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Abstract

We study the performance of the adaptive construction
scheme for a Bayesian inference on the Quadratic GARCH
model which introduces the asymmetry in time series dy-
namics. In the adaptive construction scheme a proposal
density in the Metropolis-Hastings algorithm is constructed
adaptively by changing the parameters of the density to fit
the posterior density. Using artificial QGARCH data we
infer the QGARCH parameters by applying the adaptive
construction scheme to the Bayesian inference of QGARCH
model. We find that the adaptive construction scheme sam-
ples QGARCH parameters effectively, i.e. correlations be-
tween the sampled data are very small. We conclude that
the adaptive construction scheme is an efficient method to
the Bayesian estimation of the QGARCH model.

1. Introduction

A notable feature of financial time series is that volatility
of asset returns varies in time and high (low) volatility
persists, which is called volatility clustering. Moreoverthe
return distributions show fat-tailed distributions. These em-
pirical properties are called stylized facts. There also exist
further stylized facts seen in financial markets[1].

A primary importance in empirical finance is to make
models which mimic the properties of the volatility and then
to forecast future volatility. The most successful model isthe
Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) model by Engle[2] and Bollerslev[3], which can
capture the property of volatility clustering and show the
fat-tailed distribution.

In the original GARCH model, the process generates
symmetric time series. For stock markets, however, stock
returns may show significant negative skewness in volatility
dynamics. In order to incorporate the skewness into the
model, some modified models have been proposed[4], [5],
[6], [7]. Among them we focus on the Quadratic GARCH
(QGARCH) model[6], [7] which includes an additional term
that can capture the property of the skewness.

A preferred algorithm to infer GARCH model parameters
is the Maximum Likelihood (ML) method which estimates
the parameters by maximaizing the corresponding likelihood
function of the GARCH model. In this algorithm, however,

there is a practical difficulty in the maximization procedure
when the output results are sensitive to starting values.

By the recent computer development the Bayesian infer-
ence implemeneted by Markov Chain Monte Carlo (MCMC)
methods, which is an alternative approach to estimate
GARCH parameters, has become popular. There exists a
variety of methods proposed to implement the MCMC
scheme[8]-[13]. In a recent survey[12] it is shown that
Acceptance-Rejection/Metropolis-Hastings (AR/MH) algo-
rithm works better than other algorithms. In the AR/MH
algorithm the proposal density is assumed to be a multivari-
ate Student’s t-distribution and the parameters to specifythe
distribution are estimated by the ML technique. Recently
an alternative method to estimate those parameters without
relying on the ML technique was proposed [14]. In this
method the parameters are determined by using the data
generated by an MCMC method and updated adaptively
during the MCMC simulation. We call this method ”adaptive
construction scheme”.

The adaptive construction scheme was tested for artificial
GARCH data and it is shown that the adaptive construction
scheme can significantly reduce the correlation between
sampled data[14]. In this study we apply the adaptive
construction scheme to the QGARCH model. The orignal
GARCH model has 3 model parameters. On other hand the
QGARCH model has 4 model parameters. We study the
efficiency of the adaptive construction scheme applied to
the QGARCH model and examine whether the efficiency is
still high enough for such a model with many parameters.

2. QGARCH Model

The QGARCH model[6], [7] which we employ here is
written as

yt = σtǫt, (1)

σ2
t = ω + γyt−1 + αy2

t−1 + βσ2
t−1, (2)

where ǫt is an independent normal error∼ N(0, 1) and
yt are observations. Hereα, β, γ and ω are the parameters
to be estimated in the Bayesian inference. The QGARCH
process differs from the GARCH one by the termγyt−1

which introduces asymmetry.
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3. Bayesian inference

From the Bayes’ theorem the posterior densityπ(θ|y)
with n observationsy = (y1, y2, . . . , yn) is given by

π(θ|y) ∝ L(y|θ)π(θ), (3)

whereL(y|θ) is the likelihood function.π(θ) is the prior
density for θ. The functional form ofπ(θ) is not known
a priori. Here we assume that the prior densityπ(θ) is
constant.

For the QGARCH model the likelihood function is given
by

L(y|θ) = Πn
i=1

1
√

2πσ2
t

exp (−
y2

t

σ2
t

), (4)

whereθ = (ω, α, β, γ) stands for the QGARCH parameters.
Using π(θ|y) the QGARCH parameters are inferred as

the expectation values given by

〈θ〉 =
1

Z

∫

θπ(θ|y)dθ, (5)

whereZ =
∫

π(θ|y)dθ is a normalization constant irrelevant
to MCMC estimations.

