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Abstract

The purpose of this paper is to carryout the cost-benefit analysis of a two-unit
system in which units work in parallel and becomes degraded after repair. There
is a single repairman who visits the system immediately to do inspection and
repair of the units. The repairman inspects the degraded unit when it fails to see
the feasibility of repair. If repair of the unit is not feasible, it is replaced by new
one. The system is considered in up-state if any one or two of new and/or
degraded units are operative. The failure time of the unit is exponentially
distributed while the distributions of inspection and repair times are taken as
arbitrary. The expressions for some reliability and economic measures are derived
using semi-Markov process and regenerative point technique. The numerical
results for a particular case are also evaluated for these measures to show their
behavior graphically.
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Introduction

Earlier reliability engineers and scholars have shown a keen interest in the
analysis of two component parallel systems owing to their practical utility in
modern industrial and technological set-ups. A two-identical unit parallel system
with geometric failure and repair time distributions discussed by [5]. But no
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attention was paid to reliability evaluation of parallel system due to degradation
after failure. Since the working capacity and efficiency of a repaired unit depend
more or less on the standard of the repair mechanism exercised. If the unit is
repaired by an ordinary server, it may not make to work with full efficiency and
so becomes degraded unit. The system subject to degradation was studied by [2].
This was improved by [6] and [4] with a more general system in which inspection
can be done to find out the feasibility of repair. Also, due to the excessive use,
repair of the degraded unit neither possible nor economical to the system. In such
cases inspection can be done to find out the feasibility of repair. If repair of the
unit is not feasible, it is replaced by new one in order to avoid the unnecessary
expanses on repair.

While incorporating the concepts of degradation and inspection, this paper
has been designed to carryout the cost-benefit analysis of a redundant system in
which two identical units work in parallel and the unit becomes degraded after
repair. There is a single repairman who visits the system immediately. The
repairman inspects the degraded unit when it fails to see the feasibility of repair.
If repair of the degraded unit is not feasible, it is replaced by new one in order to
avoid the unnecessary expanses on repair. The system is considered in up-state if
any one or two of new and/or degraded units are operative. The random variables
are assumed as independent and uncorrelated. The distribution of failure time of
the unit follows negative exponential while that of inspection and repair times are
taken as arbitrary. The switch devices are perfect. The system is observed at
suitable regenerative epochs by using semi-Markov process and regenerative
point technique to obtain various measures of system effectiveness such as mean
sojourn times, mean time to system failure (MTSF), steady state availability, busy
period for server and expected number of visits by the server. The expression for
profit function is also derived. The numerical results for a particular case are
obtained for these measures to depict their behavior graphically.

The system of power supply and engine system of the aeroplane can be
cited as good examples of parallel-unit systems.

Notations

E : Set of regenerative states

No :  The unit is new and operative

Do : The unit is degraded and operative

p/q :  Probability that repair of degraded unit is feasible/not
feasible

My :  Constant failure rate of new /degraded unit

g(t)/G(t), g1(t)/Gi(t) : pdf/cdf of repair time for new/degraded unit

h(t)/H(t) pdf/cdf of inspection time of the degraded unit
NF./NFyr/ : New unitis failed and under repair/ under continuous
NF../NFwr repair from previous state/waiting for repair/
continuously waiting for repair from previous state
DF./DF: . Degraded unit is failed and under repair/waiting

for repair.
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DF./DF.;/ . Degraded unit is failed and is under inspection / waiting

DFy /DFwi for inspection/under inspection continuously from the
previous state/waiting for inspection continuously.

qij(1),Qii(t) : pdf and cdf of first passage time from regenerative state

I to a regenerative state j or to a failed state j without
visiting any other regenerative state in (0,t].

Qijkr (£),Qjjir (1) :  pdf and cdf of first passage time from regenerative state
I to a regenerative state j or to a failed state j visiting
state k,r once in (0,t].

M;(t) :  P[system up initially in state S; ¢ E is up at time
t without visiting to any other regenerative sate]
Wi(t) : P[server is busy in the state S; up to time t without

making any transition to any other regenerative state or
returning to the same via one or more non-regenerative
states]

m;j : Contribution to mean sojourn time in state S; € E and
non regenerative state if occurs before transition to
Sj eE.

