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Abstract 
The couette flow of a viscous fluid in a channel, partially filled with a porous 
medium has been analyzed. The lower part of the channel is occupied by a porous 
medium, while the upper part is occupied by a clear fluid. The lower porous plate 
and the porous medium are fixed and a transverse sinusoidal injection velocity is 
applied at it, while the upper porous plate moves with a constant velocity and it is 
also subjected to a constant suction. The effects of the permeability of the porous 
medium, its thickness, effective viscosity and the injection parameter, on the flow 
are analyzed. 

Keywords: Couette flow, composite channel, Brinkman porous medium, 
permeability, effective viscosity 

 

1. Introduction 
 
The viscous fluid flow through and across a porous medium is a subject of 
growing interest. This is because of many important engineering applications of 
porous media. Such applications can be found in soil mechanics, oil field 
operations, in transpiration cooling, lubrication of porous bearings and water 
purification etc., where fluid flow through porous medium plays a fundamental 
role. The study of viscous fluid flow and heat transfer in channels and ducts 
filled/partially filled with a porous medium is important because of its many 
important industrial applications. Analytical study was conducted of such flow 
problems in channels with a porous medium by several researchers, such as Neale  
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and Nader (1974), Kuznetsov (1996, 2000), Al-Nimr and Khadrawi (2003), 
Chauhan and Kumar (2009), Chauhan and Agrawal (2010), Chauhan and Rastogi 
(2010) and many others. 
The viscous effects are important in several problems encountered in engineering 
system. For example, the flow of a lubricant between fast moving parts is laminar, 
in view of the small dimensions of the parts and of the high viscosity of the 
lubricating fluid. In these cases large velocity changes occur over short distances 
and even at moderate velocities, friction becomes important. Such flows in the 
presence of porous boundaries or porous material in varies geometries have 
several applications. One of important viscous fluid flow situations in porous 
media is couette flow in parallel channel, in which one wall attached with a 
porous layer is stationary and the other is moving in its own plane with a constant 
velocity. Since in porous layer the viscous forces in the boundary layer near the 
stationary plate can be significant, to obtain a correct description of the flow, it is 
necessary to account for the viscous effects by taking Brinkman equation to 
model the flow in porous layer. 
Investigations on couette flow in porous media are limited to the case of a 
Brinkman extended-Darcy porous medium. Bhargava and Sacheti (1989), 
Daskalakis (1990), Chauhan and Soni (1994) investigated such flows using 
Brinkman equation. Nakayama (1992) obtained analytical solutions for different 
situations of couette flow in a porous medium filled with an inelastic non-
Newtonian fluid where the porous medium is described by the Brinkman-
Forchheimer extension of the Darcy law. Couette flow of a compressible 
Newtonian fluid in the presence of a naturally permeable boundary is investigated 
by Chauhan and Shekhawat (1993), and Chauhan and Vyas (1995). One couette 
flow situation can occur, for example, when the parallel channel is completely 
filled with a porous material which is at rest, and there is no gap between the 
porous medium and the moving plate. However in such case large friction forces 
developed between the porous matrix and the moving plate can damage the 
geometry of the porous matrix in practical situations. Therefore it is more suitable 
if there is a gap, may be very small, between the moving plate and the porous 
medium. Thus study of flow in a composite channel partially filled with a porous 
material and partial with a clear fluid is important. However in this geometry, 
clear fluid is adjacent to porous medium, and so correct boundary conditions at 
the porous medium-clear fluid interface must be specified for better results. 
Boundary conditions at the fluid-porous interface are discussed in detail by 
Beavers and Joseph (1967), Saffman (1971), Kim and Russel (1985), Ochoa-
Tapia and Whittaker (1995a, b), and James and Davis (1996). 
Suction and injection at the plate also play a fundamental role in the plane couette 
flow. It remains two-dimensional if the suction and injection applied at the porous 
parallel plate are uniform, but by the application of the transverse sinusoidal 
injection at the stationary plate and constant suction at the moving plate, the flow 
remains three-dimensional as studied by Singh (1999). A similar problem of three 
dimensional couette flow of dusty viscous fluid was investigated by Govindarajan 
et al. (2007) with transpiration cooling. Such flow problems are important for 
studies of transpiration cooling process by investigating associated heat transfer  
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problems. Kuznetsov (1998) investigated two-dimensional couette flow in a 
composite channel partially filled with porous medium modeled by Brinkman-
Forchheimer-Darcy equation, and associated heat transfer. In his study, he 
utilized the boundary conditions at the fluid-porous interface suggested by Ochoa-
Tapia and Whittaker (1995a, b). 
In the present study the three-dimensional couette flow in a composite channel, 
partially filled with a porous medium has been analyzed to the case of a 
Brinkman-Darcy porous medium with effective medium considerations. 

