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Cayley Hypersurfaces

Michael Eastwood and Vladimir Ezhov

Abstract: We exhibit a family of homogeneous hypersurfaces in affine space, one in each

dimension, generalising the Cayley surface.

The Cayley surface in affine three space is given by

x3 = x1x2 −
1
3
x1

3.

See, for example, [3, Chapter III §6] for a discussion of its properties. In N -dimensions,
we may consider the hypersurface given by

ΦN (x1, x2, . . . , xN ) ≡

N∑

d=1

(−1)d 1
d

∑

i+j+···+m=N

d
︷ ︸︸ ︷
xixj · · ·xm = 0. (1)

This is the Cayley surface when N = 3. The next few are as follows.

x4 = x1x3 + 1
2
x2

2 − x1
2x2 + 1

4
x1

4

x5 = x1x4 + x2x3 − x1
2x3 − x1x2

2 + x1
3x2 −

1
5
x1

5

x6 = x1x5 + x2x4 + 1
2
x3

2 − x1
2x4 − 2x1x2x3 −

1
3
x2

3 + x1
3x3 + 3

2
x1

2x2
2 − x1

4x2 + 1
6
x1

6.

Since the first term in (1) is −xN and this is the only occurrence of this variable, these
hypersurfaces are polynomial graphs over the remaining variables.

The Cayley surface is affine homogeneous. This follows immediately from Φ3 being
annihilated by the following two linearly independent affine vector fields:

∂

∂x1
+ x1

∂

∂x2
+ x2

∂

∂x3
and

∂

∂x2
+ x1

∂

∂x3
.

The hypersurface defined by (1) generalises sufficiently many properties of the Cayley
surface that we call it the Cayley hypersurface. That it is affine homogeneous is an
immediate consequence of the following:

Proposition 1 The polynomial ΦN (x1, x2, . . . , xN ) is annihilated by the vector fields

Xp ≡
∂

∂xp

+
N∑

h=p+1

xh−p
∂

∂xh

(2)

for p = 1, 2, . . . , N − 1.

Proof. We compute

∂

∂xh

ΦN =
N∑

d=1

(−1)d
∑

j+···+m=N−h

d−1
︷ ︸︸ ︷
xj · · ·xm for h = 1, 2, . . .N
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with the convention that a product with no terms is 1 (so that when h = N , this formula
gives −1 and, otherwise, we can start the sum at d = 2). Therefore,

XpΦN =

N∑

d=2

(−1)d
∑

j+···+m=N−p

d−1
︷ ︸︸ ︷
xj · · ·xm +

N∑

h=p+1

xh−p

N∑

d=1

(−1)d
∑

j+···+m=N−h

d−1
︷ ︸︸ ︷
xj · · ·xm

=

N∑

d=2

(−1)d
∑

j+···+m=N−p

d−1
︷ ︸︸ ︷
xj · · ·xm +

N∑

d=1

(−1)d
∑

j+···+m=N−p

d
︷ ︸︸ ︷
xixj · · ·xm .

These expressions evidently cancel. 2

Proposition 2 The Cayley hypersurface admits a transitive Abelian group of affine

motions.

Proof. The vector fields (2) commute and so may be exponentiated to the required
Abelian group. (In fact, this is how the Cayley surface is defined in [3, p. 93].) 2

Proposition 3 The isotropy algebra of the Cayley hypersurface is generated by

H ≡

N∑

h=1

hxh
∂

∂xh
. (3)

Proof. Each term in ΦN is weighted homogeneous of weight N if xh has weight h.
It follows that HΦN = NΦN and, in particular, HΦN |{ΦN=0} = 0. We are required to
prove that, up to scale, H is the only vector field of the form

X =
N∑

i=1

N∑

j=1

aijxi
∂

∂xj

with this property. Since ΦN is an irreducible polynomial of degree N and XΦN is a
polynomial of degree at most N , if XΦN vanishes along {ΦN = 0}, then XΦ = cΦN for
some constant c. Therefore, after adding a suitable multiple of H , it suffices to show
that if XΦN = 0, then X = 0. Notice that ΦN has the following form

±x1
N/N

︸ ︷︷ ︸

deg=N

∓x1
N−2x2

︸ ︷︷ ︸

deg=N−1

±x1
N−3x3 + p(x1, x2)

