AN INEQUALITY FOR THE NORM OF A POLYNOMIAL FACTOR

IGOR E. PRITSKER

(Communicated by Albert Baernstein II)

Abstract

Let $p(z)$ be a monic polynomial of degree n, with complex coefficients, and let $q(z)$ be its monic factor. We prove an asymptotically sharp inequality of the form $\|q\|_{E} \leq C^{n}\|p\|_{E}$, where $\|\cdot\|_{E}$ denotes the sup norm on a compact set E in the plane. The best constant C_{E} in this inequality is found by potential theoretic methods. We also consider applications of the general result to the cases of a disk and a segment.

1. Introduction

Let $p(z)$ be a monic polynomial of degree n, with complex coefficients. Suppose that $p(z)$ has a monic factor $q(z)$, so that

$$
p(z)=q(z) r(z)
$$

where $r(z)$ is also a monic polynomial. Define the uniform (sup) norm on a compact set E in the complex plane \mathbb{C} by

$$
\begin{equation*}
\|f\|_{E}:=\sup _{z \in E}|f(z)| . \tag{1.1}
\end{equation*}
$$

We study the inequalities of the following form

$$
\begin{equation*}
\|q\|_{E} \leq C^{n}\|p\|_{E}, \quad \operatorname{deg} p=n \tag{1.2}
\end{equation*}
$$

where the main problem is to find the best (the smallest) constant C_{E}, such that (1.2) is valid for any monic polynomial $p(z)$ and any monic factor $q(z)$.

In the case $E=\bar{D}$, where $D:=\{z:|z|<1\}$, the inequality (1.2) was considered in a series of papers by Mignotte [9], Granville [7] and Glesser [6], who obtained a number of improvements on the upper bound for $C_{\bar{D}}$. D. W. Boyd [3] made the final step here, by proving that

$$
\begin{equation*}
\|q\|_{\bar{D}} \leq \beta^{n}\|p\|_{\bar{D}} \tag{1.3}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta:=\exp \left(\frac{1}{\pi} \int_{0}^{2 \pi / 3} \log \left(2 \cos \frac{t}{2}\right) d t\right) . \tag{1.4}
\end{equation*}
$$

[^0]The constant $\beta=C_{\bar{D}}$ is asymptotically sharp, as $n \rightarrow \infty$, and it can also be expressed in a different way, using Mahler's measure. This problem is of importance in designing algorithms for factoring polynomials with integer coefficients over integers. We refer to [5] and [8] for more information on the connection with symbolic computations.

A further development related to (1.2) for $E=[-a, a], a>0$, was suggested by P. B. Borwein in [1] (see Theorems 2 and 5 there or see Section 5.3 in [2]). In particular, Borwein proved that if $\operatorname{deg} q=m$ then

$$
\begin{equation*}
|q(-a)| \leq\|p\|_{[-a, a]} a^{m-n} 2^{n-1} \prod_{k=1}^{m}\left(1+\cos \frac{2 k-1}{2 n} \pi\right) \tag{1.5}
\end{equation*}
$$

where the bound is attained for a monic Chebyshev polynomial of degree n on $[-a, a]$ and a factor q. He also showed that, for $E=[-2,2]$, the constant in the above inequality satisfies

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left(2^{m-1} \prod_{k=1}^{m}\left(1+\cos \frac{2 k-1}{2 n} \pi\right)\right)^{1 / n} \\
\leq & \lim _{n \rightarrow \infty}\left(2^{[2 n / 3]-1} \prod_{k=1}^{[2 n / 3]}\left(1+\cos \frac{2 k-1}{2 n} \pi\right)\right)^{1 / n} \\
= & \exp \left(\int_{0}^{2 / 3} \log (2+2 \cos \pi x) d x\right)=1.9081 \ldots
\end{aligned}
$$

which hints that

$$
\begin{equation*}
C_{[-2,2]}=\exp \left(\int_{0}^{2 / 3} \log (2+2 \cos \pi x) d x\right)=1.9081 \ldots \tag{1.6}
\end{equation*}
$$

We find the asymptotically best constant C_{E} in (1.2) for a rather arbitrary compact set E. The general result is then applied to the cases of a disk and a line segment, so that we recover (1.3)-(1.4) and confirm (1.6).

