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QUOTIENTS OF DIVISORIAL TORIC VARIETIES

ANNETTE A’CAMPO-NEUEN AND JÜRGEN HAUSEN

Abstract. We consider subtorus actions on divisorial toric varieties. Here
divisoriality means that the variety has many Cartier divisors like quasipro-
jective and smooth ones. We characterize when a subtorus action on such a
toric variety admits a categorical quotient in the category of divisorial vari-
eties. Our result generalizes previous statements for the quasiprojective case.
An important tool for the proof is a universal reduction of an arbitrary toric

variety to a divisorial one. This is done in terms of support maps, a notion
generalizing support functions on a polytopal fan. A further essential step is
the decomposition of a given subtorus invariant regular map to a divisorial
variety into an invariant toric part followed by a non-toric part.

Introduction

It is a frequently occuring question in algebraic geometry, if an algebraic group
action G ×X → X admits a categorical quotient, i.e., a regular map X → Y that
is universal with respect to G-invariant regular maps X → Z. For example, moduli
functors are often corepresented by categorical quotients. In general, it is a difficult
problem to decide whether a categorical quotient exists. Some counterexamples for
actions of the multiplicative group C∗ are presented in [4].

As these examples show, difficulties already arise with subtorus actions on toric
varieties. Such actions have been investigated by several authors, mainly focusing
on the much more restrictive concept of a good quotient, see e.g. [16], [21] and [13].
The description of toric varieties in terms of rational fans relates the problem of
constructing quotients to problems of combinatorial convexity. Hence the class of
toric varieties serves as a testing ground for more general ideas.

Now, let X be a toric variety and let H be a subtorus of the big torus of X . Our
approach to categorical quotients for the induced action of H on X is to consider
the problem in suitable subcategories. A first step is to construct a quotient in the
category of toric varieties itself: In [2], we showed that there always exists a toric

quotient

p : X → X/
tq
H.

This is a toric morphism that is universal with respect to H-invariant toric
morphisms. The essential part of the proof is an explicit algorithm in terms of
combinatorial data. The toric quotient is a canonical starting point for quotients
in further categories. For example, in [3] we gave an explicit method to decide
by means of the toric quotient when a subtorus action on a quasiprojective toric
variety admits a categorical quotient in the category of quasiprojective varieties.

In the present article we give a considerable generalization of the results of [3],
namely we solve the analogous problem in the category of divisorial varieties. Recall
that an irreducible variety X is called divisorial if every point x ∈ X has an affine
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2 A. A’CAMPO-NEUEN AND J. HAUSEN

neighbourhood of the form X \ Supp(D) with an effective Cartier divisor D on X ,
see e.g. [10] and [8, II.2.2].

The class of divisorial varieties contains the quasiprojective varieties as well as
all Q-factorial varieties. It has nice functorial properties, see [10], and moreover
it often provides a natural framework to extend statements known to hold for
quasiprojective varieties on the one hand and for smooth varieties on the other
hand.

A connection to toric geometry is provided by the embedding results of [14]: A
variety is divisorial if and only if it admits a closed embedding into a smooth toric
prevariety Z having an affine diagonal map Z → Z × Z. The equivariant version
of this statement implies in particular that a toric variety is divisorial if and only
if it has enough invariant effective Cartier divisors in the sense of T. Kajiwara [15],
see Section 1.

Now, given a divisorial toric variety X and a subtorus H of the big torus of X ,
when does the action of H on X admit a categorical quotient in the category of
divisorial varieties? As mentioned, we start with the toric quotient

p : X → X/
tq
H.

A first problem is that in general the toric quotient space X/
tq
H is not a divisorial

variety. To deal with this effect, we construct a toric divisorial reduction. This is
a toric morphism

q : X/
tq
H → (X/

tq
H)tdr

which is universal with respect to toric morphism to divisorial toric varieties. The
question then is, how these toric constructions behave in the essentially larger
category of arbitrary divisorial varieties. Our main result gives the following answer,
see Corollary 6.3:

Theorem. The action of H on X admits a categorical quotient in the category of

divisorial varieties if and only if the composition q ◦ p is surjective. Moreover, in

the latter case, q ◦ p is the desired categorical quotient.

The paper is organized as follows: In Section 1 we discuss divisoriality in the
context of G-varieties and provide some general statements used in the subsequent
constructions. Sections 2 and 3 are devoted to the construction of the toric divisorial
reduction. This is done in the language of combinatorial convexity. The main tool
are convex support maps extending the notion of a convex support function on a
fan.

Generalizing the corresponding well-known statement on projectivity and sup-
port functions, we show that divisoriality of a given toric variety is characterized
by the existence of a strictly convex support map on its fan. Moreover, we relate
convex support maps to toric morphisms to divisorial toric varieties. This allows
the construction of the toric divisorial reduction. Finally, we present some examples
in Section 3.

In Sections 4 and 5 we prepare the proof of the main results. The essential task is
to reduce arbitrary H-invariant regular maps to H-invariant toric morphisms. This
is done by the Decomposition Lemma presented in Section 5: Given an H-invariant
regular map f : X → Y to a divisorial variety, we construct a decomposition f =
h ◦ g with an H-invariant toric morphism g followed by a rational map h defined
near g(X).
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The ingredients for the proof of this Decomposition Lemma are the abovemen-
tioned embedding of Y into a certain smooth toric prevariety Z provided by [14]
and the following lifting result, presented in Section 4: There exist quasiaffine toric

varieties X̃ and Z̃ “above” X and Z respectively such that the map f admits a

lifting f̃ : X̃ → Z̃. This basically reduces the decomposition problem to the case of
quasiaffine toric varieties.

In Section 6 we give statements and proofs of the main results. Finally, in Sec-
tion 7 we formulate an open problem on categorical quotients for subtorus actions
on toric varieties.

1. Divisorial G-varieties

Throughout the whole article, we work over a fixed algebraically closed field K.
So a prevariety is a reduced irreducible scheme of finite type over K, and a variety
is a separated prevariety. We say that a prevariety X is of affine intersection, if its
diagonal morphism X → X ×X is affine.

As usual, when we speak of a G-(pre-)variety where G is an algebraic group,
we mean an algebraic (pre-)variety X together with a G-action given by a regular
map G×X → X . For the basic notions on toric varieties and prevarieties, we refer
to [12] and [5].

In this section, we provide some general facts on group actions on divisorial
varieties. Following Borelli [10], we call a prevariety X divisorial if every point
x ∈ X has an affine open neighbourhood of the form U = X \ Supp(D) with an
effective Cartier divisor D on X .

Remark 1.1. i) Quasiprojective varieties are divisorial.
ii) Locally closed subspaces of divisorial prevarieties are divisorial.
iii) Every divisorial prevariety X is of affine intersection.
iv) Every Q-factorial prevariety of affine intersection is divisorial.