︸ ︷︷ ︸

deg=N−2

∓x1
N−4x4 + q(x1, x2, x3)

︸ ︷︷ ︸

deg=N−3

± · · ·

for suitable polynomials p(x1, x2), q(x1, x2, x3), . . . . By considering firstly the leading
term xN

N/N , it follows that X cannot have any terms in ∂/∂x1. Alternatively, it is this
consideration which determines which multiple of H to use in the initial modification.
Then, by looking at the term of degree N − 1, we see that X cannot involve ∂/∂x2.
Then the terms of degree N − 2 dispense with ∂/∂x3 and so on. Working through ΦN

in this way, it follows that X = 0. 2
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Proposition 4 The affine normals of the Cayley hypersurface are everywhere parallel

to the xN -axis.

Proof. At the origin we have

xN =
∑

i,j

gijxixj +
∑

i,j,k

aijkxixjxk + · · ·

where
gij =

{
1 if i + j = N
0 else

and aijk =
{

1 if i + j + k = N
0 else.

(4)

Thus gij, the inverse of gij, is given by the same formula and
∑

i,j gija
ijk = 0. In

fact, all the higher order tensors are trace-free too. This property of the cubic terms
characterises the affine normal [4]. Note from (2) that the symmetries Xp all commute
with ∂/∂xN . It follows that they preserve the xN -direction but, on the other hand,
since the affine normal is affinely invariant, these symmetries take one affine normal to
another. For the isotropy symmetry (3) we have [∂/∂xN , H ] = N(∂/∂xN ) which says
that the corresponding 1-parameter subgroup simply rescales xN along its axis. 2

We conjecture these various properties are enough to characterise these hypersurfaces:

Conjecture 1 Suppose Σ is a non-degenerate hypersurface in affine N-space such

that:

• Σ admits a transitive Abelian group of affine motions

• The full symmetry group of Σ has one-dimensional isotropy

• The affine normals to Σ are everywhere parallel

(i.e. Σ is an ‘improper affine hypersphere’ ).

Then Σ is given by (1) in a suitable affine coördinate system.

We have verified this for hypersurfaces in four dimensions (as a special case of classifying
the homogeneous non-degenerate hypersurfaces with isotropy or classifying those with
a transitive Abelian group of affine motions). Details will appear elsewhere. If two-
dimensional isotropy is allowed, then another variation on the Cayley surface arises,
namely

x4 = x1x3 + 1
2
x2

2 − 1
3
x1

3.

This sort of variation is discussed in [1] and [3, pp. 121–122].

In [5], Nomizu and Pinkall give a differential geometric characterisation of the Cayley
surface: it is not assumed a priori that the surface is homogeneous. It is not clear how
to extend this characterisation to Cayley hypersurfaces.

Yet another generalisation of Cayley surface, is suggested by Dillen and Vrancken [2] as
a hypersurface with parallel difference tensor together with some genericity condition.
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The explicit defining equation (6.3) of [2] very much resembles (1). Curiously, there is
a whole family of homogeneous hypersurfaces

N∑

d=1

(−1)d 1
d!

d−3∏

n=0

[(1 − b)n + 2]
∑

i+j+···+m=N

d
︷ ︸︸ ︷
xixj · · ·xm = 0

interpolating between them. If b = 0 this is (1) and if b = 1 it is (6.3) of [2].

The Cayley surfaces are ruled. This property also extends to hypersurfaces:

Proposition 5 If N is odd, then the Cayley hypersurface is uniquely ruled by (N−1)/2-
planes. If N is even, then it is uniquely ruled by (N − 2)/2-planes.

Proof. If N is odd and we fix x1, x2, . . . , x(N−1)/2, then (1) is linear in the remaining
variables. If N is even and we fix x1, x2, . . . , xN/2, then (1) is linear in the remaining
variables. In both cases, uniqueness follows by examining the quadratic terms which
are non-degenerate of split signature. These determine the possible directions in which
a maximal embedded plane may point, only one of which is consistent with the higher
order terms. 2

For surfaces, the Pick invariant is precisely the third order obstruction to its being ruled.
Though there is no such obstruction in higher dimensions, we have:

Proposition 6 The Cayley hypersurfaces have vanishing Pick invariant.

Proof. With reference to (4), the Pick invariant is

∑

i,j,k,l,m,n

gilgjmgkna
ijkalmn

which evidently vanishes. 2
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