2. Results

Our solution of the above problem is based on certain ideas from the logarithmic potential theory (cf. [12] or [13]). Let $\operatorname{cap}(E)$ be the logarithmic capacity of a compact set $E \subset \mathbb{C}$. For E with $\operatorname{cap}(E)>0$, denote the equilibrium measure of E (in the sense of the logarithmic potential theory) by μ_{E}. We remark that μ_{E} is a positive unit Borel measure supported on E, $\operatorname{supp} \mu_{E} \subset E($ see [13, p. 55]).
Theorem 2.1. Let $E \subset \mathbb{C}$ be a compact set, $\operatorname{cap}(E)>0$. Then the best constant C_{E} in (1.2) is given by

$$
\begin{equation*}
C_{E}=\frac{\max _{u \in \partial E} \exp \left(\int_{|z-u| \geq 1} \log |z-u| d \mu_{E}(z)\right)}{\operatorname{cap}(E)} . \tag{2.1}
\end{equation*}
$$

Furthermore, if E is regular then

$$
\begin{equation*}
C_{E}=\max _{u \in \partial E} \exp \left(-\int_{|z-u| \leq 1} \log |z-u| d \mu_{E}(z)\right) \tag{2.2}
\end{equation*}
$$

The above notion of regularity is to be understood in the sense of the exterior Dirichlet problem (cf. [13, p. 7]). Note that the condition $\operatorname{cap}(E)>0$ is usually satisfied for all applications, as it only fails for very thin sets (see [13 pp. 63-66]), e.g., finite sets in the plane. But if E consists of finitely many points then the inequality (1.2) cannot be true for a polynomial $p(z)$ with zeros at every point of E and for its linear factors $q(z)$. On the other hand, Theorem 2.1 is applicable to any compact set with a connected component consisting of more than one point (cf. 13, p. 56]).

One can readily see from (1.2) or (2.1) that the best constant C_{E} is invariant under the rigid motions of the set E in the plane. Therefore we consider applications of Theorem [2.1] to the family of disks $D_{r}:=\{z:|z|<r\}$, which are centered at the origin, and to the family of segments $[-a, a], a>0$.

Corollary 2.2. Let D_{r} be a disk of radius r. Then the best constant $C_{\bar{D}_{r}}$, for $E=\overline{D_{r}}$, is given by

$$
C_{\bar{D}_{r}}=\left\{\begin{array}{l}
\frac{1}{r}, \quad 0<r \leq 1 / 2, \tag{2.3}\\
\frac{1}{r} \exp \left(\frac{1}{\pi} \int_{0}^{\pi-2 \arcsin \frac{1}{2 r}} \log \left(2 r \cos \frac{x}{2}\right) d x\right), \quad r>1 / 2 .
\end{array}\right.
$$

Note that (1.3)-(1.4) immediately follow from (2.3) for $r=1$. The graph of $C_{\bar{D}_{r}}$, as a function of r, is in Figure 1

Figure 1. $C_{\bar{D}_{r}}$ as a function of r.

Corollary 2.3. If $E=[-a, a], a>0$, then

$$
C_{[-a, a]}=\left\{\begin{array}{l}
\frac{2}{a}, \quad 0<a \leq 1 / 2 \tag{2.4}\\
\frac{2}{a} \exp \left(\int_{1-a}^{a} \frac{\log (t+a)}{\pi \sqrt{a^{2}-t^{2}}} d t\right), \quad a>1 / 2
\end{array}\right.
$$

Observe that (2.4), with $a=2$, implies (1.6) by the change of variable $t=$ $2 \cos \pi x$. We include the graph of $C_{[-a, a]}$, as a function of a, in Figure 2

Figure 2. $C_{[-a, a]}$ as a function of a.
We now state two general consequences of Theorem 2.1 They explain some interesting features of C_{E}, which the reader may have noticed in Corollaries 2.2 and 2.3. Let

$$
\operatorname{diam}(E):=\max _{z, \zeta \in E}|z-\zeta|
$$

be the Euclidean diameter of E.
Corollary 2.4. Suppose that $\operatorname{cap}(E)>0$. If $\operatorname{diam}(E) \leq 1$ then

$$
\begin{equation*}
C_{E}=\frac{1}{\operatorname{cap}(E)} \tag{2.5}
\end{equation*}
$$

It is well known that $\operatorname{cap}\left(D_{r}\right)=r$ and $\operatorname{cap}([-a, a])=a / 2$ (see [12, p. 135]), which clarifies the first lines of (2.3) and (2.4) by (2.5).