The MCMC technique gives a method to estimate eq.(5)
numerically. The basic procedure of the MCMC method
is as follows. First we sampleθ drawn from a probability
distributionπ(θ|y). Sampling is done by a technique which
produces a Markov chain. After sampling some data, we
evaluate the expectation value as an average value over the
sampled dataθ(i),

〈θ〉 = lim
k→∞

1

k

k
∑

i=1

θ(i), (6)

wherek is the number of the sampled data. The statistical
error for k independent data is proportional to1√

k
. In

general, however, the data generated by the MCMC method
are correlated. As a result the statistical error will be
proportional to

√

2τ
k where τ is the autocorrelation time

between the sampled data. The autocorrelation time depends
on the MCMC method we employ. Thus it is desirable to
choose a MCMC method which can generate data with a
small τ .

3.1. Metropolis-Hastings algorithm

The MH algorithm[16] is a generalized version of the
Metropolis algorithm[15]. Let us consider to generate data
x from a probability distributionP (x). The MH algorithm
consists of the following steps. First starting fromx, we pro-
pose a candidatex′ which is drawn from a certain probability
distributiong(x′|x) which we call proposal density. Then we
accept the candidatex′ with a probabilityPMH(x, x′) as the
next value of the Markov chain:

PMH(x, x′) = min

[

1,
P (x′)

P (x)

g(x|x′)

g(x′|x)

]

. (7)

If x′ is rejected we keep the previous valuex. Then we
repeat these steps.

4. Adaptive construction scheme

By choosing an adequate proposal density for the MH
algorithm one may reduce the correlation between the
sampled data. The posterior density of GARCH parameters
often resembles to a Gaussian-like shape. Thus one may
choose a density similar to a Gaussian distribution as the
proposal density. Such attempts have been done by Mit-
sui, Watanabe[11] and Asai[12]. They used a multivariate
Student’s t-distribution in order to cover the tails of the
posterior density and determined the parameters to specify
the distribution by using the ML technique. Here we also
use a multivariate Student’s t-distribution but determinethe
parameters through MCMC simulations.

The (p-dimensional) multivariate Student’s t-distribution
is given by

g(θ) =
Γ((ν + p)/2)/Γ(ν/2)

detΣ1/2(νπ)p/2

×

[

1 +
(θ − M)tΣ−1(θ − M)

ν

]−(ν+p)/2

,(8)

whereθ andM are column vectors,

θ =











θ1

θ2

...
θp











, M =











M1

M2

...
Mp











, (9)

andMi = E(θi). Σ is the covariance matrix defined as

νΣ

ν − 2
= E[(θ − M)(θ − M)t]. (10)

ν is a parameter to tune the shape of Student’s t-distribution.
Whenν → ∞ the Student’s t-distribution goes to a Gaussian
distribution. At smallν Student’s t-distribution has a fat-tail.
We also define the matrixV by V = E[(θ − M)(θ − M)t]
for later use.

There are 4 parameters in the QGARCH model. Thus
p = 4, θ = (θ1, θ2, θ3, θ4) = (α, β, ω, γ) and, Σ and V
are 4 × 4 matrices. The unknown parameters inM and Σ
are determined by using the data obtained from MCMC
simulations. First we make a short run by the Metropolis
algorithm and accumulate some data. Then we estimateM
and Σ. Note that there is no need to estimateM and Σ
accurately. Second we perform a MH simulation with the
proposal density of eq.(8) with the estimatedM and Σ.
After accumulating more data, we recalculateM and Σ,
and updateM andΣ of eq.(8). By doing this, we adaptively
change the shape of eq.(8) to fit the posterior density. We
call eq.(8) with the estimatedM andΣ ”adaptive proposal
density”.
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Figure 1. The times series generated by the QGARCH
process with α = 0.07, β = 0.8, γ = −0.05 and ω = 0.1.
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Figure 2. Histograms of α from the adaptive construc-
tion scheme and the Metropolis algorithm.

5. Numerical results

We examine the adaptive construction scheme by using
artificial QGARCH data generated with known parameters.
The QGARCH parameters are set toα = 0.07, β = 0.8,
γ = −0.05 andω = 0.1. We have generated 2000 data by
the QGARCH process with these parameters as displayed in
Fig.1.

The adaptive construction scheme is implemented as
follows. First we start a run by the Metropolis algorithm. The
first 3000 data are discarded as burn-in process or in other
words thermalization. Then we accumulate 1000 data forM
andΣ estimations. The estimatedM andΣ are substituted
to g(θ). In this study we takeν = 10. We re-start a run
by the MH algorithm withg(θ). Every 1000 updates we re-
calculateM andΣ and updateg(θ). We accumulate 100000
data for analysis.

For comparison we also use a standard Metropolis al-
gorithm to infer the GARCH parameters and accumulate
100000 data for analysis.