A geometric quotient for the action of a reductive group G on a variety X is an
affine regular map p : X → Y such that the fibres of p are precisely the G-orbits and
the canonical homomorphism OY → p∗(OX)G is bijective. The analogous notion
in the setting of prevarieties, i.e. for possibly non-separated X and Y , is called a
geometric prequotient .

In the sequel, we shall make use of the following characterization of divisoriality
in terms of geometric quotients and closed embeddings, see [14, Theorem 3.1]:

Theorem 1.2. A variety X is divisorial if and only if one of the following state-

ments holds:

i) X is a geometric quotient of a quasiaffine variety by a free algebraic torus

action.

ii) X admits a closed embedding into a smooth toric prevariety of affine intersec-

tion.

Here a torus action is called free if every orbit map is a locally closed embedding.
The above result has the following equivariant version, see [14, Theorem 3.4]:

Theorem 1.3. Let X be a normal divisorial T -variety where T is an algebraic

torus acting effectively.

i) There is a quasiaffine variety X̂ with a regular action of a torus T ×H such

that H acts freely with a T -equivariant geometric quotient X̂ → X.
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ii) There is a T -equivariant closed embedding X → Z into a smooth toric preva-

riety Z of affine intersection where T acts as a subtorus of the big torus.

A first consequence is that divisorial varieties with torus actions always have
many invariant effective Cartier divisors. For a toric variety this means that it is
divisorial if and only if it has enough invariant effective Cartier divisors in the sense
defined by T. Kajiwara, see [15].

Proposition 1.4. Let T be an algebraic torus, and let X be a normal algebraic

T -variety X. Then X is divisorial if and only if there exist T -invariant effective

Cartier divisors D1, . . . , Dr on X such that the sets X \ Supp(Di) are affine and

cover X.

Proof. We may assume that T acts effectively. LetX be divisorial. By Theorem 1.3,
there is a T -equivariant closed embedding of X into a smooth toric prevariety Z of
affine intersection where T acts as a subtorus of the big torus. Hence X inherits
the desired property from Z. The reverse implication is trivial.

As the example of the rational nodal curve with standard K∗-action shows, the
assumption of normality is essential in the above statement. Our next result states
that divisoriality is inherited by geometric quotients for torus actions:

Proposition 1.5. Let T be an algebraic torus and suppose that X is a normal T -

variety with geometric quotient p : X → Y . Then X is divisorial if and only if Y
is divisorial.

Proof. We may assume that the torus T acts effectively onX . If the quotient variety
Y is divisorial, then we obtain the desired effective Cartier divisors on X by pulling
back suitable divisors from Y . Conversely, suppose that X is divisorial. Then, by
Theorem 1.3, we may assume in the proof that X is a quasiaffine T -variety.

Given y ∈ Y , we have to find an affine open neighbourhood of y that is the
complement of the support of an effective Cartier divisor on Y . Choosing any T -
equivariant affine closure of X , we find a function f ∈ O(X), homogeneous with
respect to some character χf ∈ X(T ), such that for D := div(f) the T -invariant set
U := X \ V (f) = X \ Supp(D) is an affine neighbourhood of the fibre p−1(y).

By T -closedness of p : X → Y , the set V := p(U) is an open neighbourhood of
y ∈ Y . Moreover, as a geometric quotient space of the affine T -variety U , the set V
is again affine. Thus, to prove the assertion, we only have to show that p(Supp(D))
is the support of an effective Cartier divisor E on Y . We construct local equations
for such an E.

First we claim that every point z ∈ Y has an affine neighbourhood Vz ⊂ Y
such that on Uz := p−1(Vz) there is an invertible function hz ∈ O(Uz) that is
homogeneous with respect to some positive multiplemzχf . To check this, start with
any affine neighbourhood Vz ⊂ Y of z and choose a point x ∈ p−1(z). Consider the
sublattice N ⊂ X(T ) of characters occuring as weights of homogeneous functions
g ∈ O(Uz) with g(x) = 1.

The sublattice N is of full rank in X(T ): Otherwise we found a nontrivial one-
parameter-subgroup λ : K∗ → T such that χ ◦ λ = 1 holds for all χ ∈ N . It follows
that λ(K∗) is contained in the isotropy group Tx. On the other hand, the T -action
on Uz is effective and closed. Hence Tx is finite, a contradiction. Thus N is of full
rank. In particular, some positive multiple mzχf lies in N and our claim follows.
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Now cover Y by finitely many Vz as in the above claim. Then we may assume
that all the invertible functions hz ∈ O(Uz) are homogeneous with respect to the
same multiple mχf . Every function gz := fm/hz is T -invariant, regular on Uz and
vanishes precisely on Supp(D) ∩Uz. Since it is T -invariant, gz may be viewed as a
regular function on Vz = p(Uz) and there its zero set is just

p(Supp(D) ∩ Uz) = p(Supp(D)) ∩ Vz.

Since every gz/gz′ is an invertible regular function on Vz ∩ Vz′ it follows that the
gz are local equations for the desired Cartier divisor E on Y .

As T. Kajiwara has shown, every toric variety X with enough invariant effective

Cartier divisors arises as a geometric quotient of a quasiaffine toric variety X̂ by

an algebraic subgroup of the big torus of X̂, see [15, Theorem 1.9]. In view of the
above results, we can enhance Kajiwara’s statement as follows:

Corollary 1.6. A toric variety X is divisorial if and only if there is a quasiaffine

toric variety X̂ and a toric morphism p : X̂ → X such that ker(p) is a subtorus of

the big torus of X̂ and p is a geometric quotient for the action of ker(p) on X̂.

Proof. If X is divisorial, then Theorem 1.3 gives the desired quotient presentation.
The converse follows from Proposition 1.5.

Finally, we consider translates of divisorial open subsets with respect to an action
of a connected group. If the complement of the subset is small enough, the union
of such translates is again divisorial:

Lemma 1.7. Let G be a connected linear algebraic group, and let X be a normal

G-variety. If U ⊂ X is a divisorial open subset with codim(X \ U) ≥ 2, then also

G·U is divisorial.

Proof. We may assume that X = G·U holds. Let DU
1 , . . . , D

U
r be Cartier divisors

on U such that the sets Ui := U \ Supp(DU
i ) form an affine cover of U . By closing

components, each DU
i extends to a Weil divisor Di on X .

We claim that X \ SuppDi
= Ui. To see this, let Ai := X \Ui. Since Ui is affine,

Ai is of pure codimension one. Clearly Supp(DU
i ) ⊂ Ai and hence Supp(Di) ⊂ Ai.

Thus Supp(Di) is a union of irreducible components of Ai. Moreover we have

X \ U = X \ (Ui ∪ Supp(DU
i )) = Ai \ Supp(DU

i ).