The next Corollary shows how the constant C_{E} behaves under dilations of the set E. Let αE be the dilation of E with a factor $\alpha>0$.

Corollary 2.5. If E is regular then

$$
\begin{equation*}
\lim _{\alpha \rightarrow+\infty} C_{\alpha E}=1 \tag{2.6}
\end{equation*}
$$

Thus Figures 1 and 2 clearly illustrate (2.6).
We remark that one can deduce inequalities of the type (1.2), for various L_{p} norms, from Theorem [2.1] by using relations between L_{p} and L_{∞} norms of polynomials on E (see, e.g., [11]).

3. Proofs

Proof of Theorem [2.1] The proof of this result is based on the ideas of [3] and [10]. For $u \in \mathbb{C}$, consider a function

$$
\rho_{u}(z):=\max (|z-u|, 1), \quad z \in \mathbb{C}
$$

One can immediately see that $\log \rho_{u}(z)$ is a subharmonic function in $z \in \mathbb{C}$, which has the following integral representation (see [12, p. 29]):

$$
\begin{equation*}
\log \rho_{u}(z)=\int \log |z-t| d \lambda_{u}(t), \quad z \in \mathbb{C} \tag{3.1}
\end{equation*}
$$

where $d \lambda_{u}\left(u+e^{i \theta}\right)=d \theta /(2 \pi)$ is the normalized angular measure on $|t-u|=1$.
Let $u \in \partial E$ be such that

$$
\|q\|_{E}=|q(u)| .
$$

If $z_{k}, k=1, \ldots, m$, are the zeros of $q(z)$, counted according to multiplicities, then

$$
\begin{align*}
\log \|q\|_{E} & =\sum_{k=1}^{m} \log \left|u-z_{k}\right| \leq \sum_{k=1}^{m} \log \rho_{u}\left(z_{k}\right) \\
& =\sum_{k=1}^{m} \int \log \left|z_{k}-t\right| d \lambda_{u}(t)=\int \log |p(t)| d \lambda_{u}(t) \tag{3.2}
\end{align*}
$$

by (3.1)
We use the well known Bernstein-Walsh lemma about the growth of a polynomial outside of the set E (see [12, p. 156], for example):
Let $E \subset \mathbb{C}$ be a compact set, $\operatorname{cap}(E)>0$, with the unbounded component of $\overline{\mathbb{C}} \backslash E$ denoted by Ω. Then, for any polynomial $p(z)$ of degree n, we have

$$
\begin{equation*}
|p(z)| \leq\|p\|_{E} e^{n g_{\Omega}(z, \infty)}, \quad z \in \mathbb{C} \tag{3.3}
\end{equation*}
$$

where $g_{\Omega}(z, \infty)$ is the Green function of Ω, with pole at ∞. The following representation for $g_{\Omega}(z, \infty)$ is found in Theorem III. 37 of [13, p. 82]).

$$
\begin{equation*}
g_{\Omega}(z, \infty)=\log \frac{1}{\operatorname{cap}(E)}+\int \log |z-t| d \mu_{E}(t), \quad z \in \mathbb{C} . \tag{3.4}
\end{equation*}
$$

It follows from (3.1)-(3.4) and Fubini's theorem that

$$
\begin{aligned}
\frac{1}{n} \log \frac{\|q\|_{E}}{\|p\|_{E}} & \leq \int \log \frac{|p(t)|^{1 / n}}{\|p\|_{E}^{1 / n}} d \lambda_{u}(t) \leq \int g_{\Omega}(t, \infty) d \lambda_{u}(t) \\
& =\log \frac{1}{\operatorname{cap}(E)}+\iint \log |z-t| d \lambda_{u}(t) d \mu_{E}(z) \\
& =\log \frac{1}{\operatorname{cap}(E)}+\int \log \rho_{u}(z) d \mu_{E}(z)
\end{aligned}
$$

