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Abstract 
 
       The purpose of this paper is to carryout the cost-benefit analysis of a two-unit 
system in which units work in parallel and becomes degraded after repair. There 
is a single repairman who visits the system immediately to do inspection and 
repair of the units. The repairman inspects the degraded unit when it fails to see 
the feasibility of repair. If repair of the unit is not feasible, it is replaced by new 
one. The system is considered in up-state if any one or two of new and/or 
degraded units are operative. The failure time of the unit is exponentially 
distributed while the distributions of inspection and repair times are taken as 
arbitrary. The expressions for some reliability and economic measures are derived 
using semi-Markov process and regenerative point technique. The numerical 
results for a particular case are also evaluated for these measures to show their 
behavior graphically.   
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Introduction 
 

Earlier reliability engineers and scholars have shown a keen interest in the 
analysis of two component parallel systems owing to their practical utility in 
modern industrial and technological set-ups. A two-identical unit parallel system 
with geometric failure and repair time distributions discussed by [5]. But no  
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attention was paid to reliability evaluation of parallel system due to degradation 
after failure. Since the working capacity and efficiency of a repaired unit depend 
more or less on the standard of the repair mechanism exercised. If the unit is 
repaired by an ordinary server, it may not make to work with full efficiency and 
so becomes degraded unit. The system subject to degradation was studied by [2]. 
This was improved by [6] and [4] with a more general system in which inspection 
can be done to find out the feasibility of repair. Also, due to the excessive use, 
repair of the degraded unit neither possible nor economical to the system. In such 
cases inspection can be done to find out the feasibility of repair. If repair of the 
unit is not feasible, it is replaced by new one in order to avoid the unnecessary 
expanses on repair. 

While incorporating the concepts of degradation and inspection, this paper 
has been designed to carryout the cost-benefit analysis of a redundant system in 
which two identical units work in parallel and the unit becomes degraded after 
repair. There is a single repairman who visits the system immediately. The 
repairman inspects the degraded unit when it fails to see the feasibility of repair. 
If repair of the degraded unit is not feasible, it is replaced by new one in order to 
avoid the unnecessary expanses on repair. The system is considered in up-state if 
any one or two of new and/or degraded units are operative. The random variables 
are assumed as independent and uncorrelated. The distribution of failure time of 
the unit follows negative exponential while that of inspection and repair times are 
taken as arbitrary. The switch devices are perfect. The system is observed at 
suitable regenerative epochs by using semi-Markov process and regenerative 
point technique to obtain various measures of system effectiveness such as mean 
sojourn times, mean time to system failure (MTSF), steady state availability, busy 
period for server and expected number of visits by the server. The expression for 
profit function is also derived. The numerical results for a particular case are 
obtained for these measures to depict their behavior graphically.   

The system of power supply and engine system of the aeroplane can be 
cited as good examples of parallel-unit systems. 

 
Notations 
E : Set of regenerative states   
No : The unit is new and operative 
Do : The unit is degraded and operative 
p/q : Probability that repair of degraded unit is feasible/not 

feasible 
λ/λ1 : Constant failure rate of new /degraded unit  
g(t)/G(t), g1(t)/G1(t) :  pdf/cdf of repair time for new/degraded unit 
h(t)/H(t) : pdf/cdf of inspection time of the degraded unit 
NFur/NFUR/ : New unit is  failed  and  under  repair/ under  continuous  
NFwr/NFWR   repair from previous state/waiting for repair/ 

continuously waiting for repair from  previous state                                          
DFur/DFwr : Degraded unit is failed and under repair/waiting 

for repair. 
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DFui/DFwi / : Degraded unit is failed and is under inspection / waiting  
DFUI  /DFWI   for inspection/under inspection continuously from the 

previous state/waiting for inspection continuously. 
qij(t),Qij(t) :  pdf and cdf of first passage time from regenerative state 

i to a regenerative state j or to  a failed state j without 
visiting any other regenerative state in (0,t]. 

qij.kr (t),Qij.kr (t) : pdf and cdf of first passage time from regenerative state 
i to a  regenerative state j or to  a failed state j visiting 
state k,r once in (0,t]. 