Since X \ U has codimension at least two, it follows that for each irreducible
component A′

i of Ai its intersection with Supp(DU
i ) is dense in A′

i. This implies
Ai = Supp(Di) and our claim is proved. In particular, we have

X = G·U = G·
r⋃

i=1

X \ Supp(Di) =

r⋃

i=1

⋃

g∈G

X \ Supp(g ·Di).

Thus it suffices to show that for each Di some multiple is Cartier on X . This is
done as follows: The restriction D′

i of Di to the regular locus X ′ ⊂ X is Cartier.
Since X ′ is G-invariant, we may apply G-linearization, i.e., replacing Di with a
suitable multiple we achieve that OD′

i
is a G-sheaf, see e.g. [17, Proposition 2.4].

We claim that this structure of a G-sheaf extends canonically to ODi
. For an

open set V ⊂ X let V ′ := V ∩ X ′. Given a section s ∈ ODi
(V ), we define

its translates g ·s as follows: Translate the restriction s′ ∈ ODi
(V ′) to a section

g ·s′ ∈ ODi
(g ·V ′) and then extend g ·s′ to the desired section g ·s ∈ ODi

(g ·V ).
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Using the G-sheaf structure on ODi
we see that locally ODi

is generated by a
single function. That means Di is a Cartier divisor.

2. Support maps

Projectivity of a given toric variety is characterized by the existence of a strictly
convex support function on its fan, see e.g. [12]. Generalizing the notion of a
support function here we introduce the concept of a support map on a fan and
define convexity properties for such maps. The main result of this section states
that for a given fan existence of a strictly convex support map is equivalent to
divisoriality of the associated toric variety.

For a lattice N , we denote the associated rational vector space by NQ. A cone

in N is a polyhedral (not necessarily strictly) convex cone σ ⊂ NQ. A quasifan in
N is a finite set Λ of cones in N such that for σ ∈ Λ also every face of σ belongs
to Λ and for σ, σ′ ∈ Λ the intersection σ ∩ σ′ is a face of both, σ and σ′. A fan is a
quasifan containing only strictly convex cones.

The support of a quasifan Λ is the union of all its cones and is denoted by |Λ|. A
map of quasifans Λ in a lattice N and Λ′ in a lattice N ′ is a lattice homomorphism
N → N ′ such that the associated linear map NQ → N ′

Q maps the cones of Λ into
cones of Λ′.

For the definition of support maps, fix a lattice N and a quasifan ∆ in N . We
say that a map NQ → Qk is linear on a subset A ⊂ NQ if its restriction to A is the
restriction of a linear map.

Definition 2.1. A support map on ∆ is a map h : |∆| → Qk that is linear on every
cone σ ∈ ∆.

For a support map h : |∆| → Qk, let γ be the cone in N̂ := N × Zk generated
by the graph Γh of h, and let F(γ) denote the quasifan consisting of all faces of γ.
The filled graph of h is the minimal subquasifan Λh of F(γ) with Γh ⊂ |Λh|. So, Λh
is generated by the cones δ ≺ γ whose relative interior δ◦ meets Γh.

Definition 2.2. The support map h : |∆| → Qk is called convex , if the projection

P : N̂Q → NQ is injective on the support |Λh|.

This notion of convexity includes the classical concept of a convex support func-
tion on a complete fan as defined for example in [12, p. 67]:

Remark 2.3. Let h : |∆| → Q be a support map on a fan ∆. If there are linear
forms uσ, σ ∈ ∆, on N such that for any pair σ, τ ∈ ∆ we have

h|σ = uσ|σ, h|τ ≤ uσ|τ

then h is a convex support map on ∆. Conversely, if ∆ is complete and h is convex
then h or −h satisfies the above condition.

On noncomplete fans, the concept of convexity for a support function via the
above inequalities is more restrictive than our concept:

Example 2.4. Consider the fan ∆ in Z2 generated by the two maximal cones

σ1 := cone((1, 0), (1,−1)), σ2 := cone((0, 1), (1, 1))

and the support map h : |∆| → Q determined by

h(v1, v2) :=

{
2v1 + 2v2 if (v1, v2) ∈ σ1,
−v1 + v2 if (v1, v2) ∈ σ2.
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Then h is convex: The convex hull γ of the graph Γh is a strictly convex cone
with four rays, namely

γ = cone((1, 0, 2), (1,−1, 0), (0, 1, 1), (1, 1, 0)).

Moreover, the maximal cones of Λh are precisely the two faces of γ above σ1 and
σ2 respectively.

Γh

σ1

σ2

However neither the function h nor the function −h satisfies the inequalities of
Remark 2.3, because we have:

h((0, 1)) = 1 < 2, h((1,−1)) = 0 > −2.

In order to define the notion of strict convexity, we have to note some observations
on convex support maps. The first one is:

Lemma 2.5. If the support map h : |∆| → Qk is convex, then the projected cones

P (δ), δ ∈ Λh, form a quasifan Σh in the lattice N .

Proof. The projection P is injective on any given δ ∈ Λh, and hence induces a
bijection between the faces of δ and the faces of P (δ). Moreover, given δ1, δ2 ∈ Λh,
injectivity of P on |Λh| implies

P (δ1) ∩ P (δ2) = P (δ1 ∩ δ2).

Since δ1 ∩ δ2 is a face of both δi, the above consideration yields that P (δ1 ∩ δ2) is
a common face of P (δ1) and P (δ2).

If h : |∆| → Qk is a convex support map, then we call Σh the quasifan associated

to h. We need the following properties of this quasifan:

Lemma 2.6. Let Σh be the quasifan associated to a convex support map h : |∆| →
Qk. Then we have:

i) Every cone of ∆ is contained in a cone of Σh.
ii) Every cone σ ∈ Σh is generated by the cones τ ∈ ∆ with τ ⊂ σ.

Definition 2.7. We say that a convex support map h : |∆| → Qk is strictly convex

if its associated quasifan Σh equals ∆.
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Using Remark 2.3, one verifies that on a complete fan ∆, our notion of strict
convexity for a support map h : |∆| → Q concides with the usual one, as defined
in [12, p. 67]. Again, for noncomplete fans the notions differ:

Example 2.8. The convex support map h : |∆| → Q of Example 2.4 is even strictly
convex.

We now come to the announced main result of this section, namely the charac-
terization of divisoriality of a toric variety via existence of a strictly convex support
map:

Proposition 2.9. For a fan ∆ in a lattice N , the following statements are equiv-

alent:

i) ∆ admits a strictly convex support map.

ii) The toric variety X associated to ∆ is divisorial.

In the proof of this statement, we make use of the following wellknown charac-
terization of existence of geometric quotients for subtorus actions in terms of fans,
see e.g. [13, Theorem 5.1]:

Proposition 2.10. Let ∆̂ be a fan in a lattice N̂ with associated toric variety X̂,

let P : N̂ → N be a surjective lattice homomorphism, and let H be the subtorus of

the big torus of X̂ corresponding to ker(P ). The following statements are equivalent:

i) P is injective on the support |∆̂|.

ii) The action of H on X̂ has a geometric quotient.

