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Abstract 
 
            Selections of equations for four or five data in rectangular array are seldom 
encountered in textbooks. New methods illustrate polynomial and exponential equations 
for the two designs. The methods are based on operational calculus and  they are easy to 
apply.   
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1. Introduction 

 
The bilinear equation has traditionally been used to represent four numbers in a 

rectangular array as defined by the vertices of prism face ABDC in Fig. 1. As the name 
implies, the equation is exact on bilinear numbers. It does not estimate curvature 
coefficients. An alternative four-point equation is exact on bilinear numbers and their 
squares [1,2]. Equations for the five-point data array, where the fifth datum is at the  
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center of the design, are seldom elaborated in textbooks. This paper introduces methods 
that yield new polynomial and exponential interpolating equations for the five-point 
design. The polynomial types are exact on bilinear numbers as well as on their second 
and third powers. However, the exponential types appear to be more practical. The 
equations apply in the –1 .. 1 coordinate system. 
 
 
2. Cubic equations for the four or five-point rectangle 
 
 An operational, cubic equation for the eight-point rectangular prism (also denoted 
cube) was recently introduced [3]. It is exact on the first, second, third powers of trilinear 
numbers in prismatic array as in Fig 1. The construction of the equation, and its 
applications to trial data, are summarized in Ref. [3]. For the sake of brevity, use Eqs. 
(1)-(3) below instead of Eqs. (6)-(8) in Ref. [3].  
 
nxc = xc – y2x – z2x – x3                                                                                               (1) 
nyc = yc – x2y – z2y – y3                                                                                               (2) 
nzc = zc – x2z – y2z – z3                                                                                                (3) 
  

Substitute z=(–1) into the operational interpolating equation for the eight-point 
cube as constructed using Eqs. (1)-(3) and as illustrated in Ref. [3]. The result is a new 
interpolating equation for the four-point rectangle ABDC in Fig. 1. Call the new equation 
P4. The notation indicates a polynomial equation for four data in rectangular array. To 
demonstrate its properties, substitute A=u(1), B=u(3), C=u(7), D=u(9), F=u(1+T), 
G=u(3+T), H=u(7+T), I=u(9+T) into P4. In these expressions, T represents a constant 
and u(x) is an operator on its argument x. If u(x) is the linear operator then B and G 
remain 3 and 3+T, respectively, and likewise for the remaining letters. P4 now reduces to 
P4=(5+x+3y). If u(x) is the squaring operator then B=9 and G=(3+T)2 and P4 reduces to 
P4=(5+x+3y)2.  If u(x) raises its argument to the third power then B=27 and G=(3+T)3, 
and P4 reduces to P4=(5+x+3y)3.  
 
 In the three cited cases, T disappears on simplifying substituted P4. In other cases, 
T typically remains in P4. For example, T does not disappear from P4 when u(x) changes 
the data into their fourth powers as in (G+T)4. When T does not disappear, P4 can be 
used to represent a five-point rectangle. The equation P4 is now renamed P5(T) to 
indicate its applicability to the five-point design and its dependence on T. At the center 
point of the design, x=0 and y=0. If the center point number is u(5)=625, the true value in 
the present case, the value of T is determined by Eq. (4).   
  
P5(T) – 625 = 0                                                                                                                 (4) 
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Eq. (4) is satisfied by T~(–24.563) and T~9.563. These numbers can be 

substituted into P5(T) yielding two third-degree polynomial models of the five-point 
rectangle with vertex data [A,B,C,D]=[14,34,74,94] and the introduced datum 54 at the 
center point of face ABDC in Fig. 1. The two interpolating equations, with rounded 
coefficients, are Eqs. (5) and (6). R represents a “response” or an interpolated number. 

 
 

R = –59.04x3 – 506.2x2y – 1447xy2 – 1378y3 + 178.5x2 +1020xy + 1458y2 + 2566x  
       + 4104y + 625                                                                                                          (5) 
 
 
R = 46.65x3 + 400x2y + 1143xy2 + 1089y3 + 178.5x2 + 1020xy + 1458y2 – 129.7x  
       + 731.1y + 625                                                                                                         (6) 
 

The illustration has been a success with respect to the limited objective of 
rendering one or more polynomial equations for interpolating a five-point array. Both 
equations reproduce the original data. They also estimate the number assigned to the 
center point but that is not critical unless the assigned number is a measurement. That is, 
the fifth point can be chosen so as to change the properties of the interpolating surface 
that passes through four measurements in a rectangular array. The locus and the number 
at the arbitrary point can be changed if Eq. (4) still renders real roots for T, and provided 
the resulting surface passes through the four measurements in the rectangular array. 

 
In a larger sense, however, the method is a disappointment because of its 

limitations. The interpolating equations generated by this method can predict unjustified 
extrema within the experimental space. Extrema predicted by equations rendered by the 
polynomial method seldom reflect true properties of an experimental space defined by 
only four data in a rectangular array. There may be no easy method for choosing among 
candidate equations without ancillary information. More laboratory work may solve this 
problem but it means increased costs. The method has limited applications. Not all data in 
the four-point array can be treated by the illustrated approach.  
 
 The described method renders a better performance if the experimental data are 
the numbers A=1(3/2), B=3(3/2), C=7(3/2), D=9(3/2). In this case, the center point number is 
5(3/2) so cubic Eq. (7) applies to the five-point rectangle. The sum of the squares of the 
deviations of Eq. (7) from the true surface is about 0.0225.  
 