Using the definition of $\rho_{u}(z)$, we obtain from the above estimate that

$$
\begin{aligned}
\|q\|_{E} & \leq\left(\frac{\max _{u \in \partial E} \exp \left(\int \log \rho_{u}(z) d \mu_{E}(z)\right)}{\operatorname{cap}(E)}\right)^{n}\|p\|_{E} \\
& =\left(\frac{\max _{u \in \partial E} \exp \left(\int_{|z-u| \geq 1} \log |z-u| d \mu_{E}(z)\right)}{\operatorname{cap}(E)}\right)\|p\|_{E} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
C_{E} \leq \frac{\max _{u \in \partial E} \exp \left(\int_{|z-u| \geq 1} \log |z-u| d \mu_{E}(z)\right)}{\operatorname{cap}(E)} \tag{3.5}
\end{equation*}
$$

In order to prove the inequality opposite to (3.5), we consider the n-th Fekete points $\left\{a_{k, n}\right\}_{k=1}^{n}$ for the set E (cf. [12] p. 152]). Let

$$
p_{n}(z):=\prod_{k=1}^{n}\left(z-a_{k, n}\right)
$$

be the Fekete polynomial of degree n. Define the normalized counting measures on the Fekete points by

$$
\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{a_{k, n}}, \quad n \in \mathbb{N}
$$

It is known that (see Theorems 5.5.4 and 5.5.2 in [12, pp. 153-155])

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|p_{n}\right\|_{E}^{1 / n}=\operatorname{cap}(E) \tag{3.6}
\end{equation*}
$$

Furthermore, we have the following weak* convergence of counting measures (cf. [12, p. 159]):

$$
\begin{equation*}
\tau_{n} \xrightarrow{*} \mu_{E}, \quad \text { as } n \rightarrow \infty . \tag{3.7}
\end{equation*}
$$

Let $u \in \partial E$ be a point, where the maximum on the right hand side of (3.5) is attained. Define the factor $q_{n}(z)$ for $p_{n}(z)$, with zeros being the n-th Fekete points satisfying $\left|a_{k, n}-u\right| \geq 1$. Then we have by (3.7) that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|q_{n}\right\|_{E}^{1 / n} & \geq \lim _{n \rightarrow \infty}\left|q_{n}(u)\right|^{1 / n}=\lim _{n \rightarrow \infty} \exp \left(\frac{1}{n} \sum_{\left|a_{k, n}-u\right| \geq 1} \log \left|u-a_{k, n}\right|\right) \\
& =\exp \left(\lim _{n \rightarrow \infty} \int_{|z-u| \geq 1} \log |u-z| d \tau_{n}(z)\right) \\
& =\exp \left(\int_{|z-u| \geq 1} \log |u-z| d \mu_{E}(z)\right)
\end{aligned}
$$

Combining the above inequality with (3.6) and the definition of C_{E}, we obtain that

$$
C_{E} \geq \lim _{n \rightarrow \infty} \frac{\left\|q_{n}\right\|_{E}^{1 / n}}{\left\|p_{n}\right\|_{E}^{1 / n}} \geq \frac{\exp \left(\int_{|z-u| \geq 1} \log |z-u| d \mu_{E}(z)\right)}{\operatorname{cap}(E)}
$$

This shows that (2.1) holds true. Moreover, if $u \in \partial E$ is a regular point for Ω, then we obtain by Theorem III. 36 of [13, p. 82]) and (3.4) that

$$
\log \frac{1}{\operatorname{cap}(E)}+\int \log |u-t| d \mu_{E}(t)=g_{\Omega}(u, \infty)=0
$$

Hence

$$
\log \frac{1}{\operatorname{cap}(E)}+\int_{|z-u| \geq 1} \log |u-t| d \mu_{E}(t)=-\int_{|z-u| \leq 1} \log |u-t| d \mu_{E}(t)
$$

which implies (2.2) by (2.1).