If one of these statements holds, then the quotient variety X̂/H is the toric variety

determined by the fan {P (σ); σ ∈ ∆̂} in N .

Proof of Proposition 2.9. Assume first that the fan ∆ admits a strictly convex sup-
port map h : |∆| → Qk. Then since ∆ = Σh, all cones of Σh are strictly convex.

As before, let N̂ := N × Zk. By convexity of h, the projection P : N̂Q → NQ is an
injection on |Λh|. In particular, all cones of Λh are strictly convex. That means
that Λh is a fan.

The toric variety X̂ associated to Λh is quasiaffine, and the projection P : N̂ → N

gives rise to a toric morphism p : X̂ → X . According to Proposition 2.10, this toric

morphism p is a geometric quotient for the subtorus action on X̂ corresponding to

ker(P ) ⊂ N̂ . Thus, Corollary 1.6 yields that X is divisorial.
Suppose now that the toric variety X determined by the fan ∆ is divisorial. By

Corollary 1.6, there is a quasiaffine toric variety X̂ and a toric morphism p : X̂ → X

such that H := ker(p) is a subtorus of the big torus of X̂ and p is a geometric

quotient for the action of H on X̂ .

Let p : X̂ → X arise from a map P : N̂ → N of fans ∆̂ and ∆. Since H = ker(p)

is connected, the map P is surjective and we obtain a section N → N̂ for P . So

we may assume that N̂ = N ×Zk holds and that P is the projection onto the first

factor. By the above Proposition 2.10, the projection P is injective on |∆̂|. Thus,

for each σ̂ ∈ ∆̂, the restriction

P |σ̂ : σ̂ 7→ σ := P (σ̂)

admits a uniquely determined linear inverse of the form gσ = (idNQ
, hσ). The maps

hσ : σ → Qk patch together to a support map h on ∆. By construction, Λh = ∆̂
and Σh = ∆. So h is the desired strictly convex support map on ∆.
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In the remainder of this section we show that convex support maps in a canonical
way define toric morphisms to divisorial toric varieties. Let ∆ be a fan in a lattice
N , and let h : |∆| → Qk be a convex support map.

There is a universal method to construct a fan from the associated quasifan Σh:
Let σmin ∈ Σh denote its minimal cone. This is a linear subspace of NQ. Let
N0 := σmin ∩N , set Nh := N/N0, and denote by Fh : N → Nh the projection. The
quotient fan of Σh is the fan

∆h := {Fh(σ); σ ∈ Σh}.

The projection Fh : N → Nh is a map of the quasifans Σh and ∆h. Moreover, Fh
is universal in the sense that every map of quasifans from Σh to a fan ∆′ factors
uniquely through Fh.

Now, let X and Xh denote the toric varieties associated to the fans ∆ and ∆h

respectively. Our precise statement is the following:

Proposition 2.11. The toric variety Xh is divisorial, and the projection Fh in-

duces a toric morphism fh : X → Xh.

Proof. By Lemma 2.6 i) and the universal property of the quotient fan ∆h, the
projection Fh : N → Nh is a map of the fans ∆ and ∆h and hence induces a toric
morphism fh : X → Xh. So we only have to show that Xh is divisorial. In view of
Proposition 2.9, we look for a strictly convex support map an ∆h.

The first step is to construct a strictly convex support map g on the quasifan Σh
associated to h: Consider a cone σ ∈ Σh. Then, as earlier denoting by P : N̂ → N
the projection, we have σ = P (δ) for some cone δ ∈ Λh.

By convexity of h, the restriction P : δ → σ has an inverse of the form (id, gσ).
The maps gσ patch together to a support map g on Σh, and g extends h. Moreover,
Γg equals Λh and hence the quasifan associated to g coincides with Σh.

Note that Σg = Σh does not change if we add a global linear function to g. So
we may assume that the support function g vanishes on the minimal cone of Σg.
But then we can push down g to a strictly convex support function on the quotient
fan ∆h.

3. Toric divisorial reduction

Fix a toric variety X . In [3], we presented a universal way to reduce X to a
quasiprojective toric variety. In this section we give an analogous construction,
that reduces to divisorial toric varieties.

Definition 3.1. A toric divisorial reduction of X is a toric morphism r : X → Xtdr

to a divisorial toric variety Xtdr such that every toric morphism f : X → Z to a

divisorial toric variety Z has a unique factorization f = f̃ ◦r with a toric morphism

f̃ : Xtdr → Z.

Theorem 3.2. Every toric variety admits a toric divisorial reduction.

The proof is given below. We need the following statement on the pullback of a
convex support map:

Lemma 3.3. Let F : N → N ′ be a map of fans ∆ and ∆′ in lattices N and N ′

respectively. If h′ : |∆′| → Qk is a convex support map on ∆′, then h := h′ ◦ F is a

convex support map on ∆ and F is a map of the associated quasifans Σh and Σh′ .
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Proof. Clearly h is a support map on ∆. To prove convexity of h, we consider the
filled graphs Λh, Λh′ and the map

F̂ := F × idZk : N × Zk → N ′ × Zk.

We claim that F̂ is a map of the quasifans Λh and Λh′ . To verify this, note first

that F̂ maps the graph Γh to Γh′ . Let δ ∈ Λh. We have to show that the minimal

face δ′ of conv(Γh′) containing F̂ (δ) belongs to Λh′ . Let

G := id|∆| × h, G′ := id|∆′| × h′.

By definition of Λh, the relative interior δ◦ of δ contains a point of the graph of
h, i.e. a point of the form G(v) for some v ∈ |∆|. By the choice of δ′ this means

F̂ (G(v)) ∈ (δ′)◦. On the other hand, by definition of G, G′ and F̂ we have

F̂ (G(v)) = G′(F (v)) ∈ Γh′ .

Hence Γh′ ∩ (δ′)◦ 6= ∅. This implies δ′ ∈ Λh′ , and our claim is proved.
For convexity of h, we have to show that the projection P : N × Zk → N is

injective on |Λh|. Suppose wi = (vi, ti) ∈ |Λh| are two points such that P (w1)
equals P (w2), that means v1 = v2. Then we have

P ′(F̂ (w1)) = P ′(F̂ (w2)),

where P ′ : N ′ × Zk → N ′ is the projection. Since F̂ is a map of the quasifans Λh
and Λh′ and P ′ is injective on |Λh′ |, this implies F̂ (w1) = F̂ (w2). In particular, we
have t1 = t2 and thus w1 = w2.

Finally, the fact that F is a map of the quasifans Σh′ and Σh follows immediately

from the fact that F̂ is a map of the quasifans Λh′ and Λh.

