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Abstract

Inference for the effect of treatment on an outcome often suffers
from the unavailability of valid measurements of treatment. Due to
this, systematic errors in measurements of treatment occur frequently
and are inevitable in practice. Measurement error in treatment thus
forms a common source of bias in treatment effect estimates on outcome.
This study provides strategy for correcting bias by expected estimating
equations in regression models. We proceed this in both continuous and
categorical treatment with measurement error assumptions.
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1 Introduction

The so-called ‘measurement error problem’ or ‘errors-in-variables problem’

arises in situations where the treatment X is difficult to measure or cannot

be accurately measured for all study subjects. For instance, in environmental

problems individual levels of pollution and radiation are difficult to measure,

or in agricultural studies the amount of the fertilizer actually absorbed by

the plant is a quantity which cannot be accurately measured [1, 2, 3]. Then,

random or systematic errors occur in measurements of treatment X. In this

paper, we provide strategy for correcting bias by expected estimating equa-

tions in regression models. We refer to error in a continuous treatment X as

plain measurement error. When X is discrete (categorical), which is often the

case in agriculture applications, then misclassification is the term to use. The
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paper is organized as follows. Section 2 presents the structure of systematic

error in measurements of continuous or discrete (categorical) treatment under

regression models. In section 3, we extract the bias terms through expected

estimating equations and conclusion in section 4.

2 Models for measurement error

The structure of measurement error or misclassification in treatments under

regression models initially requires specifying models for the error process.

Such models quantify the relationship between the true treatment X and the

observed treatment W . In the literature on the measurement error problem

[1, 2, 4, 5], two general types of measurement error model are commonly con-

sidered for continuous X. The standard error model is typically the ‘Classical

measurement error model’ in which, W = X + U , where U , the measurement

error term, is assumed to be independent of X; that is, U ⊥⊥ X. In practice,

it is common to assume that the measurement error U has mean 0 so that

E(U |X) = E(U) = 0. This implies that E(W |X) = X, suggesting that W is

an unbiased measure of X. In fact, virtually all developments on measurement

error assume the error to be normally distributed with mean zero and could be

homoscedastic or heteroscedastic [6]. The ‘Berkson error model’ is an alterna-

tive to the classical measurement error model. It is based on the assumption

that the measurement error is independent of the observed treatment W , in

the sense that, X = W + U , where U is independent of W ; that is, U ⊥⊥ W

[2, 6].

In case where Xis discrete, the measurement error model can be defined in

terms of conditional misclassification probabilities [5]. Misclassification error

basically differs from measurement error because the observed treatment vari-

able W cannot be expressed as a sum of the true treatment variable X with an

error variable. Rather, one must characterize the measurement error in terms

of misclassification probabilities. These probabilities are often expressed as

the probability of the observed treatment W given the true treatment X;

that is, P (W |X). For dichotomous variables, it is conventional to express

these through the sensitivity, π1|1 = P (W = 1|X = 1), and the specificity,

π0|0 = P (W = 0|X = 0).
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3 Impact of measurement error and correcting

bias

In the measurement error analysis, measurement error can be either differential

or non-differential. Non-differential measurement error in the presence of an

error-free covariate Z occurs when Y is independent of W , given X and Z;

that is, Y ⊥⊥ W |X, Z so that fY |W,X,Z = fY |X,Z . If this assumption fails, then

the error is said to be differential. This assumption is useful, because it greatly

simplifies the link between the association of Y and W and the association of

Y and X.