®/© : Symbols for Stieltjes convolution/Laplace convolution

~|* : Symbols for Laplace Stieltjes Transform (LST)/Laplace
Transform (LT)

'(desh) : Symbol for derivative of the function

S; (i=0-16) . The possible transition states

The states Sy, Si, S3, Sa, S¢, S7, Ss, Sgand S;; are regenerative states while
the remaining states are non-regenerative states. Thus E = {S,, S, S3, S4, Se. S7,
Ss, So, S11}.The possible transition between states along with transition rates for
the system model is shown in figure 1.

Transition Probabilities and Mean Sojourn Times

Simple probabilistic considerations yield the following expressions for the non-
zero elements

pij = Qj (0) = | qij (t) dt as

Po1~ Pes » pi2=1-g*(A) = p142, p13=g*(A), p34:x Xx ,
py=_M pas= gF (M), pags= 1- g*(A1) = pas ,p70= gh*(X),

A2,
Pr9=p h*(A), pr10= 1- h*(2), pr.i0= [1-h*W)]a,  prasoss= pl1- h* ()],
Ps3=h*(A1), ~ ps.1i=ph*(h), Psa=1-h* (L), ps71=[1- h* ()]
P15~ PL1- B (A)l, po.s=g,* (1), Po.13=1-g, *(A)=po.a.s,

pi1,6=g,*(M1), pr1,12=1-g *(M)=pr1s.12 (1)
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For these transition probabilities, it can be verified that

Po1=P6s=P12TP13=P1,42TP13=P341TP37=PastPa6=P4a61P4.8.5=P7,0TP7,10TP7,9
=p7,0tP7.91P7.1.101P7,4.10,16=P83TPs, 1118, 14=Ps3HPs, 111Ps,7.141Ps 8.14,15
=P9,3tP9,137P9,3TP9,4.13 =P11,12TP11,6=P11,6TP11.8.12=1 (2)

The mean sojourn times p; in state S; are given by

Mo =L’ !"Ll:l [l_g*(}\’)]a H3= 1 5 !"t4=i [1_ g*(}\“l)]:
2N A A+A, A,
He=_L, wr=1[1-h*(A)], us="L [1-h*(A1)], Ho=1[1-gi*(A)],
2, A A, A
wi=_L [1-g*(A)] (3)

1

The unconditional mean time taken by the system to transit from any state
Si when time is counted from epoch at entrance into state S; is stated as:

my={tdQ()=—q;*'(0)and . = E(T) = [P(T > )dt = Zmy 4)
0 |
where T denotes the time to system failure.
Thus
mo1=Lo, mytmy3=py, mz4t m37=3,
Mmystmye=Ll4, meg=Llg, my otmy 10+my o=z,
mg3+mg 1+ Mg 14=Hg, Mg 3+My 13=Ll9 my12tmy 6= (5)

Mean Time to System Failure

Let ¢i(t) be the cdf of the first passage time from regenerative state i to a
failed state. Regarding the failed state as absorbing state, we have the following
recursive relations for ¢;(t) :

00=30,0®0,0+ 20, () ©)
where ] is an operative regenerative state to which the given regenerative state |
can transit and K is a failed state to which the state i can transit directly.

Taking L.S.T. of relations (6) and solving for ¢ o(s).
Using this, we have

R'(5)=(1-0,())/s (7
The reliability R(t) can be obtained by taking Laplace inverse transform of (7).
The mean time to system failure can be given by

. . N,
MTSF(T;)=1limR (s)=—D” , )]
Where
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Ny, ==(mgPg,;1Pi1e + Mg P11 + My Ps 1) 1= Pa7(Pi3P70 + PosPro) = P12 (1= PosP37P79)
+P13P34P4s + P13P37 (D700 + ProPo13) 1+ (1= Py 11P11.6) (M35 (P13P 70 + PosPr9) + Par (M,
P13P7,0 +My3Pgg +MyeP s + M3 Prg + MygPys) + M Py, (1= PysP37P79) + P13PasPas + Pis
P37(P710 ¥ P7oPo,3) )+ {My, (1= Py3P3P79) = Py (My3P37P 79 + My Pg3Prg +MygPosPsy)
+M3P3uPys + My Pi3Pys + MysPisPsy +(My3P5; + My p )Py +p79p9,13) +P13P37 (M5
+MyPg 5 +m9,13p79)}]+(m34p46 + My Py +MgP3Pae ) PssPis P13 (Psia +p8,11p11,12)}
+P34Pus Mg3Py3 — Pz (Mg Py, +Mmy,) + (M, py5 +m13)(p8’14 +1311,12) +p5(myg

