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Abstract. We present a simple model of firm rating evolution. We consider two sources of defaults: indi-
vidual dynamics of economic development and Potts-like interactions between firms. We show that such a
defined model leads to phase transition, which results in collective defaults. The existence of the collective
phase depends on the mean interaction strength. For small interaction strength parameters, there are many
independent bankruptcies of individual companies. For large parameters, there are giant collective defaults
of firm clusters. In the case when the individual firm dynamics favors dumping of rating changes, there is
an optimal strength of the firm’s interactions from the systemic risk point of view.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Fb Struc-
tures and organization in complex systems

1 Introduction

Banking activity is exposed to various risks. Understand-
ing and quantifying these risks is crucial for bank man-
agement as well as for stability of the whole economy. In
this paper, we focus on the bankruptcy phenomenon that
is one of the factors generating credit risk for partners of
a bankrupted firm.
Credit risk at the customer level is caused by a possi-

bility of a debtor’s non-payment of an obligation. At the
portfolio level, economic interactions play an important
role. These interactions are responsible for collective de-
faults.
In the economy, firms do not act as independent mar-

ket participants, but are involved in complicated relations,
which makes the economy an evolving, complex system.
These interactions have different sources such as: trading
partnership, market competition, or simply dependence
on common factors, leading to correlated defaults.
The study of default mechanisms is important for at

least two reasons. The first is practical. Banks estimate
probability of default (PD) to rate clients credibility and
to evaluate expected losses (EL). Correlations of defaults
influence unexpected losses (UL) for which banks are obli-
ged to maintain regulatory capital [1]. The second reason
is theoretical. In order to work out effective rules for risk
management and adequate regulations, we need to under-
stand the mechanism of default.
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b e-mail: jholyst@if.pw.edu.pl

Mutual correlation of credit worthiness can be mod-
elled by the introduction of one or many risk factors which
influence a company’s asset value. A version of a structural
model for credit risk, in which risk factors evolve according
to a jump-diffusion process, was presented in Ref. [2].

Different mechanisms generating correlations are pre-
sented in works that investigate direct interactions be-
tween economical partners. Allen and Gale [3] studied the
phenomena of financial contagion. They analyzed an equi-
librium model in which credit contagion can propagate be-
tween nodes connected with borrowing-lending relations.
Eisenberg and Noe [4] proposed a general model of a clear-
ing mechanism for complex financial systems. It can be
used to simulate propagation of financial distress in a net-
work of both firms and banks.

Models of production network, in which nodes rep-
resenting firms are connected by supplier-customer rela-
tions, were introduced in [5,6]. This framework allows the
investigation of avalanches of bankruptcies caused by lo-
cal production or delivery failures. Default cascades were
also studied in [7]. Financial distress of a single firm could
propagate through the whole system, causing a cascade
of downgrades and defaults due to the interactive struc-
ture of credit ratings. The problem of modelling correlated
defaults due to dependencies between debtors in a credit
portfolio was also investigated in [8,9].

An interbank market itself can also be a source of a
financial contagion. Distress can propagate within a bank-
ing system triggering off avalanches of failures [12,13]. A
collective bankruptcies model of banking networks based
on random directed percolation was introduced in [10,11].

http://arxiv.org/abs/0904.4430v2
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Fig. 1. Distribution of ND for J0 = 0.0001, σ = 0.001.

This model leads to a power-law distribution of contagion
sizes depending on the network dimensionality.
A default can be defined as a state of an obligor when:

a bank considers that the obligor is unlikely to repay its
obligation without recourse by the bank to actions such as
realising security; or the obligor is past due for more than
90 days on any material credit obligation to the bank [1].
In this paper, we identify default with bankruptcy and use
both terms equivalently.
We present a simple model of rating dynamics. We

consider two sources of rating transition: the individual
dynamics of a firm and its economic interactions with oth-
ers. Our studies show that in such a defined environment,
the phenomenon of phase transition is present. This effect
has an influence on the number of defaults and on the risk
of a credit portfolio. Moreover, it is responsible for collec-
tive bankruptcies, which can be observed for a certain set
of parameters.