3.1 Linear regression models

We begin with an illustration of the effects of measurement error for the case

of homoscedastic ordinary linear regression where treatment X is continuous,

E(Yi|Xi, Zi) = β∗
0 + β∗

1Xi + β∗
2Zi, (1)

where Zi is an error-free covariate, Xi is an error-prone treatment with mean

μx and variance σ2
x, and β∗ = (β∗

0 , β
∗
1 , β

∗) is an unknown finite-dimensional pa-

rameter, with β∗
1 encoding the conditional association between Xi and Yi (given

Zi). Under the classical measurement error model, Wi = Xi + Ui, we observe

a variable Wi instead of Xi, where the measurement error Ui is independent

of (Xi, Zi) with mean zero μu = 0. Here, we will additionally assume Ui to

be normally distributed with constant variance σ2
u which is assumed known

or can be estimated from supplementary data [2]. Suppose that the primary

interest of the study lies in the conditional association β∗
1 of X and Y . When

the investigator is unaware of the measurement error or chooses to ignore it,

he/she may simply regress Y on (W, Z), and would then not obtain a con-

sistent estimate of β∗, but instead obtain an estimate of the naive parameter

θ∗ = (θ∗0, θ
∗
1, θ

∗
2) indexing the following naive regression model,

E(Yi|Wi, Zi) = θ∗0 + θ∗1Wi + θ∗2Zi. (2)

The latter is implied by model (1) by the fact that the relationship between Y

and (W, Z) is greatly simplified when the measurement error is non-differential,

E(Y |W, Z) = E{E(Y |W, Z, X)|W, Z}
= E{E(Y |X, Z)|W, Z} = β∗

0 + β∗
1E(X|W, Z) + β∗

2Z. (3)
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The latter implies that the regression of Y on (W, Z) is equal to the regression

of Y on {E(X|W, Z), Z}. In regression models, one often solves the estimating

equation corresponding to that regression model to obtain regression coefficient

estimates. The estimating equation is called unbiased if it has expectation zero

when evaluated at the true parameter values. If it is unbiased, its solution is a

consistent and asymptotically normal estimator for the considered parameters.

In the absence of measurement error a consistent and asymptotically normal

estimator for β∗ under model (1) can be obtained by solving,

0 =
n∑

i=1

Ui(Yi, Xi, Zi; β
∗) =

n∑
i=1

⎛
⎜⎜⎝

1

Xi

Zi

⎞
⎟⎟⎠ (Yi − β∗

0 − β∗
1Xi − β∗

2Zi) .

By replacing W instead of X, U(Yi, Wi, Zi; β
∗) may not generally be unbiased.

Under the naive model (2), the limiting parameter θ∗ is obtained by solving

the following expected estimating equation

0 = E{Ui(θ
∗)} = E

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1

Wi

Zi

⎞
⎟⎟⎠ (Yi − θ∗0 − θ∗1Wi − θ∗2Zi)

⎫⎪⎪⎬
⎪⎪⎭ . (4)

Comparing this with the true model (1) then yields a bias formula. Note that,

we use U(θ∗) to denote an estimating function, and U for random measure-

ment error.

For simplicity, we first start with models in which there is no error-free covari-

ate. Consider a linear model (1) and assume the classical error model holds.

As stated, with the classical error model, measurement error U is independent

of X with mean 0 and variance σ2
u. It follows E(W |X) = X; V ar(W |X) = σ2

u;

E(W ) = μx; V ar(W ) = σ2
x + σ2

u; and Cov(W, X) = Cov(X + U, X) = σ2
x. Un-

der regression model (2) with no covariate Z, the naive coefficient estimators

can be obtained by solving,

0 = E{U(θ∗)} = E

{(
1

W

)
(Y − θ∗0 − θ∗1W )

}
= E

[
E

{(
1

W

)
(Y − θ∗0 − θ∗1W ) |X, W

}]
.

This yields

θ∗1 =
Cov(W, X)

V ar(W )
β∗

1 =
σ2

x

σ2
x + σ2

u

β∗
1 .

