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Abstract. Let k be a field of characteristic zero, g a k-Lie algebra, e : Sg −→ Ug

the symmetrization map. The PBW quantization is the one parameter family of

associative products:

x ⋆t y =
∞
∑

p=0

Bp(x, y)tp (t ∈ k)

where Bp is the homogeneous component of degree −p of the map B : Sg⊗k Sg −→

Sg, B(x, y) = e−1(exey). In this paper we give an explicit formula for B. As an
application, we prove that for each p ≥ 0, Bp is a bidifferential operator of order ≤ p.

0. Introduction

We consider (possibly infinite dimensional) Lie algebras over a fixed field k of
characteristic zero. Let g be a Lie algebra, S = Sg and U = Ug the symmetric
and universal enveloping algebras, and F0 ⊂ F1 ⊂ · · · ⊂ U the coalgebra filtration
Fn := k + g + g

2 + · · · + g
n. Recall that the Poincaré-Birkhoff-Witt isomorphism

between S and the associated graded ring GFU is induced by the symmetrization
map e : S→̃U defined as

(1) e(g1 . . . gp) =
1

p!

∑

σ∈Sp

gσ(1) . . . gσ(p)

Thus the associative product

(2) B : S ⊗ S −→ S, B(x, y) = e−1(exey)

maps S≤n =
∑n

p=0 Sp into itself (n ≥ 0), whence it can be written as

(3) B =

∞
∑

p=0

Bp
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where Bp is homogeneous of degree −p. We have

(4) B0(x, y) = xy, B1(x, y) =
1

2
{x, y}

Here {, } is the Poisson bracket induced by the Lie bracket of g. Thus if x1, . . . , xn,
y1, . . . , ym ∈ g, then

B1(x, y) =
1

2

∑

i,j

x1 . . .
i
∨ . . . xny1 . . .

j

∨ . . . ym[xi, yj]

In general we will have

(5) Bp(x1 . . . xn, y1 . . . ym) =
∑

i

zi,1 . . . zi,m+n−p

for some elements zij ∈ g. In this paper we prove a closed formula of the form (5),
and an explicit description of the zi,j as Lie monomials in the xr, ys (Theorem 1.1).
As an application of our formula, we show that Bp is a bidifferential operator of
order ≤ p (Theorem 2.2).

The operators Bp appear naturally in deformation theory and mathematical
physics. One considers the family of products

x ⋆t y =

∞
∑

p=0

Bp(x, y)tp (t ∈ k)

as a one parameter deformation of the usual commutative product ⋆0 of S into the
noncommutative product ⋆1 of the enveloping algebra. If furthermore g is finite
dimensional, then S can be regarded as the ring of algebraic functions on the dual
g
∗, and the St = (S, ⋆t) as the rings of functions of a family of noncommutative

varieties deforming or “quantizing” the Poisson variety g
∗. We call this the PBW

quantization because the Bp are defined by means of the Poincaré-Birkhoff-Witt
theorem.

The idea of the proof of Theorem 1.1 is to use a well-known expression of the Bp in
terms of the Campbell-Hausdorff series ([1]) in combination with Dynkin’s explicit
formula for the latter ([3], LA 4.17). Although particular cases of our formula were
known ([1],[2]) this paper is to our knowledge the first where it appears in its full
generality. An analytic proof of the bidifferentiality of the Bp was given in [1],
but no estimate of its order is made there. Our proof of the bidifferentiality is
combinatoric and is derived from the explicit formula of Theorem 1.1.

The rest of this paper is organized as follows. The formula for Bp is established
in section 1 (theorem 1.1). Section 2 is devoted to the proof of its bidifferentiality
(theorem 2.2).

1. A formula for Bp

In preparation for theorem 1.1 below, we introduce some notation. Let n, m ≥ 1,
X = {x1, . . . , xn}, Y = {y1, . . . , ym} two sets of noncommuting indeterminates. If
α ∈ {1, . . . , n}p (p ≥ 1) is a multi-index, then we write:

(6) |α| = p, Im α = {α(1), . . . , α(p)}, ad(x)α = ad(x ) ◦ · · · ◦ ad(x )
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The formula of theorem 1.1 below involves the following element of the free Lie
algebra on the disjoint union X ∐ Y :

(7) w(X, Y ) =
1

n + m
(w′(X, Y ) + w′′(X, Y ))

Here w′ and w′′ are given by the sums (8) and (9); the restrictions in the summation
indexes are explained below; see (11), (12).

w′(X, Y ) =
∑ (−1)p+1

p

ad(x)α1 ◦ ad(y)β1 ◦ · · · ◦ ad(x)αp(yk)

|α1|!|β1|! . . . |αp|!
(8)

w′′(X, Y ) =
∑ (−1)p+1

p

ad(x)α1 ◦ ad(y)β1 ◦ · · · ◦ ad(y)βp−1(xk)

|α1|!|β1|! . . . |βp−1|!
(9)

