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Abstract. We report results of a study of the Newtonian dynamicdNddelf-gravitating particles which start in a quasi-
uniform spherical configuration, without initial velo@s. These initial conditions would lead to a density singtylat the
origin at a finite time whemN — oo, but this singularity is regulated at any finie(by the associated density fluctuations).
While previous studies have focussed on the behaviour ascéidn of N of the minimal size reached during the contracting
phase, we examine in particular the size and energy of tiaized halo which results. We find the unexpected resulttttiex

structure decreases in sizeNncreases, scaling in proportionk/3, a behaviour which is associated with an ejection of

kinetic energy during violent relaxation which grows in pestion toN/3. This latter scaling may be qualitatively understood,
and if it represents the asymptotic behaviouNiimplies that this ejected energy is unbounded above. Weisksalso tests
we have performed which indicate that this ejection is a rfedd phenomenon (i.e. a result of collisionless dynamics)
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INTRODUCTION

We will discuss here numerical simulations, and some sirap&dytical results, of what appears at first sight perhaps
a very simple initial condition which one might consideruratly in the study of the virialization of self-gravitatin
systems: a large numbbk of point particles are randomly distributed in a sphere, @malved from a cold (i.e. zero
velocity) start. The “simplicity” of the family of initial onditions is that they are characterized by a single pammet
the particle numbeN (as the system is open the units may be defined by the systenitsitotal mass and Newton'’s
constaniG). Further adN — oo the initial conditions tends to that considered as a stimint for analyses of non-
linear structure formation in cosmology — the “cold sphatiollapse” model, in which a perfectly uniform spherical
overdensity embedded in an expanding universe is consid&neandom sampling with particles of such a flat density
profile is the simplest discrete realisation of this theoedtmodel one can envisage, and might thus be expected
perhaps to be the subject of much study. In practice thimirdbndition has been but little studied — references to
the few previous studies will be given below — because oftiténisic difficulty in its numerical integration which is
related to a property of the uniform limit; &— o the evolution of the system leads to a singularity after aditime,
as all the mass arrives at the origin after a tigg ~ 1/,/Gpo wherepg is the initial mass density. While for any finite
N system the singularity does not occur, the typical size efrégion the system contracts to before “turn-around”
decreases a increases, and the typical particle velocities grow. Thakes the numerical integration very costly,
and limits greatly the accessible partiNecompared to other warm or less homogeneous initial conditio

One motivation for this study comes thus from the “uniforreical collapse model”: when calculating predictions
for the masses and abundances of halos in the frameworkf tiearitical assumptions is thall the mass and energy
in the initially collapsing region is ultimately virializkin the collapsed structurélhe question arises as to whether
this is generically true independently of the initial cammtis. In the present case — which we have noted is, in a
simple sense, the “closest” initial condition to the exacthiform case — it turns out, interestingly, that this is aot
good approximation: as we will describe, the violence ofd¢bkapse leads to an ejection of energy from the system
(as kinetic energy of particles which escape with positiwvergy). Our numerical analysis, coupled to an analytical
scaling argument, lead us to conclude that the ejected gigeig factunbounded abovasN increases, so that these
collapses can be characterized as causing “explosionti puirely Newtonian gravitational physics.

The initial motivation for our study of these initial conidihs was, however, another one: this class of initial
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conditions poses issues about discreteness (i.e. N-depemadn-collisional) effects in an interesting way. Tha aif
N-body simulations in cosmology (and indeed, most such stioris in astrophysics more generally) is to represent
the collisionless limit, which means that the results oftrsatnulations should be explicitly independentMf(or
depend very weakly on them at theconsidered). In practice this means that, if the dynamigsdeed collisionless,

it should be possible to define an appropriate extrapolatidhwhich gives stable macroscopic results.In the present
class of initial conditions it is clear that the simple epiéation of N — o described above does not gike
independent results — as we have already indicated we finlicgéxd dependences of, for example, the final size
and binding energy of the virialized structure. There aemttwo possibilities: either the physics of this ejectionds$

in fact collisionless — which one would perhaps imagine righthe case as the particles do coherently contract into
a very small region — or else the extrapolatioNmmust be performed in a different way. Through a careful study
which we will summarize below we have shown that it the latthich is the correct explanation. The physical reason
is that theN dependence which appears in the final state when one exatap6haively” is in fact a result of the fact
thatN controls theamplitude of the fluctuationsbout uniformity, which are the physically relevant quaes. The
appropriate extrapolation to the collisionless limit iatthn which the particle number is increased, while keepliegé
fluctuations fixed. This extrapolation requires the intretthn of an additional characteristic scale, which is thedesc
above which the fluctuations are kept (approximately) iiardr The existence of the collisionless limit is, convéyrse

a result of the fact that the dynamics is only sensitive tafiations above some finite scale. The study of this problem
for these initial conditions thus allow one to understanahe®f the subtleties which may be involved in practically
testing for collisionality effects itN body systems. This is in principle an important issue in aasgical simulations
(see [1] for a detailed discussion).