2 The model

We assume that a firm’s financial condition can be de-
scribed by a single variable R taking discrete values: 0, 1,
..., Rmax. This variable corresponds to a rating class that
can be assigned to a firm. Each state of R is related to
a specific default rate, such that it grows with decreasing
value of R. By R = 0 we understand the state of default.
Variable R evolves in time according to:

R(t) = R(t − 1) + s(t), (1)

where s(t) is a stochastic variable and s(t) = −1, 0, 1. This
means that the rating can change no more than one class
during a time step, i.e., |R(t) − R(t − 1)| ≤ 1.
For a set of N firms, we define the conditional proba-

bility for a variable si, i = 1, 2, ..., N :

P (si \ s1, ..., si−1, si+1, ..., sN , Ri) =

=
1

Z
exp(

∑

j 6=i

Jijδ(si, sj) + f(Ri, si)).
(2)

In the above equation, we used the following convention:
a variable that stands on the left side of \ depends on t,

while the variables standing on the right hand side depend
on t − 1.
For a firm, the probability of s taking a value (at time

t+ 1) is conditional on the value of R and to all the other
firms’ values of s (at time t). The states of the neighbors
contribute via term Jijδ(si, sj), where δ(si, sj) is a Kro-
necker delta and Jij models the interaction between firm i
and j. The term f(Ri, si) is responsible for rating transi-
tions resulting from a specific situation of the firm. Proper
normalization is given by term Z.
Interactions, modelled by matrix Jij , have their source

in economic connections between firms. Interactions can
be realized by a positive (Jij > 0) or a negative (Jij < 0)
coupling. A positive coupling appears when two firms co-
operate in a general sense. Such a cooperation would mean
the existence of a supplier-customer connection itself or
together with trade credit involvement. If the financial
condition of a given node gets worse, it may reduce its
turnover and thus, diminish a profit of its suppliers or cus-
tomers. The second result would be delays in payments of
trade credit obligations, which affects financial solvabil-
ity of the positively coupled counterparties. In both cases
a change of financial condition of a node i can induce a
change in the same direction of a condition of a node j if
Jij > 0. The situation when two firms compete with each
other is described by Jij < 0. Worse situation of a node
i can be the chance for its competitors to enlarge their
share in the market.
The values Jij in our model are generated from Gaus-

sian distribution with mean J0 and variance σ2
J :

P (Jij) =
1

√

2πσ2
J

exp(− (Jij − J0)
2

2σ2
J

). (3)

A firm can also change its rating class as a result of
individual dynamics. This effect is modelled by the term
f(Ri, si). The probability of a change of class depends on
the present state of Ri.
Because the space ofR-s is restriced and the bankrupted

firm never recovers, special constraints should be imposed.
The barrier in R = 0 should be absorbing and the barrier
in R = Rmax+1 should be reflecting. This is equivalent to
the condition:

R(t) = R(t − 1) + s(t) + η(R(t − 1), s(t)), (4)

where: (i) η(R, s) = −s if R = 0, (ii) η(R, s) = −1 if
R = Rmax and s = 1, (iii) η(R, s) = 0 in the remaining
cases. Thus, for R(t− 1) = 0 the rating variable R(t) will
always be equal to 0 and for R(t − 1) = Rmax R(t) will
not be greater than Rmax.

3 Simulations

We assumed Rmax = 7, giving 8 levels corresponding to
rating classes: Aaa, Aa, A, Bbb, Bb, B, C, and D.
A simulation was run for N = 1000 firms and was

repeated 1000 times for different realizations of Jij dis-
tribution. For a chosen realization of Jij , variable si of a
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Fig. 2. Distribution of ND for J0 = 0.02 σ = 0.001. For better visibility the distribution was divided into two charts.

randomly selected firm i was updated according to (2).
Next, rating Ri was updated according to (1). This was
repeated N times and was treated as one time step. After
8 time steps, the number of defaults (ND) were counted.
Although, in general, function f(R, s) should lead to

an empirical rating migration matrix [14,15], we studied
two simplified cases.