Mi(t) : P[system up initially in  state Si ε E is up at time 
t without visiting to any  other regenerative sate]  

Wi(t) : P[server is busy in the state Si  up to time t without 
making any transition to any other regenerative state or  
returning to the same via one or more non-regenerative 
states] 

mij : Contribution to mean sojourn time in state Si ε E and 
non regenerative state if occurs before transition to 
Sj∈E. 

®/© :  Symbols for Stieltjes convolution/Laplace convolution                                 
~|∗ :  Symbols for Laplace Stieltjes Transform (LST)/Laplace 

Transform (LT) 
'(desh) : Symbol for derivative of the function 
Si (i=0-16) :     The possible transition states 
 

The states S0, S1, S3, S4, S6, S7, S8, S9 and S11 are regenerative states while 
the remaining states are non-regenerative states. Thus E = {S0, S1, S3, S4, S6, S7, 
S8, S9, S11}.The possible transition between states along with transition rates for 
the system model is shown in figure 1. 

 
 

Transition Probabilities and Mean Sojourn Times 
 
Simple probabilistic considerations yield the following expressions for the non-

zero elements    
pij = Qij (∞) = ∫ qij (t) dt as  
p01= p68 , p12 = 1−g*(λ) = p1,4.2, p13 = g*(λ),  p34=

1λ+λ
λ  ,               

p37= ,
1

1

λ+λ
λ

     
  p46= g*(λ1),  p4,8.5 = 1- g*(λ1) = p45 ,p7,0 = qh*(λ),       

p7,9 = p h*(λ), p7,10= 1- h*(λ),          p7,1.10= [1- h*(λ)]q, p7,4.10,16= p[1- h*(λ1)],    
p8,3 =h*(λ1),  p8,11=ph*(λ1),     p8,14=1-h*(λ1),            p8,7.14=[1- h*(λ1)]q 
p8,8.14,15= p[1- h*(λ1)],   p9,3=g1*(λ),         p9,13=1-g1*(λ)=p9,4.13,     

p11,6=g1*(λ1), p11,12=1-g1*(λ1)=p11,8.12            (1)                                  
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For these transition probabilities, it can be verified that 
p01=p68=p12+p13=p1,4.2+p13=p34+p37=p45+p46=p46+p4,8.5=p7,0+p7,10+p7,9 

        =p7,0+p7,9+p7,1.10+p7,4.10,16=p83+p8,11+p8,14=p83+p8,11+p8,7.14+p8,8.14,15 

        =p9,3+p9,13=p9,3+p9,4.13 =p11,12+p11,6=p11,6+p11,8.12=1                                    (2)                                 
 
The mean sojourn times μi in state Si are given by  

μ0 =
λ2
1 , μ1=

λ
1  [1−g*(λ)], μ3=

1

1
λ+λ

,  μ4=
1

1
λ

 [1- g*(λ1)],     

μ6=
12

1
λ

, μ7=
λ
1 [1-h*(λ)], μ8=

1

1
λ

[1-h*(λ1)],    μ9=
λ
1 [1-g1*(λ)],  

μ11=
1

1
λ

[1-g*(λ1)]                 (3)                                  

 
The unconditional mean time taken by the system to transit from any state 

Si when time is counted from epoch at entrance into state Sj is stated as:  

    mij=∫tdQij(t)=−qij*′(0)and ∫ ∑
0 j

ijmdt)tT(P)T(E
i

∞
=>==μ                       (4) 

where T denotes the time to system failure. 
 
Thus 
m01=μ0,  m12+m13=μ1,   m34+ m37=μ3,       
m45+m46=μ4,  m68=μ6,      m7,0+m7,10+m7,9=μ7,  
m83+m8,11+m8,14=μ8, m9,3+m9,13=μ9   m11,12+m11,6=μ11        (5)  
  
Mean Time to System Failure 

 
Let φi(t) be the cdf of the first passage time from regenerative state i to a 

failed state. Regarding the failed state as absorbing state, we have the following 
recursive relations for φi(t) : 
       ( ) ( )∑=φ

j
j,ii tQt ® ( ) ( )∑+φ

k
k,ij tQt                   (6) 

where j is an operative regenerative state to which the given regenerative state i 
can transit and k is a failed state to which the state i can transit directly. 
Taking L.S.T. of relations (6) and solving for φ~ 0(s).  
Using this, we have 
              s))s(~-1()s(R 0