 

2. Formulation of the Problem 
 
Steady viscous flow in a composite channel bounded by two infinite parallel 
porous plates is considered. The lower part of the channel is occupied by a fully 
saturated porous medium of thickness ‘h’ with uniform permeability, while the 
upper part is occupied by a clear fluid. The lower plate and the porous medium 
are fixed, while the upper plate moves with a constant velocity ‘U0’. The upper 
plate is separated from the porous medium by a gap filled with clear fluid of 
thickness‘d’. The upper moving porous plate is also subjected to a constant 
suction velocity 0V and the lower porous plate to a transverse sinusoidal injection 
velocity of the form: 

0 1 cos⎛ ⎞= +⎜ ⎟
⎝ ⎠

zV V
d

πε .                 (1) 

Where ε (<<1) is a positive modulation parameter. Because of this injection 
velocity the fully developed laminar flow in the channel remains three 
dimensional. The surface of the porous medium is taken horizontal in x z−  plane. 
The x-axis is taken in the flow direction and the y -axis is taken normal to the 
porous medium interface. Let ( ), ,u v w and ( )U ,V ,W are the velocity components 
for the free fluid region and porous layer in the directions ( )x, y,z respectively. 
Since the channel is infinite in the x-direction, all physical quantities will be 
independent of x. 
The governing equations for the free fluid region ( )0 ≤ ≤y d are: 

0∂ ∂
+ =

∂ ∂
v w
y z

,                    (2) 

2 2

2 2
u u u uv w
y z y z

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

ρ μ ,              (3) 

         
2 2

2 2
v v p v vv w
y z y y z

ρ μ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
,  (4) 

         
2 2

2 2
w w p w wv w
y z z y z

ρ μ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
.  (5) 
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The governing equations for the porous region ( )0h y− ≤ ≤ are: 

         0∂ ∂
+ =

∂ ∂
V W
y z

,  (6) 

         
_

2 2

2 2
0

0
⎛ ⎞∂ ∂

= + −⎜ ⎟∂ ∂⎝ ⎠

U U U
y z K

μ μ
ρ ρ

,  (7) 

         
_

2 2

2 2
0

10
⎛ ⎞∂ ∂ ∂

= − + + −⎜ ⎟
∂ ∂ ∂⎝ ⎠

P V V V
y Ky z

μ μ
ρ ρ ρ

,  (8) 

         
_

2 2

2 2
0

10 P W W W
z Ky z

μ μ
ρ ρ ρ

⎛ ⎞∂ ∂ ∂
= − + + −⎜ ⎟

∂ ∂ ∂⎝ ⎠
.  (9) 

The appropriate boundary conditions for the present problem are: 
 at    ;y d=  0 ,u U=  0 ,v V=  0w = ,                   (10) 
 at  0;y =  ,u U=  ,v V=  ,w W=  ,p P=  

    
_u U ,

y y
⎛ ⎞ ⎛ ⎞∂ ∂

μ = μ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

_v w V W
z y z y

μ μ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
,              (11) 

at  ;y h= −  0,U =  0 1 cos ,zV V
d

πε⎛ ⎞= +⎜ ⎟
⎝ ⎠

 0W = ,                  (12) 

where , pμ  and 
_

, Pμ  are the viscosity and pressure in the free fluid and porous 
region respectively ρ , density and 0K , the permeability of the porous layer. 
Introducing the following non-dimensional quantities in equations (2) to (12), 

∗ =y y d , ∗ =z z d , 0
∗ =u u V , 0

∗ =v v V , 0
∗ =w w V , 0

∗ =U U V , 0
∗ =V V V , 

          0
∗ =W W V , 2

0ρ∗ =p p V , 2
0 ,ρ∗ =P P V  2

0 ,=K K d  =a h d ,       (13) 
we obtain after dropping asterisks for convenience the following: 

         0v w
y z

∂ ∂
+ =

∂ ∂
,  (14) 