3.1 The case f ≡ 0

The case f ≡ 0 means that the evolution of a firm’s con-
dition is only influenced by the environment and does not
depend on the firm’s present rating. In other words, neigh-
bors aside, the probabilities of changes upward, down-
ward, or remaining at the same level are equal. Simula-
tions for different J0 (Figs. 1, 2) show that the distribution
of ND is different for small and large J0.
If we denote a number of bankruptcies for a specific

realization of Jij by NDk, we can define a mean number
of bankruptcies

〈ND〉 =
1

K

K
∑

k=1

NDk, (5)

which is NDk averaged over K different realizations. As
a measure of risk, corresponding to unexpected losses, we
can define an upper semivariance:

V ar+ =
1

K − 1

K
∑

k=1

(NDk − 〈ND〉)2+, (6)

where (·)+ is the Heaviside function. The semivariance
measures the average square distance between the mean
value 〈ND〉 and NDk > 〈ND〉. It indicates the devia-
tion of a statistical observation from the mean value in
the pessimistic direction. Of course, it cannot be directly
translated into confidence levels, as in the Gaussian case,
but it can express the relative change of the risk.
In order to examine the relation between ND and J0,

and also between V ar+ and J0, simulations were run for
changing J0 and fixed σJ = 0.001. The behavior of a mean
number of defaults and their semivariance (Figs. 3, 4) sig-
nifies a phase transition.
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0.001

If one forgets the R parameter, which in the case of
f ≡ 0 does not influence the evolution of s, one gets a
model of 3-state Potts glass. For such a model, three dif-
ferent phases can be observed, i. e., a paramagnetic, ferro-
magnetic, and spin-glass phase [16]. Beyond a spin-glass

phase (i. e., for σJ < 3/
√

N), a mean field approach can
be used to estimate the critical Jc = 3/N and explain the
observed behavior. For a mean interaction parameter J0

smaller than the critical Jc, the system of N firms is in a
paramagnetic phase. In this phase, a number of defaults
is characterized by the distribution presented in Fig. 1,
with a relatively low mean value and semivariance. For J0

greater than Jc, the system is in a ferromagnetic phase,
which is characterized by a jump in the mean number of
defaults and semivariance. The jump is caused by a col-
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Fig. 5. The mean number of defaults (ND) and levels of ND
corresponding to the two phases (ND/N = 0.202, ND/N =

0.305).

lective bankruptcies phenomenon that can be observed in
Fig. 2 as a local maximum positioned around ND = 900.
Results of our numerical simulations can be explained

by a single analytical theory. With the use of a mean field
approximation, we can estimate the probability p that a
firm will increase its rating (si = 1) and q that it will
decrease (si = −1):

p =
exp(J0p)

exp(J0p) + exp(J0q) + exp(J0(1 − p − q))
, (7)

q =
exp(J0q)

exp(J0p) + exp(J0q) + exp(J0(1 − p − q))
, (8)

Because s can take three values, we have: p + q ≤ 1.
For an initially equally distributed portfolio, the mean

number of defaults after time t = 8 is given by:

〈ND(p, q)〉 =
N

7
[p q7 +

(

p − 14 p2
)

q6 +
(

12 p2 + p
)

q5

+
(

70 p4 − 80 p3 + 10 p2 + p
)

q4+
(

70 p5 − 120 p4 + 40 p3 + 8 p2 + p
)

q3

+
(

30 p5 − 60 p4 + 24 p3 + 6 p2 + p
)

q2+
(

−21 p7 + 80 p6 − 102 p5 + 32 p4 + 12 p3 + 4 p2 + p
)

q

− 7 p8 + 21 p7 − 24 p6 + 2 p5 + 8 p4 + 4 p3 + 2 p2 + p].
(9)