Proof of Corollary 2.2. It is well known [13] p. 84] that $\operatorname{cap}\left(\overline{D_{r}}\right)=r$ and $d \mu_{\overline{D_{r}}}\left(r e^{i \theta}\right)=$ $d \theta /(2 \pi)$, where $d \theta$ is the angular measure on ∂D_{r}. If $r \in(0,1 / 2]$ then the numerator of (2.1) is equal to 1 , so that

$$
C_{\overline{D_{r}}}=\frac{1}{r}, \quad 0<r \leq 1 / 2
$$

Assume that $r>1 / 2$. We set $z=r e^{i \theta}$ and let $u_{0}=r e^{i \theta_{0}}$ be a point where the maximum in (2.1) is attained. On writing

$$
\left|z-u_{0}\right|=2 r\left|\sin \frac{\theta-\theta_{0}}{2}\right|
$$

we obtain that

$$
\begin{aligned}
C_{\overline{D_{r}}} & =\frac{1}{r} \exp \left(\frac{1}{2 \pi} \int_{\theta_{0}+2 \arcsin \frac{1}{2 r}}^{2 \pi+\theta_{0}-2 \arcsin \frac{1}{2 r}} \log \left|2 r \sin \frac{\theta-\theta_{0}}{2}\right| d \theta\right) \\
& =\frac{1}{r} \exp \left(\frac{1}{2 \pi} \int_{2 \arcsin \frac{1}{2 r}-\pi}^{\pi-2 \arcsin \frac{1}{2 r}} \log \left(2 r \cos \frac{x}{2}\right) d x\right) \\
& =\frac{1}{r} \exp \left(\frac{1}{\pi} \int_{0}^{\pi-2 \arcsin \frac{1}{2 r}} \log \left(2 r \cos \frac{x}{2}\right) d x\right)
\end{aligned}
$$

by the change of variable $\theta-\theta_{0}=\pi-x$.
Proof of Corollary [2.3. Recall that $\operatorname{cap}([-a, a])=a / 2$ (see [13, p. 84]) and

$$
d \mu_{[-a, a]}(t)=\frac{d t}{\pi \sqrt{a^{2}-t^{2}}}, \quad t \in[-a, a]
$$

It follows from (2.1) that

$$
\begin{equation*}
C_{[-a, a]}=\frac{2}{a} \exp \left(\max _{u \in[-a, a]} \int_{[-a, a] \backslash(u-1, u+1)} \frac{\log |t-u|}{\pi \sqrt{a^{2}-t^{2}}} d t\right) \tag{3.8}
\end{equation*}
$$

If $a \in(0,1 / 2]$ then the integral in (3.8) obviously vanishes, so that $C_{[-a, a]}=2 / a$.
For $a>1 / 2$, let

$$
\begin{equation*}
f(u):=\int_{[-a, a] \backslash(u-1, u+1)} \frac{\log |t-u|}{\pi \sqrt{a^{2}-t^{2}}} d t \tag{3.9}
\end{equation*}
$$

One can easily see from (3.9) that

$$
f^{\prime}(u)=\int_{u+1}^{a} \frac{d t}{\pi(u-t) \sqrt{a^{2}-t^{2}}}<0, \quad u \in[-a, 1-a]
$$

and

$$
f^{\prime}(u)=\int_{-a}^{u-1} \frac{d t}{\pi(u-t) \sqrt{a^{2}-t^{2}}}>0, \quad u \in[a-1, a]
$$

However, if $u \in(1-a, a-1)$ then

$$
f^{\prime}(u)=\int_{u+1}^{a} \frac{d t}{\pi(u-t) \sqrt{a^{2}-t^{2}}}+\int_{-a}^{u-1} \frac{d t}{\pi(u-t) \sqrt{a^{2}-t^{2}}}
$$

It is not difficult to verify directly that

$$
\int \frac{d t}{\pi(u-t) \sqrt{a^{2}-t^{2}}}=\frac{1}{\pi \sqrt{a^{2}-u^{2}}} \log \left|\frac{a^{2}-u t+\sqrt{a^{2}-t^{2}} \sqrt{a^{2}-u^{2}}}{t-u}\right|+C
$$

which implies that

$$
f^{\prime}(u)=\frac{1}{\pi \sqrt{a^{2}-u^{2}}} \log \left(\frac{a^{2}-u^{2}+u+\sqrt{a^{2}-(u-1)^{2}} \sqrt{a^{2}-u^{2}}}{a^{2}-u^{2}-u+\sqrt{a^{2}-(u+1)^{2}} \sqrt{a^{2}-u^{2}}}\right)
$$

for $u \in(1-a, a-1)$. Hence

$$
f^{\prime}(u)<0, u \in(1-a, 0), \quad \text { and } \quad f^{\prime}(u)>0, u \in(0, a-1)
$$

