£5.0 11+5.1 3.0+0.4
Metropolis _ 0.0704 0.7943 0.1032 -0.0465 0.2 :
SD 0.018 0.053 0.033 0.019 I
SE 0.0011 0.0052 0.0032 0.0004 0 % %
2T 340 £ 100 840 £280 820 £ 290 54+ 7 0 1000 2000 3000
Figure 6. Autocorrelation function of o« sampled by the
I— ‘ ‘ T Metropolis algorithm.
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Figure 5. Autocorrelation function of o sampled by the 0
adaptive construction scheme. 0 30
P k (x1000)

_ ~ Figure 7. The diagonal elements of " as a function of
Fig. 5-6 show the ACF ofx sampled from the adaptive the data size.

construction scheme and the Metropolis algorithm. The ACF

of the adaptive construction scheme decreases quickly as _
Monte Carlo timet increases. On the other hand the ACE matrix V. All the elements of” seem to converge to certain
of the Metropolis algorithm decreases very slowly whichVvalues as the simulations are proceeded.

indicates that the correlation between the sampled data is Fig- 9 shows values of the acceptance at the MH algorithm
very large. with the adaptive proposal density of €d.(8). Each accegtan

The autocorrelation time (ACTY is calculated by is calculated every 1000 updates and the calculation of the

acceptance is based on the latest 1000 data. At the first stage

of the simulation the acceptance is low. This is because

M and X have not yet been calculated accurately as we

see in Fig. 7-8. However the acceptances increase quickly

Results ofr are summarized in Table 1. We find that the as the simulations are proceeded and reaches plateaus of

ACT from the adaptive construction scheme have muchabout70%. This acceptance is reasonably high for the MH

smallerr than those from the Metropolis simulations. For algorithm.

instancer of o parameter from the adaptive construction

scheme is decreased by a factor of 90 compared to th@., Conclusions

from the Metropolis algorithm. These results prove that the

adaptive construction scheme is an efficient algorithm for We have performed the Bayesian inference of the

sampling de-correlated data. The differencesialso ex- QGARCH model by applying the adaptive construction

plain that the statistical errors from the adaptive comsiom  scheme to the MH algorithm. The adaptive construction

scheme are much smaller than those from the Metropolischeme, which does not use the ML method, is found

simulations. to be very efficient in the sense that the autocorrelation
Fig. 7-8 show the convergence property of the covariancéimes of the sampled data are very small. Thus the adaptive

— .
T=g+ > ACF(i). (12)

=1



ax104— ‘ ‘ ‘ : : at the Yukawa Institute for Theoretical Physics in Kyoto
University.

2x10"
i References

01,

[1] See e.g., R. Cont Empirical Properties of Asset Returns:
Stylized Facts and Statistical Issues. Quantitative FKieah,

2x107¢
i 223-236 (2001)

4x10"

[2] R.F. Engle, Autoregressive Conditional Heteroskeidagtwith
Estimates of the Variance. of the United Kingdom inflation.
Econometrica 60, 987-1007 (1982)

6x10"
0 10

50 60

[3] T. Bollerslev, Generalized Autoregressive Conditioréet-

Figure 8. Some off-diagonal elements of V as a eroskedasticity. Journal of Econometrics 31, 307-327 §198

function of the data size. Other off-diagonal elements 4 p . Nelson, Conditional Heteroskedasticity in Assett&ns:
show the similar convergence behavior. A New Approach. Econometrica 59, 347-370 (1991)

[5] L.R. Glston, R. Jaganathan, D.E. Runkle, On the Relation
Between the Expected Value and the Volatility of the Nominal
Excess on Stocks. Journal of Finance 48, 1779-1801 (1993)

[6] R.F. Engle, V. Ng, Measuring and testing the impact of saew
on volatility. Journal of Finance 48, 1749-1778 (1993)

[7] E. Sentana, Quadratic ARCH models. Review of Economic
Studies 62, 639-661 (1995)

Acceptance

[8] L. Bauwens, M. Lubrano, Bayesian inference on GARCH
models using the Gibbs sampler. Econometrics Journal %, c23

A c46 (1998)
0420 20 60 80 100 [9] S. Kim, N. Shephard, S. Chib, Stochastic volatility: &lkood
k (x1000) inference and comparison with ARCH models. Review of

Economic Studies 65, 361-393 (1998)

Figure 9. Acceptance at MH step with the adaptive

proposal density. [10] T. Nakatsuma, Bayesian analysis of ARMA-GARCH models:
Markov chain sampling approach. Journal of Econometrigs 95
57-69 (2000)

construction scheme serves as an efficient MCMC techniqui-1] H. Mitsui, T. Watanabe, Bayesian analysis of GARCH opti

for the Bayesian inference of the QGARCH model. The pricing models. J. Japan Statist. Soc. (Japanese I1ssud)P33,

adaptive construction scheme is not limited to the Bayesian 324 (2003)

inference of the QGARCH or GARCH models and can be[12] M. Asai, Comparison of MCMC Methods for Estimating

applied for other GARCH-type models. GARCH Models. J. Japan Statist. Soc. 36, 199-212 (2006)
Although we have updated the parameters of the Student’[$i3] T Takaishi. Bavesian Estimation of GARCH model by H

t-_dlstrl_butlon adaptively using the sampled data during th brid Monte C':arIOY Proceedings of the 9th Joint Confere)rlwceyon

simlation, we may take a strategy that we stop to update the | tormation Sciences 2006, CIEF-214

parameters at some point. As seen in fig. 9, the acceptance doi:10.2991/jcis.2006.159

quickly reaches a plateau of abdtd% and after that the

adaptive parameter update does not improve the acceptand&#! T. Takaishi, An Adaptive Markov Chain Monte Carlo Metho

Thus we may stop to update the parameters and use the for GARCH Model | arXiv:0901.09¢2v1

fixed proposal density for the MH step after the acceptanc@is) N.  Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,

reaches the plateau. A.H. Teller, E. Teller, Equations of State Calculations by

Fast Computing Machines. J. of Chem. Phys. 21, 1087-1091

Acknowledgments (1953)

[16] W.K. Hastings, Monte Carlo Sampling Methods Using
The numerical calculations were carried out on Altix  Markov Chains and Their Applications. Biometrika 57, 97—
at the Institute of Statistical Mathematics and on Sx8 109 (1970)


http://arxiv.org/abs/0901.0992

	Introduction
	QGARCH Model
	Bayesian inference
	Metropolis-Hastings algorithm

	Adaptive construction scheme
	Numerical results
	Conclusions
	References