The results of the parameters inferred by the adaptive con-
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Figure 3. Monte Carlo history of α from the adaptive
construction scheme.
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Figure 4. Monte Carlo history of α from the Metropolis
algorithm.

struction scheme and Metropolis algorithm are summarized
in Table 1.

Fig. 2 compares the histogram of the sampled dataα by
the adaptive construction scheme with that by the Metropolis
algorithm. The histograms from the two MCMC techniques
seem to coincide each others. However the property of the
sampled data is very different, which will be analyzed in the
followings.

Fig. 3-4 show Monte Carlo time histories from the
adaptive construction scheme and Metropolis algorithm. It
is clearly seen that the data sampled by the Metropolis
algorithm are substantially correlated. The similar behavior
is also seen for the sampled data for other parameters.

The correlations between the data can be measured by
the autocorrelation function (ACF). The ACF of certain
successive dataθ(i) is defined by

ACF (t) =
1
N

∑N
j=1(θ

(j) − 〈θ〉)(θ(j+t) − 〈θ〉)

σ2
θ

, (11)

where〈θ〉 andσ2
θ are the average value and the variance of

θ respectively.



Table 1. Results of QGARCH parameters. SD and SE
stand for standard deviation and statistical error

respectively.

α β ω γ

true 0.07 0.8 0.1 -0.05
Adaptive 0.07143 0.7905 0.1054 -0.04643

SD 0.018 0.056 0.035 0.019
SE 0.00012 0.0005 0.0004 0.00010
2τ 4.1 ± 1.3 10 ± 5.0 11 ± 5.1 3.0 ± 0.4

Metropolis 0.0704 0.7943 0.1032 -0.0465
SD 0.018 0.053 0.033 0.019
SE 0.0011 0.0052 0.0032 0.0004
2τ 340 ± 100 840 ± 280 820 ± 290 54 ± 7
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Figure 5. Autocorrelation function of α sampled by the
adaptive construction scheme.

Fig. 5-6 show the ACF ofα sampled from the adaptive
construction scheme and the Metropolis algorithm. The ACF
of the adaptive construction scheme decreases quickly as
Monte Carlo timet increases. On the other hand the ACF
of the Metropolis algorithm decreases very slowly which
indicates that the correlation between the sampled data is
very large.

The autocorrelation time (ACT)τ is calculated by

τ =
1

2
+

∞
∑

i=1

ACF (i). (12)

Results ofτ are summarized in Table 1. We find that the
ACT from the adaptive construction scheme have much
smallerτ than those from the Metropolis simulations. For
instanceτ of α parameter from the adaptive construction
scheme is decreased by a factor of 90 compared to that
from the Metropolis algorithm. These results prove that the
adaptive construction scheme is an efficient algorithm for
sampling de-correlated data. The differences inτ also ex-
plain that the statistical errors from the adaptive construction
scheme are much smaller than those from the Metropolis
simulations.

Fig. 7-8 show the convergence property of the covariance
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Figure 6. Autocorrelation function of α sampled by the
Metropolis algorithm.
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Figure 7. The diagonal elements of V as a function of
the data size.

matrix V . All the elements ofV seem to converge to certain
values as the simulations are proceeded.

Fig. 9 shows values of the acceptance at the MH algorithm
with the adaptive proposal density of eq.(8). Each acceptance
is calculated every 1000 updates and the calculation of the
acceptance is based on the latest 1000 data. At the first stage
of the simulation the acceptance is low. This is because
M and Σ have not yet been calculated accurately as we
see in Fig. 7-8. However the acceptances increase quickly
as the simulations are proceeded and reaches plateaus of
about70%. This acceptance is reasonably high for the MH
algorithm.

6. Conclusions

We have performed the Bayesian inference of the
QGARCH model by applying the adaptive construction
scheme to the MH algorithm. The adaptive construction
scheme, which does not use the ML method, is found
to be very efficient in the sense that the autocorrelation
times of the sampled data are very small. Thus the adaptive
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Figure 8. Some off-diagonal elements of V as a
function of the data size. Other off-diagonal elements
show the similar convergence behavior.
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Figure 9. Acceptance at MH step with the adaptive
proposal density.

construction scheme serves as an efficient MCMC technique
for the Bayesian inference of the QGARCH model. The
adaptive construction scheme is not limited to the Bayesian
inference of the QGARCH or GARCH models and can be
applied for other GARCH-type models.

Although we have updated the parameters of the Student’s
t-distribution adaptively using the sampled data during the
simlation, we may take a strategy that we stop to update the
parameters at some point. As seen in fig. 9, the acceptance
quickly reaches a plateau of about70% and after that the
adaptive parameter update does not improve the acceptance.
Thus we may stop to update the parameters and use the
fixed proposal density for the MH step after the acceptance
reaches the plateau.
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