In a paramagnetic phase, p = q = 1/3, so 〈ND(1/3, 1/3)〉
≈ 0.202. In a ferromagnetic phase, a system can get or-
dered in three ways, so different (p, q) are possible: (0,0),
(1,0), (0,1). Due to symmetry, all of them are equally prob-
able. Hence, the mean number of defaults is equal to:

〈ND〉 =
1

3
(〈ND(0, 0)〉 + 〈ND(1, 0)〉 + 〈ND(0, 1)〉). (10)

In this case 〈ND〉 = N/3. Transition between the two
phases is ilustrated in Fig. 5. The mean number of de-
faults jumps from the level ND/N = 0.202 to the upper
level, which is lower than the predicted 0.333. This dis-
crepancy is caused by the value of q being different from
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Fig. 7. Semivariance as a function of J0 for f ≡ 0 and σJ = 0.2

1 in the beginning while the system is being ordered. The
predicted value is reached in a longer simulation time.
A spin-glass phase is characterized by a nonvanishing

spin-glass order parameter [17]. Considering only magne-
tization, the spin-glass phase is indistinguishable from the
paramagnetic, which is why the bankruptcy mechanism
looks similar in both phases. The transition from spin-
glass to ferromagnetic phase is visualized in Figs. 6, 7.
The appearance of different phases is very important

from the systemic risk point of view. The paramagnetic
phase is characterized by a moderate number of relatively
low correlated defaults. In the ferromagnetic phase, the
evolution can end up in one of two possible scenarios: (i) a
low number of defaults, firms are in good shape and strong
interactions prevents them from going into default and (ii)
a very high number of defaults, bankrupting firms pull
their partners down. The existence of these two scenarios
makes the average 〈ND〉 differ very little in magnitude,
compared to paramagnetic 〈ND〉. In spite of this, risk of
collective failure grows significantly, which is signaled by
the behavior of the semivariance.

3.2 The case of nonzero f

The case of a constant nonzero f that is independent of R
is also a simplification. However, it is more realistic than
f ≡ 0, because it relates the probability of rating change
to the direction of the change.
We assume here that f(R, s) depends only on s such

that: exp(f(R,−1)) = 0.15, exp(f(R, 0)) = 0.75, and
exp(f(R, 1)) = 0.10. A firm that does not interact with
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Fig. 9. Semivariance as a function of J0 for a constant field.

neighbours, therefore, has a very high probability of stay-
ing at the present rating level and a smaller probability
of changing the level. Furthermore, the probability that
the firm goes down is higher than that it goes up. This
assumption is based on the observation of empirical tran-
sition rates between rating classes [18].

The probability of bankruptcy as a function of J0 is
presented in Fig. 8. It has a minimum for J0N ≈ 20.
Semivariance jumps abruptly for the same value (Fig. 9).
As far as ND is concerned, there is an optimal value of
J0 that minimizes the number of defaults. Increasing the
value of mean interaction strength J0, stabilizes the flip-
ping spins in the beginning. But when the interactions
get stronger and the system is in the ferromagnetic phase,
the collective bankruptcy phenomenon increases the mean
number of bankruptcies. However, from the risk point of
view, J0N should not exceed the critical value, because it
makes the semivariance jump abruptly.

Introduction of nonzero f which is equivalent to break-
ing symmetry by a kind of external field in a Potts glass
model, shifts the critical J (J < 20) and changes the shape
of ND distribution into one with a minimum. The param-
eter f provides a stabilizing force for small J and reduces
the number of bankrupts. For a large J this force is over-
whelmed by collective bankruptcies in the ferromagnetic
phase.

The effect of a minimal number of bankruptcies for
an average magnitude of J0 agrees with the results of
Lorentz and Battiston [19]. They investigated a model of
financially connected firms, showing that the number of

bankruptcies in the network is minimized for an interme-
diate density of links.