         
2 2

2 2
1u u u uv w

y z y zλ
⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟
∂ ∂ ∂ ∂⎝ ⎠

,  (15) 

         
2 2

2 2
1v v p v vv w

y z y y zλ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜ ⎟
∂ ∂ ∂ ∂ ∂⎝ ⎠

,  (16) 

         
2 2

2 2
1w w p w wv w

y z z y zλ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜ ⎟
∂ ∂ ∂ ∂ ∂⎝ ⎠

,  (17) 

         0V W
y z

∂ ∂
+ =

∂ ∂
,  (18) 

         
2 2

2 2 0U U U
Ky z

⎛ ⎞∂ ∂
+ − =⎜ ⎟

∂ ∂⎝ ⎠
φ ,  (19) 

         
2 2

2 2
V V V P

K yy z
⎛ ⎞∂ ∂ ∂

+ − =⎜ ⎟
∂∂ ∂⎝ ⎠

φ λ ,  (20) 
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2 2

2 2
W W W P

K zy z
⎛ ⎞∂ ∂ ∂

+ − =⎜ ⎟
∂∂ ∂⎝ ⎠

φ λ ,  (21) 

and the boundary conditions: 
at  1;y =  ,u A=  1,v =  0w = ,                    (22) 
at  0;y =  ,u U=  ,v V=  ,w W=  ,p P=  

       ,u U
y y

∂ ∂
=

∂ ∂
φ  v w V W

z y z y
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
φ ,               (23) 

at  ;y a= −  0,U =  ( )1 cos ,V zε π= +  0W = ,               (24) 
where ,φ μ μ=  0 ,λ υ=V d  0 0=A U V . 

 

3. Method of Solution 
 
Here the parameter ( 1),ε << i.e. ε is very small. When 0ε =  the problem reduces 
to the two dimensional coupled flow in the channel when there is a constant 
injection at the bottom and constant suction at the upper moving plate. We 
assume  
           2

0 1 2( , ) ( ) ( , ) ( , ) ....u y z u y u y z u y zε ε= + + +   (25) 
Similar expressions hold for other variables v, w, U, V, W, p and P. In the case 
when 0ε = , equations (14) to (21) reduces to govern the two dimensional coupled 
flow with the corresponding boundary conditions. The solution of this two 
dimensional problem is 
           ( )0 1 2( ) expu y b y bλ= + , 0 1,v =  0 0,=w 0p = constant, 

           0 3 4
1 1( ) exp exp ,

φ φ
⎛ ⎞ ⎛ ⎞

= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

U y b y b y
K K

 0 1,V =  

           0 0,W =  0
yP

K
= − +

λ
constant,               (26) 

where 

           1
11 exp 2φ

φ

⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Ab a
b K K

,  

           2
1 11 exp 2 1 exp 2 ,φλ

φ φ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥= − − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

Ab a a
b K K K

 

           3 ,Ab
b
λ

=  4 3
1exp 2 ,

φ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

b b a
K

 

        ( )1 11 exp 2 1 exp 2 1 exp( )φλ λ
φ φ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= − − − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

b a a
K K K

. 
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When 0,ε ≠  substituting (25) into equations (14) to (21) and comparing the 
coefficients of identical powers of ε , neglecting those of 2 3,ε ε  etc; we get the 
following first order equations with the help of (26): 

           1 1 0v w
y z

∂ ∂
+ =

∂ ∂
,  (27) 

           
2 2

0 1 1 1
1 2 2

1u u u uv
y y y zλ

⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠
,  (28) 

           
2 2

1 1 1 1
2 2

1v p v v
y y y zλ

⎛ ⎞∂ ∂ ∂ ∂
= − + +⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠
,  (29) 

           
2 2

1 1 1 1
2 2

1w p w w
y z y zλ

⎛ ⎞∂ ∂ ∂ ∂
= − + +⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠
,  (30) 

           1 1 0V W
y z

∂ ∂
+ =

∂ ∂
,  (31) 

           
2 2

1 1 1
2 2 0U U U

Ky z
⎛ ⎞∂ ∂

+ − =⎜ ⎟
∂ ∂⎝ ⎠

φ ,  (32) 

           
2 2

1 1 1 1
2 2

V V V P
K yy z

⎛ ⎞∂ ∂ ∂
+ − =⎜ ⎟

∂∂ ∂⎝ ⎠
φ λ ,  (33) 