+My Py Ty P )}

D), ={1=p3;(P3sP7 + PosPr) (1 — p8,11p11,6) — Ps3P34Pus

Steady State Availability
Let Ai(t) be the probability that the system is in up-state at instant t given

that the system entered regenerative state i at t=0. The recursive relations for A(t)
are given by :

Ai()=Mm;(t) + Zqi(j“J)(t) ©Aj) 9
Where j is any successive regenerative state to which the regenerative state i can
transit through n>1 (natural number) transitions. We have,
Mo(H)= e, Mi)=e™ G,  Ms=e ™", Mat)=e™" G Me(ty=e™"",
Mi(t)=e™ Ho Ms()=e ™" Ho,  Mo(®=e "G Mn®=e¢""Gwv  (10)
Taking LT of relations (9) and solving for A¢*(s).
The steady-state availability of the system can be given by

. N
A9 = LimsA, )= (1

12

Where

N, = —pyps + (p7,4.10,16 + p79p9,4A13)(p83p37 + p8,7A14) + PosProP3aPs 714 I (Mo + 1)
+ (1= Pgg1ass = Pea) (1 = PosP37P79 ) (g + 1)) = KoP37P1sP7110 + HsPis
+ P3Py (Mg + KoPro)]+ ((P13P3s + Pra2)Ps 714 T PraaParPes (K5 + HoPoy)
- p7,1.10“o) +[P13iPs4 + P37 (P7.41016 t p79p9,4.13)} + P14z (L—= P3P 0P )]
[(1 = Pgg1a1s = PsiiPrigi2 ) (Pashs + Hy) + Pg11P11s(Pagstle — Ha) + (g
+ ps,nun)] + H; {p1,4.2 (Pg; + p93p79p8,7.14) ~Pi3Pg.7.14 (p7,4.10,16 + p79p9,4.13)}

Dy, =(my, + mgp,, + m4,8.5)[p34p83 + (p7,4A10,16 + P19Po.413)(Ps3P3r + p8,7.14)
+ (P70t p7,o){(p13p34 +P142)Ps71s T p1,4.2p37p83} + PosP79P34Ps.7.14]
+[my,pg; + Mg;psyy + (m7,4A10,16 +MgPg 43 Mg 43P 7 )(Ps3P37 + Psr1s)
+ (MgPy; + My Pgy + Mg 5100 (Pr41006 T ProPoarz) T (M5, 0 + Mg Py +myg)
{(p;3p34 + P14z )p8,7.14 + p1,4.2p37p8.3} + (p7,1.1o +Po) i (My3psy + My,ps
+ 1M, 45)Pg70s T (Pi3Pag + Pras) Mgy + M 45P57Pgs + My PP 4, + MesPsy
Praat T MosProP34Ps 714 T MgPo3P3yPs 714 + M3yPosProPs 714 + My 7 14P03P7
Pyl —[Mgg s + Mg, + p8,11(m11,8.12 +MgPyy e +My ¢ )IPisPs; (P7,1A10 + D7)
+P37P79Pos — 1+ 1= Pgg1a1s — Py JI(M3p3; + Myps)(Pg1 00 + Poo) + PisPss
(Mo +MyPyg + My )+ My;PyrPrg + My PysPry + MogPysPsy ]

Busy Period Analysis for Server



2754 J. Kumar, M. S. Kadyan and S. C. Malik

Let Bj(t) be the probability that the server is busy at an instant t given that
the system entered regenerative state i at t = 0. The following are the recursive
relations for Bi(t)

Bi(t): Wi(t)—’_zqi(nj)(t) ©Bj(t) (12)

where j is a subsequent regenerative state to which state i transits through
Nn>1(natural number) transitions.