R = –0.0023034x3 – 0.020205x2y – 0.059079xy2 – 0.057582y3 + 0.18312x2 + 1.0709xy 
      + 1.5656y2 + 3.2304x + 9.9088y + 11.180                                                                 (7) 
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3. Exponential equations for the four- or five-point rectangle 

 
The preceding polynomial approach generated models with extrema on one or 

more edges of the experimental space. Exponential representations seldom have that 
disadvantage. Exponential equations for the 8-point cube can be generated by means of 
Eqs. (14)-(26) in Ref. [4]. The procedure for illustrating four- or five-point interpolating 
equations is similar to the method described in Section 2. Attention is focused on 
rectangle ABDC by setting z=(–1) in Eq. (14) of Ref. [4]. The trial data are w(1), w(3), 
w(7), w(9) at vertices A .. D and w(1+TT), w(3+TT), w(7+TT), w(9+TT) at vertices F .. I 
of the eight-point cube, respectively. (The notation is changed to avoid confusion with 
the symbols in Eqs. (14)-(26) in Ref. [4].) These numbers and z=(–1) are substituted into 
Eq. (14) in Ref. [4]. The new equation is denoted E5(TT) to indicate that it is an 
exponential equation for the five-point rectangle and that it is a function of TT.  
 

The first acceptance criterion for an exponential equation for the four-point, 
rectangular space is the same as before: the equation should reproduce the data at the 
vertices of the rectangle and it should estimate the number assigned to the center point.  
 

In the first polynomial example above, the trial data were the fourth powers of 
monotonic numbers at the vertices of face ABDC of the cube. Use the same approach in 
the exponential method: assume w(5)=54=625 at the center point of the four-point array. 
The center point coordinates are (x,y)=(0,0) so substitute these numbers into Eq. (8). 
Now solve substituted Eq. (8) for TT, if that is possible. In some cases, Eq. (8) has no 
real root for TT. In that event, the center point assignment can be changed or the method 
can be abandoned. In other cases, more than one root for TT may exist. In such cases, an 
extra measurement, or other information, may be necessary to decide which candidate 
equation is preferred.   

 
E5(TT) – 625 = 0                                                                                                              (8) 

 
In the example using the fourth powers of integers, the numerical values of TT are 

about 1.079 and –5.872. Substitute one of these numbers into E5(TT). Then insert the 
other one. Two interpolating equations for the five-point rectangle derive from this 
process. They are Eqs. (9) and (10), respectively. Their coefficients have been rounded. 
Neither equation predicts extrema on the boundaries of the rectangle. Both equations 
reproduce the four corner-point data. At (x,y)=(0,0) the estimate rendered by both 
equations is about 625. In the present case, the exponential method is preferred. It is easy 
to use and it has rendered two simple interpolating equations that satisfy the requirements 
of the problem.  
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R4 = –42.59 – 32.46(1.587)(x+1) – 9.107(5.706)(y+1) + 85.16(1.587)(x+1) (5.706)(y+1) 
                                                                                                                                     (9) 
R4 = –101.0 – 14.43(3.029)(x+1) + 92.22(4.649)(y+1) + 24.22(3.029)(x+1)(4.649)(y+1) 
                                                                                                                                     (10) 
 
 
 Experimenters may prefer the exponential approach because it can render 
extrema-free surfaces by which to model laboratory data. In some cases, however, the 
perceived versatility of the exponential method is an artifact that is not to be trusted. An 
example helps to make this clear. Laboratory measurements are inevitably contaminated 
with errors. If experimental data appear to follow a strict fourth-power (40000/10000) 
law, they typically appear to follow laws with other powers such as (40001/10000) and 
(39999/10000). That remark is true as far as most laboratory results permit it to be 
verified. The experimenter may not know the difference between the exponents but the 
exponential method may know the difference.   
 

The illustrated approach rendered Eqs. (9) and (10) when the trial data followed a 
precise fourth power law. One of them, Eq. (9), was based on the approximation 
TT~1.07881369. Now let the trial data be the trial integers raised to the power 
(39999)/(10000). That is a non-integer exponent, 3.9999. The described approach now 
yields TT~1.07879842, nearly. Let the exponent of the trial data be changed to another 
non-integer power, (40001)/(10000), or 4.0001. The same approach now yields 
TT~1.07882896, nearly. In both of the non-integer cases, the values of TT have changed 
modestly but the other root near TT~(–5.872) has disappeared. As far as we know, that 
value of TT is an artifact of an attempt to model error-ridden data by a precise, integer-
power law. Laboratory data seldom adhere to equations with precise integer exponents. A 
test based on computational results has eliminated Eq. (10). In this example, the test 
suggests Eq. (9) is the preferred representation of the data.  
 
 Four or five laboratory data in a rectangular array sometimes generate several 
exponential interpolating equations. In these cases, a robustness test may be useful. Let 
typical errors be introduced into the data and choose the equation that is most resistant to 
the changes. That work is an inconvenience. It is part of the price of generating 
interpolating equations that do not depend on straight lines but generally do not introduce 
adverse effects such as spurious boundary extrema, and also maintain the flexibility that 
an adjustable center point provides. The final test is the usual one: does the modeling 
equation render predictions that correspond satisfactorily to laboratory results? That 
equation may not be the most robust one but the test has helped to illuminate its 
weaknesses. 
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The preceding sections have illustrated operational methods for four or five data 

in a rectangular array. Other operational methods for four- and five-point rectangular 
arrays are illustrated in Refs. [1,2,5,6,7]. For the most part, they are easy to apply. The 
shifting operator offers a variety of methods for four- or five-point rectangles just as it 
offers a variety of methods for eight- and nine-point rectangular prisms. The bilinear and 
trilinear equations have the advantage of tradition but they represent only one of several 
possible approaches. Five-point rectangular arrays can be advantageous for modeling 
purposes if economics permit the extra experiment. The literature citations illustrate 
applications of the shifting operator to geometry.  
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Fig. 1. The eight-point rectangular prism 
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