           
2 2

1 1 1 1
2 2

W W W P
K zy z

φ λ
⎛ ⎞∂ ∂ ∂

+ − =⎜ ⎟
∂∂ ∂⎝ ⎠

.  (34) 

The corresponding boundary conditions are: 
at  1;y =  1 0,u =  1 0,v =  1 0w = ,                        (35) 
at  0;y =  1 1,u U=  1 1,v V=  1 1,p P=  

     1 1 ,φ∂ ∂
=

∂ ∂
u U
y y

 1 1 1 1φ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

v w V W
z y z y

,        (36) 

at  ;y a= −  1 0,U =  1 cos ,V zπ=  1 0W = .             (37) 
These are linear partial differential equations describing the three dimensional 
coupled flow. We choose expressions of velocity components in such a form so 
that the equation of continuity is satisfied. We assume 

( ) ( )1 11, cosu y z u y zπ= ,                 (38) 
( ) ( )1 11, cosv y z v y zπ= ,                 (39) 

( ) ( )1 11
1w y,z v y sin z′= − π
π

,               (40) 

( ) ( )1 11, cosp y z p y zπ= ,                 (41) 
( )1 11( , ) cosU y z U y zπ= ,                 (42) 

( ) ( )1 11, cosV y z V y zπ= ,                 (43) 

( ) ( )1 11
1, sinW y z V y zπ
π

′= − ,               (44) 
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( ) ( )1 11, cosP y z P y zπ= ,                 (45) 
where the prime denotes the differentiation with respect to y. Substituting the 
expressions (38) to (45) into (27) to (34) and solving under the corresponding 
transformed boundary conditions, we obtain 

( ) ( ) ( ) ( ) ( )

1 2

1 2

1 2

1 31 2 4
1

1 2

, cos ,
2 2

r y r y

y y r y r y

L e L e
u y z zAA A Ab e e e e

r r
λ π λ π λ λ π

λ
π π

+ − + +

⎡ ⎤+
⎢ ⎥

= ⎧ ⎫⎢ ⎥+ − + +⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

 

(46) 
( ) ( )1 2

1 1 2 3 4, cosr y r yy yv y z A e A e A e A e zπ π π−= + + + ,         (47) 

( ) ( )1 2
1 1 2 3 1 4 2

1, sinr y r yy yw y z A e A e A r e A r e zπ ππ π π
π

−= − − + + ,      (48) 

( ) ( )1 1 2, cosy yp y z A e A e zπ π π−= − + ,              (49) 

( ) ( )1 3 4
sy syU y,z L e L e cos zπ−= + ,              (50) 

( ) ( )1 1 2 3 4, cosy y sy syV y z B e B e B e B e zπ π π− −= + + + ,         (51) 

( ) ( )1 1 2 3 4
1, siny y sy syW y z B e B e sB e sB e zπ ππ π π
π

− −= − − + − ,       (52) 

( ) ( )1 1 2
1, cosy yP y z B e B e z

K
π π π

λπ
−= − − ,           (53) 

where, 
2 2

1
4 ,

2
r λ λ π+ +

=  
2 2

2
4 ,

2
r λ λ π− +

=  2 1s
K

π
φ

= + . 

The constants of integration 1 2 3 4 1 2 3 4 1 2 3 4A , A , A , A , B , B , B , B ,L , L , L , L , have been 
obtained using the corresponding boundary conditions and their expressions are 
not reported here for the sake of brevity.  
When there is no porous layer, i.e. a→0, the above results are in agreement with 
Singh [13]. 
The expression for the shear stress xτ  in the main flow direction in non-
dimensional form at the porous interface is given by 

0 11

0 0

cosx
y y

du du z
dy dy

τ ε π
= =

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
             (54) 

 

4. Discussion 
 
Figure 1, shows the main velocity distribution in the composite channel for the 
dimensionless thickness of the porous medium 0 2a .= , and 0z = . The upper plate 
is a moving plate, and the dimensionless fluid velocity u at 

1y = equals ( )0 0A U V= , which is taken as unity in our computation work. This 
fluid velocity quickly decreases with distance from the moving plate, since the  



  