Proof of Theorem 3.2. Let X be a toric variety arising from a fan ∆ in a lattice
N . First we show that any given toric morphism f : X → Z from X to a divisorial
variety Z factors uniquely through one of the toric morphisms fh arising from a
convex support map on ∆ as in Proposition 2.11.

To see this, consider the map of fans F : ∆ → ∆′ associated to the given toric
morphism f and choose a strictly convex support map h′ on ∆′. Lemma 3.3 tells us
that by pulling back h′ via F , we obtain a convex support map h on ∆. Moreover,
F defines a map of quasifans from Σh to Σh′ = ∆′.

Now, the map of fans F factors as a map of fans through the projection Fh : N →
Nh, i.e., F induces a map from the quotient fan ∆h of Σh to ∆′. Obviously, the
corresponding toric morphism is the desired factorization of f : X → Z through
fh : X → Xh.

Now let us take a closer look at the toric morphisms fh : X → Xh arising from
convex support maps. Recall that the morphism fh is already determined by the
quasifan Σh associated to h. By Lemma 2.6 ii), each such quasifan has the property
that all cones are generated by cones of ∆. Consequently there exist only finitely
many of such quasifans, say Σ1, . . . ,Σr.

Let fi : X → Yi denote the toric morphisms to divisorial toric varieties deter-
mined by Σi, and consider their product f := f1 × . . . × fr. Let Y denote the

closure of the image f(X) in Y1 × · · · × Yr. The normalization Ỹ of Y is again a

divisorial toric variety, and f lifts to a toric morphism to Ỹ . In Ỹ we choose the
smallest open toric subvariety Y ′ containing the image of f , and restricting f , we
obtain a toric morphism r : X → Y ′.
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By construction, for every i we have a unique factorization of fi through r,
namely fi = pri ◦ r, where pri : Y

′ → Yi denotes the restriction of the projection
on the i-th factor. This proves that r is the desired toric divisorial reduction.

We conclude this section with some examples. Note that any two-dimensional
toric variety is simplicial and hence divisorial. So the minimal dimension for inter-
esting examples is 3.

Example 3.4. If a toric variety does not admit nontrivial effective Cartier divisors,
see e.g. [12, p. 25], then its toric divisorial reduction is a point.

Example 3.5. Consider the following eight vectors in Q3:

v1 := (2, 2, 1), v2 := (−2, 2, 1), v3 := (−2,−2, 1), v4 := (2,−2, 1),
v5 := (1, 1, 1), v6 := (−1, 1, 1), v7 := (−1,−1, 1), v8 := (2/3, 1/3, 1).

Let ∆ denote the fan in Z3 with maximal cones

σ1 := cone(v1, v2, v5, v6), σ2 := cone(v2, v3, v6, v7),
σ3 := cone(v3, v4, v7, v8), σ4 := cone(v1, v4, v5, v8),
σ5 := cone(v5, v6, v7, v8).

v4

v2

v3

σ3

σ4

v5v6 σ1

σ5

v1

v8
v7

σ2

Intersection of ∆ with the plane x3 = 1.

The identity on Z3 defines a map of fans from ∆ to the fan of faces F(σ) of
the cone σ := cone(v1, v2, v3, v4). We claim that the corresponding toric morphism
r : X∆ → Xσ is the toric divisorial reduction of X∆.

To see this, consider a convex support map h : |∆| → Qk, and its associated
quasifan Σh. Lemma 2.6 implies that we have only two possibilities, namely Σh =
F(σ) or Σh = ∆. Thus, to verify our claim, we only have to exclude the latter
possibility, i.e., we have to show that h cannot be strictly convex.

Otherwise, let δ5 ∈ Λh be the maximal cone above σ5 and choose a linear form
λ : NQ × Qk → Q that is nonnegative on γ := conv(Γh) and fulfills δ5 = γ ∩ λ⊥.
Pulling back λ via idN × h, we obtain a nonnegative support function g on ∆
vanishing precisely on σ5. Note that

g(v1) = g(v2) = g(v3).

Moreover, we have the relations

v4 = 17v3 − 28v7 + 12v8, v4 = 5v1 − 16v5 + 12v8.

Applying g, we obtain 17g(v3) = 5g(v1). This contradicts g(v1) = g(v3). So, h
cannot be strictly convex and our claim is proved.

Example 3.6. We describe a toric variety with a nonsurjective toric divisorial
reduction. Similarly to the preceding example, consider the vectors

v1 := (2, 2, 1, 0), v2 := (−2, 2, 1, 0), v3 := (−2,−2, 1, 0),
v4 := (2,−2, 1, 0), v5 := (1, 1, 1, 0), v6 := (−1, 1, 1, 0),
v7 := (−1,−1, 1, 0), v8 := (2/3, 1/3, 1, 0).
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in Q4 and let furthermore e4 be the fourth canonical base vector. Let ∆ denote the
fan in Z4 with maximal cones

σ1 := cone(v1, v2, v5, v6), σ2 := cone(v2, v3, v6, v7),
σ3 := cone(v3, v4, v7, v8), σ4 := cone(v1, v4, v5, v8),
σ5 := cone(v5, v6, v7, v8). σ6 := cone(v5, v6, e4)

v4v3

v7
v8

v5
v6

v1v2

Intersection of ∆ with the hyperplane x3 = 1.

The identity on Z4 defines a map of fans from ∆ to the fan of faces F(σ) of the
cone σ := cone(v1, v2, v3, v4, e4). We claim that the corresponding toric morphism
r : X∆ → Xσ is the toric divisorial reduction of X∆. Note that this map is not
surjective.

Let us verify the claim. If h is a convex support map it follows that |Σh| ⊂ σ.
The restriction of h to the support of the subfan ∆′ of ∆ generated by the cones
σ1, . . . , σ5 defines a convex support map h′ of ∆′. So by the previous example,
Σh′ = F(σ′), where σ′ denotes the cone generated by v1, . . . , v4.

Now Lemma 3.3 implies that the smallest cone τ in Σh containing σ5 also contains
all of σ′. That means by Lemma 2.6 that either τ = σ′ or τ = σ. In any case, since
σ′ is a face of σ we obtain σ′ ∈ Σh.

Next consider the smallest cone τ ′ ∈ Σh containing σ6. We have v5, v6 ∈ σ6, so
the cone τ ′ meets σ′ in its relative interior. Since Σh is a quasifan, we can conclude
that σ′ is in fact a face of τ ′. Because e4 ∈ τ this implies τ ′ = σ, and we obtain
Σh = F(σ).