4 Conclusions

We proposed a simple model of bankrupting firms where
we allowed companies to change their ratings under the
influence of two factors. The first was individual dynam-
ics with one-step memory making the probability of rating
changes depend on the present rating. The second factor
included mutual interactions between firms. The interac-
tion matrix was chosen from Gaussian distribution, char-
acterized by parameters J0 and σJ .
We simulated bankruptcies in our model for two sim-

plified cases. We observed phase transitions, which can be
described with the use of the theory of Potts spin-glass.
For a credit portfolio, it is obvious that unexpected

losses grow with rising correlations. However, our study
shows that, considering an economic interaction, one can
expect an abrupt jump of unexpected losses as a function
of interaction strength due to phase transition.
Portfolio expected losses are calculated as the mean

value of losses. The correlations do not affect expected
losses. Our analysis shows that the mean number of de-
faults depends on the interaction strength. In the case of
f ≡ 0, it is when the evolution of a firm’s condition is only
influenced by the environment and does not depend on
the present rating of a firm, the mean number of defaults
jumps. More interesting is the analyzed case of nonzero
f . If J rises, then for small values it stabilizes the system,
since the function f(R, s) prefers ordering in a neutral
(s = 0) state. For high values of J , the stabilizing role of
the factor f(R, s) can be neglected as compared to inter-
firm interactions. As a result, large collective bankruptcies
occur in the ferromagnetic phase.
The relation of growing ND with growing mean inter-

action strength J0 may seem to contradict empirical evi-
dence about competition and default probability. Eisdor-
fer and Hsu [20] have shown that, considering technology-
intensive industries, there is a strong positive relation-
ship between the level of competition and the number of
bankruptcies. They measure the level of competition by a
number of patents in a sector and show that high competi-
tion leads to higher frequency of bankruptcy when poorly
performing firms are more likely to bankrupt. In the real
economy, competition induces a higher default rate among
small and beginning firms and conserves a dominating po-
sition of big and well-off companies. Since there is a larger
number of small firms compared to large firms, the default
rate is higher for higher competition level. For example,
patent competition in a software market is very painful for
smaller, especially starting, firms and is very convenient
for a large software corporation. A positive corelation be-
tween competition level and a number of bankruptcies is
obvious in this case.
In the simulations of our model, we considered a sym-

metric interaction matrix with values from a Gaussian
distribution. As an initial state, we took uniformly dis-
tributed variables Ri and si. All firms in the model have
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an influence on their neighbours of the same strength. To
adopt the model to the situation described by [20], one
needs to modify it. The modification could include the
following points:

– Interactions are asymmetric. The influence of a big-
ger firm on a smaller one should be greater than the
reverse.
– Bankrupted nodes are replaced by new ones.
– In general, new nodes are smaller than older nodes and
they start with a lower rating grade.
– There are more small firms than big ones.

For such a modified model, starting with an empirical dis-
tribution of firms’ sizes and ratings, an effect of positive
dependence between competition strength and number of
bankruptcies should be observable. It would also be in-
teresting to implement the evolution of the sizes of nodes
and interplay between this evolution and other model pa-
rameters, as well as to choose function f(R, s) closer to
empirical data.
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2. R. Schäfer, M. Sjöllin, A. Sundin, M. Wolanski, T. Ghur,
Phys. A 383, 533 (2007)
3. F. Allen, D. Gale, J. Polit. Econ. 108, 1 (2001)
4. L. Eisenberg, T. H. Noe, Manage. Sci. 47,236 (2001)
5. S. Battiston, D. Deli Gatti, M. Gallegati, B. Greenwald, J.
E. Stiglitz, J. Econ. Dyn. Cont. 31, 2061 (2007)
6. G. Weisbuch, S. Battiston, J. Econ. Behav. Organ. 64, 448
(2007)
7. U. Horst, J. Econ. Behav. Organ. 63, 25 (2007)
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