Let

λ =
σ2

x

σ2
x + σ2

u

(5)
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and θ∗0 = β∗
0 + (1 − λ)β∗

1μw. As a result, ordinary least squares regression

yields biased estimators of the regression slopes of error-prone treatments. In

particular, because λ < 1, the least squares regression coefficient θ∗1 is biased

towards zero. This bias does not vanish with increasing sample size. In the

measurement error literature, the attenuation factor λ is called the ‘reliability

ratio’ (variance of true treatment variable divided by variance of measured

treatment variable, possibly given the error-free covariate); it expresses the

degree of attenuation. It suggests that measurement error bias increases with

decreasing treatment variance. If there is information on the magnitude of

the error variance and the distribution of X, then the above results allow in

principle to correct for measurement error in estimating regression slopes, at

least for reasonably simple forms of measurement error. An asymptotically

unbiased estimator of β∗
1 is then given as follows,

β̂1 =
θ̂1

λ
(6)

where θ̂1 is the ordinary least squares estimate of θ∗1. The resulting estimator

(6) is sometimes called the regression coefficient corrected for attenuation.

Further, E(β̂1) = β∗
1 and V ar(β̂1) = V ar(θ̂1)/λ

2. Because λ < 1, it is clear that

V ar(β̂1) > V ar(θ̂1). This implies correcting for bias entails that the corrected

estimator will be more variable than the biased estimator and then have wider

confidence intervals. This generally means that the price for reduced bias is

increased variance. It follows from the normality assumption and the classical

error model that

V ar(Y |W ) = V ar(β∗
0 + β∗

1X + ε|W )

= β∗2
1 V ar(X|W ) + σ2

ε

= β∗2
1

σ2
uσ

2
x

σ2
x + σ2

u

+ σ2
ε ,

Consider now model (1) with error-free covariate Z and the classical error

model. It follows from the classical error model that E(W |Z) = E(X|Z),

E(XW |Z) = E{X(X + U)|Z} = E(X2|Z), and Cov(W, X|Z) = Cov(X +

U, X|Z) = σ2
x|z. Here we suppose that X and Z are linearly related, E(X|Z) =

η∗
0 + η∗

1Z.

Under the non-differential measurement error assumption, by solving,

0 = E{U(θ∗)} = E[E{U(θ∗)|X, W, Z}]
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= E

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1

W

Z

⎞
⎟⎟⎠E(Y |X, Z) − θ∗0 − θ∗1W − θ∗2Z

⎫⎪⎪⎬
⎪⎪⎭ .

we can obtain

θ∗1 = λzβ
∗
1 , (7)

where

λz =
σ2

x|z
σ2

x|z + σ2
u

, (8)

and σ2
x|z = V ar(X|Z). A similar derivation shows that the coefficient of Z is

also biased, unless Z is independent of X; θ∗2 = β∗
2 + (1 − λz)β

∗
1η

∗
1. The bias

of this regression slope is thus (1 − λz)β
∗
1η

∗
1. Note that hypothesis tests for

the regression slope β∗
1 are valid in the presence of random, non-differential

measurement error (in the sense of preserving the nominal Type I error rate)

because, there is no bias (see expression 7) under the null hypothesis that β∗
1 =

0. Tests may, however, be less powerful than in the absence of measurement

error. It follows that, when E(X|W, Z) = α∗
0 + α∗

1W + α∗
2Z,

E(Y |W, Z) = β∗
0 + β∗

1α
∗
0 + β∗

1α
∗
1W + (β∗

2 + β∗
1α

∗
2)Z. (9)

This implies that the naive model test that none of the predictors are useful

for explaining variation in Y is valid in the sense of having the desired Type

I error rate. Specifically, examination of (2) and (9) shows that θ∗2 = 0 is

equivalent to β∗
2 = 0, only if β∗

1α
∗
2 = 0. It follows that the naive test of H0 :

β∗
2 = 0 is valid only if X is unrelated to Y conditional on Z (β∗

1 = 0) or if Z

is unrelated to X (α∗
2 = 0). The naive tests that are valid, that is, those that

maintain the Type I error rate, will still suffer reduced power relative to the

test based on the true data.