4. A Lifting Lemma

Here we relate regular maps between divisorial toric prevarieties to regular maps
between quasiaffine toric varieties. For maps of projective spaces, this is a classical
observation:

Example 4.1. Let f : Pn → Pm be a regular map of projective spaces. Then f is
of the form

[z0, . . . , zn] 7→ [f0(z0, . . . , zn), . . . , fm(z0, . . . , zn)]

with homogeneous polynomials fi that are pairwise of the same degree. In other
words, there is a lifting

Kn+1 \ {0}
f̂ //

��

Km+1 \ {0}

��
Pn

f // Pm
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The main result of this section is the following generalization of the above lifting
statement:

Lemma 4.2. Let f : X1 → X2 be a regular map of divisorial toric prevarieties such

that f(X1) intersects the big torus of X2. Then there exists a commutative diagram

X̂1

f̂ //

q1

��

X̂2

q2

��
X1

f // X2

where X̂1, X̂2 are quasiaffine toric varieties, qi : X̂i → Xi are geometric prequo-

tients for free subtorus actions on X̂i and f̂ : X̂1 → X̂2 is a regular map.

Proof. We use the ideas and methods presented in [14, Section 2]. Choose effective
Ti-invariant Cartier divisors Di

1, . . . , D
i
ri

on Xi such that the complements Xi \
Supp(Di

j) form an affine cover of Xi. Let Wi ⊂ CDiv(Xi) denote the subgroup

generated by Di
1, . . . , D

i
ri

. The pullback via f gives rise to a group homomorphism

ψ : W2 → CDiv(X1), D 7→ f∗(D).

Enlarge W1 by adding the image ψ(W2). Note that the line bundles determined
by the divisors of Wi are Ti-linearizable, see [17, p. 67, Remark]. We shall regard
ψ in the sequel as a homomorphism from W2 to W1. Consider the OXi

-algebras

Ai :=
⊕

D∈Wi

OD(Xi)

and their associated relative spectra X̂i := Spec(Ai). By [14, Remark 2.1], the

inclusion OXi
⊂ Ai gives rise to a geometric prequotient qi : X̂i → Xi for the free

action of the algebraic torus Hi := Spec(K[Wi]) on X̂i induced by the Wi-grading
of Ai.

Since W1 and W2 define ample groups of line bundles in the sense of [14, Defini-

tion 2.2], each X̂i is in fact a quasiaffine variety. Moreover, by [14, Proposition 2.3],

the variety X̂i carries a regular action of the algebraic torus Ti commuting with the

action of Hi such that qi : X̂i → Xi becomes Ti-equivariant. It follows that X̂i is a

toric variety with big torus T̂i = Ti ×Hi.

We still have to construct the lifting f̂ : X̂1 → X̂2. As to this, note that for every
affine open subset U ⊂ X2, we obtain a homomorphism of Wi-graded algebras by
setting

A2(U) → A1(f
−1(U)), OD(U) ∋ h 7→ f∗(h) ∈ Oψ(D)(U) (D ∈W2).

Note that on the homogeneous component A2(U)0, this is just the comorphism

of the map f . By definition of X̂i and the maps qi : X̂i → Xi, each of the above
homomorphisms gives rise to a lifting

f̂U : q−1
1 (f−1(U)) → q−1

2 (U)

of the restriction f : f−1(U) → U . By construction, the maps f̂U patch together to

the desired lifting f̂ : X̂1 → X2 of f : X1 → X2.

The following observation will be needed later to obtain equivariance properties

for the lifting f̂ : X̂1 → X̂2 constructed in the above Lemma.
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Lemma 4.3. For i = 1, 2, let Ti be algebraic tori and let Yi be irreducible Ti-
varieties such that T2 acts freely on Y2. If f : Y1 → Y2 is regular and maps the

orbits of T1 into orbits of T2, then there is a homomorphism ϕ : T1 → T2 such that

f(t·x) = ϕ(t)·f(x) holds for all (t, x) ∈ T1 × Y1.

Proof. By Sumihiro’s Theorem [20, Corollary 2], we may assume that Y2 is affine.
Thus, there is an algebraic quotient Y2 → Y for the action of T2 on Y2. Since T2 acts
freely, the quotient map Y2 → Y is equivariantly locally trivial. Thus, shrinking Y ,
we may even assume that Y2 = T2 × Y holds. In particular, one has f = (f1, f2)
with regular maps f1 : Y1 → T2 and f2 : Y1 → Y . So, we obtain a regular map

Φ: T1 × Y1 → T2, (t, x) 7→ f1(t·x)f1(x)
−1.

For fixed x ∈ Y1, the map t 7→ Φ(t, x) maps the neutral element of T1 to the
neutral element of T2 and hence is necessarily a homomorphism of the tori T1 and
T2. By rigidity of tori [9, III.8.10], the map Φ does not depend on x. So there is a
homomorphism ϕ : T1 → T2 with Φ(t, x) = ϕ(t) for all (t, x) ∈ T1 × Y1. Clearly, ϕ
is as desired.

A different aspect of the lifting problem is discussed extensively in [7]: Given two

quotient presentations X̂i → Xi of toric varieties in the sense of [6] and a regular

map f : X1 → X2, when can this map be lifted to a regular map F : X̂1 → X̂2?

5. Decomposition of regular maps

Let X be a toric variety with big torus T and consider the action of a closed
subgroup H ⊂ T on X . Here we provide the key to relate H-invariant regular maps
X → Y to H-invariant toric morphisms:

Lemma 5.1. Let f : X → Y be an H-invariant regular map to a divisorial vari-

ety Y . Then there exists a dominant H-invariant toric morphism g : X → X ′ to a

divisorial toric variety X ′, an open subset U ⊂ X ′ with g(X) ⊂ U and a regular

map h : U → Y such that f = h ◦ g.

Proof. First we reduce the problem to the case that H is connected. Suppose that
g : X → X ′ and h : U → Y satisfy the assertion for the identity component H0

of H . Then g induces an action of the finite abelian group Γ := H/H0 on X ′.
Let p : X ′ → X ′′ be the geometric quotient for this action. Note that p is a toric
morphism. Using Corollary 1.6, we see that the variety X ′′ is again divisorial.

By appropriate shrinking, we achieve that U is Γ-invariant. Since p is geometric,
p(U) is open in X ′′ and the restriction p : U → p(U) is again a geometric quotient
for the action of Γ. Since h is Γ-invariant, we have h = h′ ◦ p for some regular
map h′ : p(U) → Y . It follows that f = h′ ◦ (p ◦ g) is the desired decomposition.
Consequently, it suffices to give the proof for connected H .

The next simplification provides the link to the toric setting: As mentioned
before, we can realize Y as a closed subvariety of a smooth toric prevariety Z of
affine intersection, see 1.2. Let Z ′ ⊂ Z denote the minimal orbit closure of the big
torus of Z such that f(X) ⊂ Z ′ holds. Then Z ′ is again a smooth toric prevariety
of affine intersection, but in Z ′ the image f(X) intersects the big torus.

Now, for the moment regard f as a map from X to Z ′ and suppose that g : X →
X ′ and h : U → Z ′ satisfy the assertion for f : X → Z ′. Taking closures in U and
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Z ′ respectively, we obtain

h(U) ⊂ h
(
g(X)

)
⊂ h(g(X)) = f(X) ⊂ Y.