In (8) the sum is taken over arbitrary p ≥ 1 and all injective multi-indices

(10) αi ∈ {1, . . . , n}|αi|, βj ∈ {1, . . . , m}|βj|

satisfying

(11)

|α1| + · · ·+ |αp| = n |β1| + · · ·+ |βp−1| = m − 1

|αi| + |βi| ≥ 1 (1 ≤ i ≤ p − 1) |αp| ≥ 1

p
⋃

i=1

Imαi = {1, . . . , n} {k} ∪

p−1
⋃

i=1

Im βj = {1, . . . , m}

The sum in (9) is also taken over arbitrary p ≥ 1, and all injective multi-indices
(10), but now

(12)

|α1| + · · ·+ |αp−1| = n − 1 |β1| + · · ·+ |βp−1| = m

|αi| + |βi| ≥ 1 (1 ≤ i ≤ p − 1)

{k} ∪

p−1
⋃

i=1

Imαi = {1, . . . , n}

p−1
⋃

i=1

Im βj = {1, . . . , m}

In the theorem below the we consider the element w(A, B) for A ⊂ X , B ⊂ Y . If
none of A, B is empty, then w(A, B) is already defined by (7); we further define

(13) w({a}, ∅) = w(∅, {a}) = a (a ∈ X ∐ Y )

Definition 1.0. Let A1, A2 be sets, and P(Ai) the set of all subsets of Ai (i = 1, 2).
A bipartition of (A1, A2) is a subset π ⊂ P(A1) × P(A2) such that the following
two conditions are satisfied:

i) If S, T ∈ π are distinct, then Si ∩ Ti = ∅ (i = 1, 2).

ii) Ai = ∪S∈πSi (i = 1, 2)

A bipartition π is called special if w(S, T ) is defined for all (S, T ) ∈ π; that is if
the following holds

(14) (∅, S) or (S, ∅) ∈ π ⇒ #S = 1
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Theorem 1.1. Let n, m, p ≥ 1, X = {x1, . . . , xn}, Y = {y1, . . . , ym} two sets of

indeterminates, and Bp the operator of (3) for the free Lie algebra on the disjoint

union X ∐ Y . Then

(15) Bp(x1 . . . xn, y1 . . . ym) =
∑

π

w(πX
1 , πY

1 ) . . .w(πX
n+m−p, π

Y
n+m−p)

Here w is as defined in (7), and the sum runs over all special bipartitions π =
{(πX

1 , πY
1 ), . . . , (πX

n+m−p, π
Y
n+m−p)} of cardinality m+n−p of (X, Y ). In particular,

(16) Bn+m−1(x1 . . . xn, y1 . . . ym) = w(X, Y )

Proof. Write g for the free Lie algebra on X ∐ Y . Let t1, . . . , tn, u1, . . . , um be
commuting algebraically independent variables. Put

x(t) =

n
∑

i=1

tixi, y(t) =

m
∑

i=1

uiyi

One checks that B(x1 . . . xn, y1 . . . ym) is the coefficient of t1 . . . tnu1 . . . um in the
product of the exponential series

(17) exp(x(t))exp(y(u)) = exp(z(t, u))

Here z(x(t), y(u)) is the Campbell-Hausdorff series. Consider the expansion of z as
a series in t, u. In order to compute the coefficient of t1 . . . tnu1 . . . um in (17), all
terms in the expansion of z corresponding to monomials in which any of the ti, uj

has exponent ≥ 2 may be discarded. Each of the remaining terms is an element of
g times a monomial of the form:

tAuB := ta1
. . . tar

ub1 . . . ubs

for some subsets A = {a1, . . . , ar} ⊂ {1, . . . , n}, B = {b1, . . . , bs} ⊂ {1, . . . , m}.
One checks, using Dynkin’s formula ([3],LA 4.17), that the coefficient of tAuB in z

is precisely the element w(A, B). The theorem follows from this and the definition
of the symmetrization map (1). �

In the course of the proof of the theorem above we introduced a notation which
shall be used often in what follows. If A is a k-algebra, a1, . . . , an ∈ A and S =
{i1, . . . , ir} ⊂ {1, . . . , n} is a subset of r elements, then we write:

(18) aS := ai1 . . . air

In particular

a∅ = 1
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2. The bidifferentiality of Bp

Let q, k ≥ 0; define inductively

(19) c0(q) = 1, ck(q) = 1 −
k−1
∑

l=0

cl(q)

(

q + k

k − l

)

(k ≥ 1)

Lemma 2.0. Let g be a Lie algebra, p ≥ 1, q ≥ 0, r ≥ 1, x1, . . . , xp+q, y1, . . . , yr ∈
g and ck(q) as in (19) above. Then, with the notation of (18), we have

(20) Bp(x1 . . . xp+q, y1 . . . yr) =

r−1
∑

k=0

ck(q)(
∑

#S=q+k

xSBp(xSc , y1 . . . yr))

Here S ⊂ {1, . . . , p + q}, and Sc is the complement of S. The symmetric formula

holds for Bp(y1 . . . yr, x1 . . . xp+q).