Moreover, when the error in X follows the Berkson error model, Cov(W, X) =

Cov(W, W + U) = V ar(W ). This implies that λ = 1. That is, the naive

estimator of slope is an unbiased estimator of β∗, but there is an increase in

the residual variance because under model (1),

V ar(Y |W ) = V ar(β∗
0 + β∗

1X + ε|W ) = β∗2
1 σ2

u + σ2
ε .

3.2 Nonlinear regression models

Regression coefficients in generalized linear models, including models of par-

ticular interest such as logistic regression (or probit regression), are affected

by measurement error in much the same manner as are linear model regression
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coefficients [2, 5, 7]. We now consider the nonlinear model with logistic link

without covariates Z,

logitP (Y = 1|X) = β∗
0 + β∗

1X. (10)

Assume that the error in X is non-differential and follows the classical mea-

surement error model. Then the observed data model implied by,

P (Y = 1|W ) =
∫

x
P (Y = 1|W, X)fX|W (x|w)dx =

∫
x
P (Y = 1|X)fX|W (x|w)dx.

This integral is not easy to handle, and to the best of our knowledge there

is no closed form solution for the bias expressions. Now consider the above

model with the probit link,

Φ−1{P (Y = 1|X)} = β∗
0 + β∗

1X.

Under the assumption of normality, we can evaluate the latter integral by the

probit link. As stated, X ∼ N(μx, σ
2
x) and U ∼ N(0, σ2

u) then

E(X|W ) = μx + ρxw
σx

σw
(W − μw)

V ar(X|W ) = (1 − ρ2
xw)σ2

x =

(
1

σ2
x

+
1

σ2
u

)−1

.

Then the latter integral can be written as

P (Yi = 1|Wi) =
∫ ∞

−∞
Φ(β∗

0 + β∗
1xi)f(xi; μ

∗
i , σ

∗2)dxi

= Φ

⎧⎨
⎩ β∗

0 + β∗
1μ

∗
i√

1 + β∗2
1 σ∗2

⎫⎬
⎭

where σ∗2 = ( 1
σ2

x
+ 1

σ2
u
)−1 and μ∗

i = E(Xi|Wi) for i = 1, ..., n [8]. A direct

comparison of the latter with the naive model, P (Yi = 1|Wi) = Φ(θ∗0 + θ∗1Wi)

yields

θ∗1 =
λβ∗

1√
1 + σ2

uλβ∗2
1

and θ∗0 =
β∗
0+(1−λ)μwβ∗

1√
1+σ2

uλβ∗2
1

. The close relationship between the logit and pro-

bit form, namely G(t) = (1 + exp(−t))−1 ≈ Φ(t/h) with h = 1.70, allows us

to obtain an asymptotic bias formula for the logistic regression coefficients in

model (10).
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As explained in Section 2, the situation in which a discrete variable is mea-

sured with error, is referred to as misclassification. In the case of a dichotomous

treatment X, the probability π1|1,z = P (W = 1|X = 1, Z), for instance ex-

presses how likely it is for someone who is truly exposed with covariate level

Z to be classified as exposed. Likewise, π0|0,z = P (W = 0|X = 0, Z) ex-

presses how likely it is for someone who is truly unexposed with covariate

level Z, to be classified as unexposed. The extent to which π1|1,z and π0|0,z

are less than 1 reflects the severity of the degree of misclassification, with 1

indicating no misclassification error. Consider now a linear regression model

(1) with no error-free covariate Z for a continuous outcome Y given a dichoto-

mous treatment variable X which is subject to misclassification. Assuming

non-differential measurement error

E(Y |W ) = E{E(Y |X)|W}
= β∗

0 + β∗
1P (X = 1|W )

= β∗
0 + β∗

1 {WP (X = 1|W = 1) + (1 − W )P (X = 1|W = 0)}
= β∗

0 + β∗
1

π0|1μx

1 − μw
+ β∗

1

{
π1|1μx

μw
+

π0|0(1 − μx)