That means h is in fact a map from U to Y . ThusX ′, g, h and U also provide the
desired data for the original f : X → Y . Consequently, we can assume in the sequel
that Y is a smooth toric prevariety of affine intersection and that f(X) intersects
the big torus of Y . But then according to Lemma 4.2 there is a commutative
diagram

X̂
f̂ //

p

��

Ŷ

q

��
X

f // Y

where X̂ , Ŷ are quasiaffine toric varieties and the vertical maps are geometric

prequotients for free actions of subtori HX and HY of the big tori of X̂ and Ŷ

respectively. We may even assume that X̂ = X holds:
Let H ′ := p−1(H) and suppose that the H ′-invariant regular map f ′ := f ◦ p

admits a decomposition of the form f ′ = h′ ◦ g′ with a dominant H ′-invariant

toric morphism g′ : X̂ → X ′ and a regular map h′ : U → Y defined on an open
neighbourhood U of the image of g′.

Then, by the universal property of p, there is a toric morphism g : X → X ′ with
g′ = g ◦ p. Clearly this morphism is dominant. Moreover, since p is surjective, it is
H-invariant and g(X) ⊂ U holds. Consequently, f = h′ ◦ g is a decomposition as

wanted. So it suffices to prove the assertion for the case that X̂ = X and HX = 1
hold and p is the identity map.

Now we consider the regular map f̂ : X → Ŷ as a map from an H-variety to

an HY -variety. Since q ◦ f̂ = f is H-invariant, every H-orbit is mapped by f̂ into
a fiber of q. On the other hand, the fibers of q are precisely the HY -orbits. So

we can apply Lemma 4.3 and conclude that f̂ is H-equivariant with respect to a
homomorphism H → HY .

Choosing a locally closed toric embedding Ŷ ⊂ Cs, we obtain a homomorphism

HY → Cs, and the induced map f̂ : X → Cs is H-equivariant with respect to the

homomorphism H → HY → Cs. So the components of f̂ are H-homogeneous

regular functions. By writing the components of f̂ as linear combinations of char-
acter functions of the big torus T ⊂ X , and using the summands to define a toric

morphism g′ : X → Cr, we obtain a decomposition of f̂ in the form f̂ = s ◦ g′,
with a linear map s : Cr → Cs. Note that g′ induces an action of H on Cr making
s : Cr → Cs into an H-equivariant map.

Let W be the normalization of the closure of g′(X) in Cr. Then W is an affine
toric variety with big torus g′(T ). We can lift g′ to a dominant toric morphism
ĝ : X → W , and pull back s to a regular map ŝ : W → Cs. Both, ĝ and ŝ, are again

equivariant for the induced H-action on W . The set V := ŝ−1(Ŷ ) is H-invariant
and open in W . Moreover, we have ĝ(X) ⊂ V . So far, we are in the following
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situation:

V
ŝ // Ŷ

q

��
X

ĝ

OO

f // Y

Since ŝ : W → Cs is an affine map, also its restriction ŝ : V → Ŷ is affine.
Thus q ◦ ŝ : V → Y is an affine H-invariant regular map. Existence of an affine H-
invariant map V → Y already implies existence of a good quotient p : V → V//H for
the action of H , see e.g. [19, Prop. 3.12]. So we obtain the following commutative
diagram of regular maps:

V
p // V//H

h

��
X

ĝ

OO

f // Y

Note that g := p◦ ĝ : X → V//H is H-invariant and V//H is divisorial, because Y
is divisorial and h is an affine morphism. So the decomposition f = h ◦ g is almost
as wanted. To complete the proof it suffices to show that we can embed V//H as
an open subset into a divisorial toric variety X ′ such that g viewed as a morphism
from X to X ′ is toric.

For this last step we argue as follows: Note that we constructed V as an open H-
invariant subset of the toric variety W . In [21], J. Świȩcicka shows that “maximal”
open subsets with a good quotient by a given subtorus in a toric variety are in fact
toric subvarieties.

More precisely, according to [21, Corollary 2.4], V is contained in an open toric
subvariety V ′ ⊂W with a good toric quotient p′ : V ′ → V ′//H such that the induced
map V//H → V ′//H is an open inclusion. Of course, we can choose V ′ in such a
manner that V ′//H = T ′·(V//H) holds, where T ′ denotes the big torus of V ′//H . We
set X ′ := V ′//H and U := V//H and arrive at the following commutative diagram:

V ′
p′ // V ′//H = X ′

X
ĝ // V

∪

p // V//H

∪

= U

∪

The morphism X → V ′ sending x to ĝ(x) is a dominant toric morphism because
ĝ : X → W is one. Hence the same is true for g = p′ ◦ ĝ : X → X ′. Moreover,
because ĝ(X) ⊂ V holds, we conclude that the big torus T ′ of X ′ is contained
in U . It follows that the complement X ′ \ U is of codimension at least 2 in X ′.
Thus Lemma 1.7 yields that the toric variety X ′ is also divisorial. This ends the
proof.

6. Divisorial reduction and categorical quotients

In this section we come to the main results of this article. Recall from [18]
that a categorical quotient for a G-variety X is a G-invariant regular map X → Y
such that any G-invariant regular map X → Z factors uniquely through X → Y .
Clearly, this notion can be restricted to any subcategory of the category of algebraic
varieties, as soon as the G-variety X belongs to this subcategory.
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We give an answer to the problem of existence of categorical quotients for
subtorus actions in the divisorial category. Our method of proof in fact solves
the existence problem of a more general universal object: Consider a toric variety
X with big torus T and the action of a subtorus H ⊂ T .

Definition 6.1. An H-invariant divisorial reduction ofX is a regular map r : X →
Y to a divisorial variety Y such that every H-invariant regular map f : X → Z to

a divisorial variety Z admits a unique factorization f = f̃ ◦ r with a regular map

f̃ : Y → Z. If H = 1, then we simply speak of a divisorial reduction.

A candidate for such a reduction is constructed in two steps. First, recall from [2]
that there is a toric quotient for the action of H on X , that means a toric morphism

p : X → X/
tq
H

which is a categorical quotient for the action of H on X in the category of toric
varieties. In a second step, construct the toric divisorial reduction of the toric
quotient space as described in Section 3:

q : X/
tq
H → (X/

tq
H)tdr.

Theorem 6.2. For a toric variety X, the following statements are equivalent:

i) X admits an H-invariant divisorial reduction.

ii) The composition q ◦ p : X → Z is surjective.

Moreover, if one of these statements holds, then q ◦ p is the H-invariant divisorial

reduction.