2690                                                                          D. S. Chauhan and V. Kumar 
 
 
porous medium creates resistance to the fluid flow. A decrease in permeability of 
the porous medium leads to a faster velocity decrease in the porous medium and it 
become zero at the bottom fixed plate. It is evident from the figure that the 
injection parameter causes decrease in the main flow. Further it is also observed 
that by increasing viscosities ratio ( )φ μ μ= , the velocity u in the channel 
decreases, because the fluid experiences greater viscosity (effective viscosity μ  ) 
in porous medium hence offers resistance to the flow. Givler and Altobelli (1994) 
discussed that the effective viscosity ( μ ) in the porous medium is not the same as 
the viscosity of the clear fluid in general and demonstrated that the effective 
viscosity for highly porous foam can be about ten times the clear fluid viscosity. 
Thus utilizing the results of this study, we plotted the graphs for various values of 
the viscosity ratio φ. Thus the main flow in the composite channel can be 
controlled by the injection parameter and by the porous material used in the 
channel of different permeability and for which effective viscosity differs from 
the clear fluid viscosity. 
The cross flow velocity component w, generated because of the transverse 
sinusoidal injection velocity applied at the bottom porous plate, is plotted in 
Figure 2. Since there is injection at the bottom stationary plate and suction at the 
moving plate, this secondary flow component decreases as the injection parameter 
λ increases inside the porous layer and up to certain distance in the middle of the 
channel and then increases with the increase in λ in the upper part in the channel. 
However it increases by increasing φ  inside the porous layer and up to certain 
distance in the clear fluid region, then decreases as we move to the upper part in 
the channel. The results are also compared to those when a→0 i.e. when there is 
no porous layer attached to the bottom porous plate. Figure 3, shows the 
transverse velocity profiles for various values of permeability parameter K and 
also the case when there is no porous layer. It is interesting to note that by 
increasing K, w decreases till half porous region then increases up to certain 
distance in the lower half of the free liquid region and decreases afterwards in the 
upper part of the channel till the moving plate, where there is a constant 
withdrawal of the fluid. 
There are several techniques for reducing the skin-friction on walls. In general, 
the attempts to control the flow depend on changes to the wall boundary 
conditions including variations of longitudinal and transverse surface curvatures, 
the nature of the surface and mass transfer through the surface. Thus 
suction/injection and porous medium lining on the wall play an important role in 
reducing skin friction at the walls of a channel. Figure 4 shows the variations of 
the skin friction component xτ  in the main flow direction at the porous interface 

0z =  for various parameters such as, injection parameter λ, permeability 
parameter K, thickness of the porous layer ‘a’, and the viscosities ratio φ. It is 
found that xτ  decreases with the increase of λ or the permeability K of the porous 
medium. It is also clear from this figure that increase in ‘a’ reduces the skin 
friction but this change in xτ  is significant only for small ‘a’, depending on the 
permeability of the porous medium K. For small permeability, changes occur only  



  

Three-dimensional Couette flow in a composite channel                               2691 
 
 
up to small changes in ‘a’, which increases when K increases. This figure also 
shows that when viscosities ratio φ increases, the fluid in the porous medium 
experiences greater viscosity and the xτ  increases accordingly. 

 

5. Conclusions 
 
A problem of viscous fluid flow in three-dimensional couette flow through a 
composite channel which is partially filled with a fluid saturated porous medium 
and partially with a clear fluid is investigated. The flow in the porous medium is 
modeled by the Brinkman equation and an appropriate set of boundary conditions 
are applied at the interface of the clear fluid-porous medium, with effective 
medium considerations. Analytical solutions for the velocity profiles and the 
shear stress in the main flow direction at the porous interface are obtained. 
It is observed that by the increase in permeability of the porous medium the main 
flow velocity increases in the channel, whereas the injection parameter and the 
effective viscosity of the porous medium decrease the main flow. Thus the main 
flow in the composite channel can be controlled by these parameters. It is also 
found that the shear stress in the main flow direction is reduced by the 
introduction of the permeability or by increasing the injection parameter λ. As 
well as increase in the thickness of porous layer reduces xτ . Thus these results 
can be used for reducing the skin friction on walls. 
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Fig. [1] Main flow velocity u vs y, for 0.2, 0a z= =  
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Fig. [2] Transverse velocity w vs y for 1K = and z 0.5= . 
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Fig. [3] Transverse velocity w vs y for 0.5,λ = 1.2φ = and z 0.5=  
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Fig. [4] Shear stress τ x  vs a for z 0= . 
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