1 − μw
− 1

}
W

where πw|x = P (W = w|X = x) for w = 0, 1 and x = 0, 1. A direct comparison

of the latter with the naive model, E(Y |W ) = θ∗0 + θ∗1W , shows that

θ∗1 =
μx(1 − μx)

μw(1 − μw)
(π1|1 + π0|0 − 1)β∗

1 (11)

and θ∗0 = β∗
0 +

(1−π1|1)μx

1−μw
β∗

1 . Let κ = μx(1−μx)
μw(1−μw)

(π1|1 + π0|0 − 1). Substituting

μw = 1 − π0|0 + (π1|1 + π0|0 − 1)μx into (11) yields

κ =
μx(1 − μx)

{1 − π0|0 + (π1|1 + π0|0 − 1)μx}{π0|0 − (π1|1 + π0|0 − 1)μx}(π1|1 +π0|0−1).

More generally when there is an error-free covariate Z in model (1) with a

dichotomous treatment variable X, misclassification error may be expressed in

terms of

P (W = 1|X, Z = z) = 1 − π0|0,z + (π1|1,z + π0|0,z − 1)X,

where πw|x,z is related with the error-free covariate Z for w = 0, 1 and x = 0, 1.

Babanezhad et al. [3] investigate the asymptotic bias of the ordinary least

squares estimate of the regression coefficient in terms of reclassification proba-

bilities when they are related to the error-free covariate Z. We now investigate
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the bias of the ordinary least squares estimate of the regression coefficients β∗

when πw|x,z = πw|x for w = 0, 1 and x = 0, 1. We can obtain by solving the

expected estimating equation under the non-differential measurement error,

that

θ∗1 = κ1β
∗
1 (12)

θ∗0 = β∗
0 + μxβ

∗
1 − μwθ∗1 + μz(θ

∗
2 − β∗

2)

θ∗2 = β∗
2 + β∗

1ρ

√
μx(1−μx)

σz

{
1 − (π1|1 + π0|0 − 1)

θ∗1
β∗
1

}
where ρ = ρxz and the coefficient

κ1 = (π1|1 + π0|0 − 1)
{

μx(1−μx)(1−ρ2)
μw(1−μw)−μx(1−μx)(π1|1+π0|0−1)2ρ2

}
is attenuation factor.

4 Conclusion

In this paper, we have investigated the impact of treatment measurement and

misclassification error on the asymptotic bias of different regression models.

Our interest in this stems from the fact that when no adjustments are made

for measurement errors, the bias of effect estimates can grow unexpectedly

large and lead to a loss of efficiency. It is revealed that in the data analysis

that the biased estimate of fertilizer is obtained.

References

[1] W.A. Fuller, Measurement Error Models . New York, John Wiley, 1987.

[2] R.J. Carroll, D. Ruppert, L.A. Stefanski and C.M. Crainiceanu, Measure-

ment Error in Nonlinear Models, Second Edition. CRC Press, 2006.

[3] M. Babanezhad, S. Vansteelandt and E. Goetghebeur, Comparison of

causal effect estimators under exposure misclassification, Journal of Sta-

tistical Planning and Inference, 140 (2010), 1306–1319.

[4] L.A. Stefanski and J.S. Buzas, Instrumental variables estimation in binary

regression measurement error models. Journal of The American Statistical

Association, 90 (1995), 541–550.

[5] P. Gustafson, Measurement Error and Misclassification in Statistics and

Epidemiology Impacts and Bayesian Adjustments. Press/CRC, 2003.



2742 M. Babanezhad and F. Yaghmaei

[6] L.S. Freedman, D. Midthune, R.J. Carroll and V. Kipnis, A comparison of

regression calibration, moment reconstruction and imputation for adjust-

ing for covariate measurement error in regression. Statistics in Medicine,

27 (2008), 5195–5216.

[7] S. Greenland and P. Gustafson, Accounting for independent nondifferen-

tial misclassification does not increase certainty that an observed associ-

ation is in the correct direction. American Journal of Epidemiology, 164

(2006), 63–68.
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