* φ=                                                                                 (7) 
The reliability R(t) can be obtained by taking Laplace inverse transform of (7).  
The mean time to system failure can be given by 
      MTSF(T1)=

11

11*

0→s D
N)s(Rlim = ,                                                (8)  

Where 
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)}ppp(ppp){ppmpmpm()}]pmpm
m(pp)ppp)(pmpm(ppmppmppm
)ppmppmppm(p)ppp1(m{)}ppp(p
pppp)ppp1(p{m)pmpmpmpmpp

m(p)pppp(m)[pp1()}]ppp(ppppp
)ppp1(p{)pppp(p1[)pmpmppm(N

11,812,1112,1111,8

14,81312,1114,81313011212018313834634

12,1111,814,8131383463468344646347913,913,979

10,7371313,97910,713373713341345451334453413

379379799337793793127937931213,97910,737

13453413793793120193797993137070130,713

013779937013376,1111,813,97910,73713453413
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4634836,1111,8799370133711 ppp)pp1)}(pppp(p1{D −−+−=  
 
Steady State Availability  

        Let Ai(t) be the probability that the system is in up-state at instant t given 
that the system entered regenerative state i at t=0. The recursive relations for Ai(t) 
are given by : 
 )t(Ai = ( ) ( )( )t∑q n

j,itMi + © )t(A j             
(9) 

Where j is any successive regenerative state to which the regenerative state i can 
transit through n≥1 (natural number) transitions. We have,  
M0(t)= t2e λ− , M1(t)= te λ−

)t(G , M3(t)= t)1(e λ+λ− , M4(t)= t1e λ−
)t(G ,M6(t)= t2 1e λ− ,  

M7(t)= te λ−
)t(H ,M8(t)= t1e λ−

)t(H , M9(t)= te λ− )t(G1 , M11(t)= t1e λ− )t(G1          (10)  
Taking LT of relations (9) and solving for A0*(s). 
The steady-state availability of the system can be given by 

12

12*
0

0s
0 D

N)s(sA)(A Lim ==∞
→

 ,            (11)  

Where 

)}ppp(pp)pppp(p{)]p
()p(pp)p)(ppp1[(

)]ppp1(p)}ppp(pp{p[)p
)p)((pppp)ppp(()]p(pp

pppp))(ppp1)[(pp1(
)](pppp)ppp)(ppp(pp[N

13.4,97916,10.4,714.7,81314.7,87993832.4,131111,8

8465.8,46,1111,8464612.8,1111,815,14.8,8

9379372.4,113.4,97916,10.4,7373413010.1,7

799783372.4,114.7,82.14341379973713

13310.1,7133701079379311,815,14.8,8

1014.7,834799314.7,8378313.4,97916,10.4,7833412

+−+μ+μ+
μ+μ−μ+μ+μ−−

−++++μ−
μ+μ+++μ+μ+

μ+μ−μ+μ−−−+
μ+μ++++−=

    

]ppmppmppm)mpmm(
pp)pp)(pmpm[(]pp1[]1ppp

)pp(pp)][mpmm(pmm[]p
ppmpppmpppmpppm}p
pmppmppmm)ppp(p)m

pmpm){(pp(}pppp)ppp{(
)mpmm()ppp)(mpmpm(

)ppp)(pmpmm(pmpm[
]pppp}pppp)ppp){(pp(

)ppp)(ppp(pp)[mpmm(D

37937979933779379370700110.1,7

37137010.1,71337371311,815,14.8,8937937
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799314.7,814.7,879933414.7,834937914.7,83479932.4,1

37832.4,1833783372.4,114.7,82.4,1341314.7,82.4,1

133434137010.1,73.8372.4,114.7,82.4,13413

70700110.1,713.4,97916,10.4,714.7,883373783

14.7,837837913.4,913.4,97916,10.4,734838334

14.7,834799383372.4,114.7,82.4,134130,710.1,7

14.7,8378313.4,97916,10.4,783345.8,446684612
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Busy Period Analysis for Server 
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 Let Bi(t) be the probability that the server is busy at an instant t given that 
the system entered regenerative state i at t = 0. The following are the recursive 
relations for Bi(t) 
 ( ) ( )tWtB ii = + ( )( )t∑ q n

j,i © ( )tB j            (12) 

where j is a subsequent regenerative state to which state i transits through 
n≥1(natural number) transitions.  
 