Applying this result to divisorial toric varieties X , we obtain the following solu-
tion for the above quotient problem:

Corollary 6.3. The action of a subtorus H on a divisorial toric variety X ad-

mits a categorical quotient in the category of divisorial varieties if and only if the

composition of X → X/
tq
H and X/

tq
H → (X/

tq
H)tdr is a surjective map.

A further special case of Theorem 6.2 is the case of a trivial torus H = 1. Here
we obtain the following:

Corollary 6.4. A toric variety admits a divisorial reduction if and only if its toric

divisorial reduction is surjective.

Proof of Theorem 6.2. Assume first that q ◦ p is surjective. We show that a given
H-invariant regular map f : X → Z to a divisorial variety Z factors through q ◦ p.
Lemma 5.1 yields a decomposition f = h ◦ g with an H-invariant dominant toric
morphism g : X → X ′ to a divisorial toric variety X ′.

By the universal properties of p and q, the toric morphism g has a factorization
g = g′ ◦ (q ◦ p). By surjectivity of q ◦ p, the map h is defined on a neighbourhood of
the image of g′. Hence f = (h ◦ g′) ◦ (q ◦ p) is the desired factorization. Thus q ◦ p
is the H-invariant divisorial reduction of X .

Conversely, suppose that X has an H-invariant divisorial reduction r : X → Y .
Since the normalization of a divisorial variety is again divisorial, we can conclude
that Y is normal. Moreover, the universal property of r : X → Y implies that r
is surjective, and that Y inherits a set-theoretical action of the big torus T ⊂ X
making r equivariant. Note that a priori it is not clear that this action is regular,
so we cannot treat Y as a toric variety.
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Let Z := (X /
tq
H)tdr. We shall compare the H-invariant divisorial reduction

r : X → Y with the toric morphism q ◦ p : X → Z. On the one hand, because of
the universal property of r, the map q ◦ p factors uniquely through r. So there is a
unique regular map α : Y → Z with q ◦ p = α ◦ r.

On the other hand, Lemma 5.1 provides a decomposition r = h ◦ g with a
dominant toric morphism g : X → X ′ to a divisorial toric variety X ′ and a rational
map h from X ′ to Y that is defined on the image of g. By the universal properties
of p and q, we have g = g′ ◦ q ◦ p with a toric morphism g′ : Z → X ′. So we arrive
at the following commutative diagram:

X
r //

q◦p

��

Y

α|
||

|

~~|||
|

Z
g′

// X ′

h

OO�
�

�

Note that g′(q(p(X))) = g(X) is contained in the domain of definition of the
rational map h. Since r is surjective, we have q(p(X)) = α(Y ) and we obtain that
h is defined on g′(α(Y )). It follows that (h◦g′)◦α is the identity on Y . This shows
that α is injective. Moreover, on the big torus of Z, the map α ◦ (h ◦ g′) is the
identity.

Consequently α : Y → Z is a birational injection. Since Z is normal, Zariski’s
main theorem tells us that α is in fact an open embedding. Since the image α(Y )
is invariant under the induced set-theoretical action of T on Y , the map α is an
isomorphism. In particular, r : X → Y is surjective.

We conclude this section with some examples. The above results in many situa-
tions give positive answers to the problem of existence of quotients. A typical case
are toric varieties defined by fans with convex support:

Corollary 6.5. Let X be a toric variety arising from a fan with convex support.

Then X admits a divisorial reduction.

Proof. Let the toric divisorial reduction q : X → X ′ arise from a map Q : N → N ′ of
fans ∆ and ∆′. Then σ := Q(|∆|) is a convex cone in N ′ and σ ⊂ |∆′|. Intersecting
the cones of ∆′ with σ, we obtain a further fan in N ′, namely

∆′′ :=
⋃

τ ′∈∆′

F(τ ′ ∩ σ).

Let X ′′ be the associated toric variety. The identity map N → N ′ defines
an affine toric morphism g : X ′′ → X ′. In particular, X ′′ is divisorial. Moreover,
Q : N → N ′ is also a map of the fans ∆ and ∆′′. The corresponding toric morphism
q′ : X → X ′′ is surjective because Q(|∆|) equals |∆′′|. Consider the decomposition

X
q //

q′ !!B
BB

BB
BB

B X ′

X ′′

g

=={{{{{{{{

.

The universal property of the toric divisorial reduction implies that g : X ′′ → X ′

is an isomorphism. Hence q : X → X ′ is surjective and the assertion follows from
Corollary 6.4.
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Corollary 6.6. Let X be a divisorial toric variety arising from a fan with convex

support. Then every subtorus action on X admits a categorical quotient in the

category of divisorial varieties.

Proof. Let the toric quotient p : X → X ′ arise from a map P : N → N ′ of fans ∆
and ∆′. By [2, Remark 2.5], each cone σ′ ∈ ∆′ is generated by images P (σ) of
certain σ ∈ ∆. Thus also ∆′ has convex support and p : X → X ′ is surjective. So,
Corollaries 6.3 and 6.5 give the claim.

However, Corollary 6.3 also provides counterexamples to existence of quotients.
There can be different reasons for nonsurjectivity of q ◦p, as the following examples
show:

Example 6.7. For the toric variety X described in Example 3.6 the toric diviso-
rial reduction is not surjective. Hence X does not admit a divisorial reduction.
Moreover by Cox’s construction, see [11], X is a good quotient of an open subset

X̂ ⊂ K9 by a five dimensional subtorus H ⊂ (K∗)9. So, the action of H on X̂
admits no categorical quotient in the category of divisorial varieties.

Example 6.8. Let ∆ be the fan in Z4 having the following maximal cones:

σ1 := cone((1, 0, 0, 0), (0, 1, 0, 0)), σ2 := cone((0, 0, 1, 0), (0, 0, 0, 1))

The associated toric variety X is an open toric subset of K4. Define a projection
P : Z4 → Z3 by

P ((1, 0, 0, 0)) := (1, 0, 0), P ((0, 1, 0, 0)) := (0, 1, 0),
P ((0, 0, 1, 0)) := (0, 0, 1), P ((0, 0, 0, 1)) := (1, 1, 0).

By [2], the toric morphism p : X → K3 defined by P is the toric quotient for the
action of the subtorus H := ker(p) on X . Since p is not surjective, the action of H
on X has no categorical quotient in the category of divisorial varieties.

7. An open problem

In this article we have solved the problem of existence of categorical quotients
for subtorus actions on toric varieties in the divisorial category. For the analogous
question in the category of all algebraic varieties we have partial results.

For example, the toric quotient p : X → X/
tq
H is a categorical quotient in the

category of algebraic varieties if the subtorus H is of codimension at most two [4],
or if the map p satisfies a certain curve lifting property and X/

tq
H is of expected

dimension [1].
However, the general question still remains open. Therefore we pose it here as a

problem:

Problem 7.1. Give necessary and sufficient conditions for subtorus actions on
toric varieties to admit a categorical quotient in the category of algebraic varieties.
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