Collecting all facts, we obtain that the maximum for $f(u)$ on $[-a, a]$ is attained at the endpoints $u=a$ and $u=-a$, and it is equal to

$$
\max _{u \in[-a, a]} f(u)=\int_{1-a}^{a} \frac{\log (t+a)}{\pi \sqrt{a^{2}-t^{2}}} d t
$$

Thus (2.3) follows from (3.8) and the above equation.
Proof of Corollary 2.4. Note that the numerator of (2.1) is equal to 1 , because $|z-u| \leq 1, \forall z \in E, \forall u \in \partial E$. Thus (2.5) follows immediately.
Proof of Corollary 2.5. Observe that $C_{E} \geq 1$ for any $E \in \mathbb{C}$, so that $C_{\alpha E} \geq 1$. Since E is regular, we use the representation for C_{E} in (2.2). Let $T: E \rightarrow \alpha E$ be the dilation mapping. Then $|T z-T u|=\alpha|z-u|, z, u \in E$, and $d \mu_{\alpha E}(T z)=d \mu_{E}(z)$. This gives that

$$
\begin{aligned}
C_{\alpha E} & =\max _{T u \in \partial(\alpha E)} \exp \left(-\int_{|T z-T u| \leq 1} \log |T z-T u| d \mu_{\alpha E}(T z)\right) \\
& =\max _{u \in \partial E} \exp \left(-\int_{|z-u| \leq 1 / \alpha} \log (\alpha|z-u|) d \mu_{E}(z)\right) \\
& =\max _{u \in \partial E} \exp \left(-\mu_{E}\left(\overline{D_{1 / \alpha}(u)}\right) \log \alpha-\int_{|z-u| \leq 1 / \alpha} \log |z-u| d \mu_{E}(z)\right) \\
& <\max _{u \in \partial E} \exp \left(-\int_{|z-u| \leq 1 / \alpha} \log |z-u| d \mu_{E}(z)\right)
\end{aligned}
$$

where $\alpha \geq 1$. Using the absolute continuity of the integral, we have that

$$
\lim _{\alpha \rightarrow+\infty} \int_{|z-u| \leq 1 / \alpha} \log |z-u| d \mu_{E}(z)=0
$$

which implies (2.6).

References

[1] P. B. Borwein, Exact inequalities for the norms of factors of polynomials, Can. J. Math. 46 (1994), 687-698.
[2] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
[3] D. W. Boyd, Two sharp inequalities for the norm of a factor of a polynomial, Mathematika 39 (1992), 341-349.
[4] D. W. Boyd, Sharp inequalities for the product of polynomials, Bull. London Math. Soc. 26 (1994), 449-454.
[5] D. W. Boyd, Large factors of small polynomials, Contemp. Math. 166 (1994), 301-308.
[6] P. Glesser, Nouvelle majoration de la norme des facteurs d'un polynôme, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), 224-228.
[7] A. Granville, Bounding the coefficients of a divisor of a given polynomial, Monatsh. Math. 109 (1990), 271-277.
[8] S. Landau, Factoring polynomials quickly, Notices Amer. Math. Soc. 34 (1987), 3-8.
[9] M. Mignotte, Some useful bounds, In "Computer Algebra, Symbolic and Algebraic Computation" (B. Buchberger et al., eds.), pp. 259-263, Springer-Verlag, New York, 1982.
[10] I. E. Pritsker, Products of polynomials in uniform norms, to appear in Trans. Amer. Math. Soc.
[11] I. E. Pritsker, Comparing norms of polynomials in one and several variables, J. Math. Anal. Appl. 216 (1997), 685-695.
[12] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
[13] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publ. Co., New York, 1975.
Department of Mathematics, 401 Mathematical Sciences, Oklahoma State University, Stillwater, OK 74078-1058, U.S.A.

E-mail address: igor@math.okstate.edu

[^0]: 1991 Mathematics Subject Classification. Primary 30C10, 30C85; Secondary 11C08, 31A15.
 Key words and phrases. Polynomials, uniform norm, logarithmic capacity, equilibrium measure, subharmonic function, Fekete points.

 Research supported in part by the National Science Foundation grants DMS-9970659 and DMS-9707359.