 
State Transition Diagram 
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Fig.1 
  
   
 
 
   
 
 
We have,  

W1(t)=[e−λt+(λe−λt©1)] )t(G ,    W4(t)=[ t1e λ− +(λ1
t1e λ− ©1)] )t(G , 

: Transition point : Degraded-State 

: Up-State : Failed-State 



 

Cost-benefit analysis of a two-unit parallel system                                         2755 
 
 
W7(t)=e−λt )t(H +(λe−λt©1) )t(H +(λe−λt©ph(t)©1) )t(G1 ,                  
W8(t)= t1e λ− )t(H +(λ1

t1e λ− ©1) )t(H +(λ1
t1e λ− ©ph(t)©1) )t(G1 , 

 W9(t)=[e−λt+(λe−λt©1)] )t(G1 ,           W11(t)=[ t1e λ− +(λ1
t1e λ− ©1)] )t(G1  (13) 

 
 Taking LT of relations (12) and solving for B0*(s) and using this, we can 
obtain the fraction of time for which the repairman is busy in steady state  

 
12

13*
00s0 D

N)s(sBlimB ==
→

                      
             (14)                                  

]wpww)pp1)][(ppp1(p
)}ppp(pp{p[]wpw][pppp)p

pp[()]wpw(ppw)ppp1)[(pp1(
]pppp)ppp)(ppp(pp[wN

1111,88411,815,14.8,89379372.4,1

13.4,97916,10.4,7373413979783372.4,114.7,82.4,1

341397973713179379311,815,14.8,8

14.7,834799314.7,8378313.4,97916,10.4,78334113

++−−−+
++++++

+++−−−+
++++−=

  

And D12 is already mentioned. 
 
Expected Number of Visits by the Server 

Let Ni(t) be the expected number of visits by the server in (0,t] given that 
the system entered the regenerative state i at t=0. We have the following recursive 
relations for Ni(t) : 

)t(Q)t(N
j

j,ii ∑= ® )]t(N+δ[ jj              (15) 

Where j is any regenerative state to which the given regenerative state i transits 
and iδ =1, if j is the regenerative state where the server does job afresh, otherwise 

iδ = 0.  
Taking LST of relations (15) and solving for )s(N~0 . 
The expected number of visits per unit time are given by  

 N0 = 
12

14
00→s D

N
=)s(N~sLt                                                                (16) 

)]ppp(pp)pppp(p[
]pppp)ppp1[()]ppp1(p

)}ppp(pp{p[]ppp)p
pp(p[p]pppp)ppp1[()pp1(

]pppp)ppp)(ppp(pp[N

13.4,97916,10.4,714.7,81314.7,87993832.4,1

5.8,46,1111,84612.8,1111,815,14.8,89379372.4,1

13.4,97916,10.4,737341383372.4,12.4,1

341314.7,810.1,71310.1,7133779379311,815,14.8,8

14.7,834799314.7,8378313.4,97916,10.4,7833414

+−++
+−−−+

+++++
−+−−−−+

++++−=

 

 
Cost-Benefit Analysis 

  Profit incurred to the system model in steady state is given by 
 P1=K0A0−K1B0−K2N0 

Where K0 = Revenue per unit up time of the system  
      K1 = Cost per unit time for which server is busy        
 K2 = Cost per visit by the server 

 
Particular Case 
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   By taking g(t)= te θ−θ ,  g1(t)=

t
1

1e θ−θ and h(t)= te α−α in equation 8,11,14 and 
16, we can obtain MTSF, availability and profit to this model which are shown 
graphically by figure 2,3 and 4 respectively. 
 
 
Conclusion 

 
 The mean time to system failure (MTSF) and availability of the system 

model decrease more rapidly with the increase of failure rates λ and λ1 for fixed 
values of other parameters as shown in figure 2 and 3. However, their values 
increase as repair rates θ and θ1 increase for fixed values of other parameters. The 
behavior of profit of the system model is shown in figure 4. It is analyzed that the 
values of profit decreases with the increase of failure rates but increase as and 
when repair rates increase. Also, if we interchange p and q the availability and the 
profit of the system increase. Hence on the basis of the results obtained for a 
particular case, it is concluded that the system can be made reliable and profitable 
to use if the degraded unit is replaced by new one when it fails. 
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