State Transition Diagram

< /f\gl(t)
>y~ A N, 2\ No NFyg
{2 |s NFy No S| DFy
le o 51 SO 4
ah(t) hit
0 ah(t) Ph(t)
S S, S; Sy
DFy M No M No A NFur
NFUR N DO i DFui DFUI
/ 0a(t)
g(t) gh(t) Ay Ga(t) ph(®)
‘ / < o N
21 DF, g?t) DFyr UR DFy
Si2
ph(t) M 1 . N
Sy Su
A
9® [ b, DFyy, ph(t) DF,; | ah(®)
<] DF, DFy N DFy i
S15
Fig.1
@ : Transition point D : Degraded-State

O : Up-State I:I : Failed-State

We have,
Wi(H)=[e " +(re MO )]G (1), Wi)=[e ™ +(M e ™ ©D]G(1),
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Wo(ty=e ™ H(t) +he MO©1) H(t) +(he M©ph()©1)G, (1),
Wy(t)=e ™" H(t) HAre ™ ©1)H(t) +(hie ™ ©ph()©1)G, (1),
Wo(t)=[e "+(he "O1)]G, (1), Wit=[e™ +(he™ ©1)]G, (1) (13)

Taking LT of relations (12) and solving for Bo*(s) and using this, we can
obtain the fraction of time for which the repairman is busy in steady state

B, =limsB, (s) = E” (14)

12

Ny =—W,[PyyPg; + (p7,4410,16 +P79P9,4.13)(P33P37 +pg,7.14) +Po3P79P34Ps 714]
+(1- Pgs.1a15 — ps,n)[(l —PosP37P70)W, +P13P37 (W5 +P1oWo)]+[(P15P34
+D142)Ps.714 T P142P37Pss IW 5 + P7oWo 14 [P13{P3s + P37 (Pr41006 T ProPoaiz)}
+ P42 (1=p3;P70Pox) ][ — Pgsia15 ~Psii YW, + Wt PgiWi ]

And Dy, is already mentioned.

Expected Number of Visits by the Server

Let Ni(t) be the expected number of visits by the server in (0,t] given that
the system entered the regenerative state i at t=0. We have the following recursive
relations for Nj(t) :

Ni(t):ZQi,j(t)®[8j +N;(1)] (15)

Where j is any regenerative state to which the given regenerative state i transits
and 5 =1, if ] is the regenerative state where the server does job afresh, otherwise

6=0.
Taking LST of relations (15) and solving for No(s).

The expected number of visits per unit time are given by
Lt Noe) = Due 16
Np = SIIBS No(s) D, (16)

Ny, = PP + (p7,4.10,16 + P79Po.413)(PsPa7 + Pg7ia) + p93p79p34p8,7.14]

+(1- Pgsi41s — Psa) (1= PosP37P7) — P37P13P7100 T p13]_p7,1.10 [Ps.7.14(P13P34

+ Do)t p1,4.2p37p83]+[p13 {Pss + P37 (p7,4.1o,1e + p79p9,4.13)}

P42 (I=p3;P9Po)][(1 - Pgs.i4a1s — Ps11P11g12) Pas + Pg1iPiie p4,8.5]

+ [p1,4.2 (pgs + p93p79p8,7.14) —Pi3Ps s (p7,4.10,16 +ProPo413)]

Cost-Benefit Analysis
Profit incurred to the system model in steady state is given by
P 1 :K()A()—Kl Bo—K2N0
Where Ky = Revenue per unit up time of the system
K = Cost per unit time for which server is busy
K, = Cost per visit by the server

Particular Case
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By taking g(t)=0e™"  g,(t)=0,e " and h(t)=oe * in equation 8,11,14 and
16, we can obtain MTSF, availability and profit to this model which are shown
graphically by figure 2,3 and 4 respectively.

Conclusion

The mean time to system failure (MTSF) and availability of the system
model decrease more rapidly with the increase of failure rates A and A for fixed
values of other parameters as shown in figure 2 and 3. However, their values
increase as repair rates 0 and 0, increase for fixed values of other parameters. The
behavior of profit of the system model is shown in figure 4. It is analyzed that the
values of profit decreases with the increase of failure rates but increase as and
when repair rates increase. Also, if we interchange p and q the availability and the
profit of the system increase. Hence on the basis of the results obtained for a
particular case, it is concluded that the system can be made reliable and profitable
to use if the degraded unit is replaced by new one when it fails.
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s A
MTSF vs FAILURE RATE(%) (Fig.2)
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' ™
PROFIT vs FAILURE RATE(.) (Fig.4)
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