Proof. We may assume that the xi, yj are indeterminates and that g is the free
Lie algebra. Apply theorem 1.1 to write the left hand side of (20) as a sum of
terms indexed by all special bipartitions π of ({1, . . . , p + q}, {1, . . . , r}) of q + r

elements. It follows from the definition of a special bipartition that the number dπ

of empty sets in the list πY
1 , . . . , πY

q+r of subsets of {1, . . . , r} is at least q and at
most q + r− 1. Write bk for the sum of those terms whose indexing bipartition has
dπ = q + k (0 ≤ k ≤ r − 1). By definition,

Bp(x1 . . . xp+q, y1 . . . yr) =
r−1
∑

l=0

bl

Moreover, a counting argument shows that for 0 ≤ k ≤ r − 1

∑

#S=q+k

xSBp(xSc , y1 . . . yr) =
r−1−k
∑

i=0

(

q + k + i

i

)

bk+i

Hence

r−1
∑

k=0

ck(q)(
∑

#S=q+k

xSBp(xSc , y1 . . . yr)) =
r−1
∑

k=0

r−1−k
∑

i=0

ck(q)

(

q + k + i

i

)

bk+i

=

r−1
∑

l=0

(

l
∑

k=0

ck(q)

(

q + l

l − k

)

)bl =

r−1
∑

l=0

bl (by (19))

= Bp(x1 . . . xp+q, y1 . . . yr) �

Lemma 2.1. Let q ≥ 1, m ≥ 0. Then:

0 = (−1)m +

q
∑

(

m + q

m + t

)

(−1)tcm(t)
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Proof. Fix q ≥ 1; the proof is by induction on m ≥ 0. The case m = 0 is immediate.
Assume m ≥ 1 and by induction that the lemma holds for s < m. Then

q
∑

t=1

(

m + q

m + t

)

(−1)tcm(t) =

=

q
∑

t=1

(

m + q

m + t

)

(−1)t −

q
∑

t=1

m−1
∑

s=0

(−1)t

(

m + q

m + t

)(

t + m

m − s

)

cs(t) (by (19))

= (−1)m

m+q
∑

t=m+1

(

m + q

t

)

(−1)t −
m−1
∑

s=0

q
∑

t=1

(−1)t

(

m + q

m − s

)(

s + q

s + t

)

cs(t)

= (−1)m+1(
m

∑

t=0

(−1)t

(

m + q

t

)

) +
m−1
∑

s=0

(−1)s

(

m + q

m − s

)

(by inductive assumption)

= (−1)m+1 + (−1)m+1(
m

∑

t=1

(−1)t

(

m + q

t

)

) +
m

∑

t=1

(−1)m+t

(

m + q

t

)

= (−1)m+1
�

Recall that a k-linear endomorphism F of a commutative associative algebra A
is a differential operator of order ≤ p if

(21)
∑

S⊂{1,...,p}

(−1)SaScF (aSb) = 0 (a1, . . . , ap, b ∈ A)

One checks that if A is generated as a k-algebra by a set X ⊂ A then F satisfies
(21) if and only if it satisfies

(22)
∑

S⊂{1,...,p+q}

(−1)SxScF (xS) = 0 (x1, . . . , xp+q ∈ X, q ≥ 0)

Theorem 2.2. Let g be a Lie algebra, S = Sg the symmetric algebra, a ∈ S, p ≥ 1.
Also let F : S −→ S be one of Bp(a, ) or Bp(, a). Then F is a differential operator

of order ≤ p.

Proof. It suffices to show the theorem for a homogeneous. Assume a = y1 . . . yr,
yi ∈ g. We shall show that the identity (22) holds for X = g. Put K = {1, . . . , p+q}.
The left hand side of (22) is the sum of

(23)

p
∑

l=p−r+1

∑

#S=l

(−1)lxK\SF (xS)

and of
q

∑

t=1

∑

#S=p+t

(−1)p+txK\SF (xS) =

q
∑

t=1

∑

#S=p+t

r−1
∑

k=0

∑

T ⊂ S

#T = p − k

(−1)p+tck(t)xK\SxS\T F (xT ) (by Lemma 2.0)

=

p
∑

−

∑

(

q
∑

t=1

(

p + q − l

p + t − l

)

(−1)p+tcp−l(t))xK\SF (xS)
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By lemma 2.1, the sum of the last expression with that of (23) is zero. �
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