This proceedings essentially summarizes syntheticalylte reported in much greater detail in [2]. Because of
space limitations we refer the reader to this paper for &fudet of references on previous studies of virialization,
giving here only the essential references, in particulatheofew previous detailed studies of these specific initial
conditions [3, 4, 5, 6].

COLD COLLAPSE THEORY

We recall first the limitN — c. The radial positiori(t) of a test particle in an (idealized) exactly uniform sphalric
distribution of purely self-gravitating matter of initidensitypg and initially at rest (at timé = 0) is simply given by
the homologous rescaling

r(t) =R(t)r(0) 1)

where thescale factor Rt) may be written in the standard parametric form

R(E) = 5(1+co5£)) @

(€)= =2 (€ +sin(é)) .

with Tgem= %‘ At the time scm the system collapses to a singularity, and physical questitiverging. More

specifically, takingg = 11— £ and expanding to leading orderdrgives(t — Tscm) ~ €3, we have thaR(t) ~ [t — Tsen]?/3
and therefore the test particle velocitigs), proportional also to the initial radiug0), scale as/(t) ~ [t — Tscn] /3

N randomly placed particles in a spherical volume can bedtgatp to some time and at sufficiently large scales,
as a perturbed version of this uniform limit. Consider thpragimation in which we treat the perturbations as if they
evolve also in an infinite contracting system (i.e. neglbeteaffect of the boundaries on the evolution of the density
perturbations). In the manner standard in cosmology (fectse of an expanding universe) one can then consider the
fluid limit for the system and solve the appropriate equatiperturbatively (see e.g. [7]). In the eulerian formalism
this gives, at linear order, a simple equation®dx), the density fluctuation (with respect to the mean density):

5+2H6 — 4nGpod =0 3)

whereH (t) = R/R (dots denotes derivatives with respect to time) is the eatin (“Hubble”) rate. These equations
are derived in “comoving” coordinates=r /R(t), wherer are the physical vector positions. Note tRat== — Rx
i.e.,,R(t)x(t) is the “peculiar” velocity with respect to the “Hubble flow”.



It is straightforward to show, from Eq. (3), that, in the ltlRi < 1,
3(R) ~R 2, 4)

This is simply the usual decaying mode of the expanding Ed&tse, which becomes the dominating growing mode
in the contracting case.

The singular behaviour of the spherical collapse is regdlay the fluctuations present at any firlitén the initial
conditions we study. A simple estimate of the scale faRgF at which one expects the spherical collapse model to
break down completely may be obtained by assuming that tHieseur when fluctuations at some scale (e.g. of order
the size of the system) go non-linear. For Poisson diseibphrticles we have a mass variance proportionidl tand
so the amplitude of the initial normalized density fluctaas is proportional to 4/N. Using the growth law given in
Eq. (4), we can infer [3, 4].

Rin ON~Y/3. (5)

NUMERICAL RESULTS

Details of our numerical simulations, performed using thblly available and widely used GADGET2 code [8, 9],
are given in [2]. Our study covers a rangeNdbetween several hundred and several hundred thousand. Weme
here just one important consideration: instead of the eXagttonian potential, the code employs, for numerical
reasons, a two-body potential which is exactly Newtoniaovela finite “smoothing lengthg, and regularized below
this scale to give a force which is 1) attractive everywherd 3) vanishes at zero separation. The (complicated)
analytic expression for the smoothing function may be faaré]. With this modified force the code does notintegrate
accurately trajectories in which particles have close antars, which lead to very large accelerations and thus the
necessity for very small time steps (which is numericallgtyd. However, on the (short) time scales we consider
such trajectories should not play any significant role in ifyang the macroscopi@roperties we are interested in. The
results shown below correspond to a constant valueiofall simulations, a few times smaller tharn the largesiN
simulation. As we will detail further below when we disculse tollisionless limit for our system, we have tested our
results in particular for stability whea is extrapolated t@mallervalues, and we interpret them to be indicative, on
the relevant time scales, of tise= 0, i.e., the exact Newtonian limit

Qualitatively the evolution we observe in all our simulasois the same, and like that well known in both
astrophysics, and, more generally, in statistical phylsicsystems with long-range attractive interactions frarh-s
virial initial conditions of this type (i.e. with an initialirial ratio larger than -1) : the system first contracts agldxes
“violently” (i.e. on timescales of order the dynamical timealetsqy) to give a virialized, macroscopically stationary,
state (see e.qg. [10]).

Minimal size: phenomenology

The existing studies in the astrophysical literature of thass of initial conditions [3, 4] focus on how the singular
collapse of the uniform spherical collapse model is regadat finiteN, and in particular on the scaling witk in
numerical simulations of the minimal size reached by theéesysIndeed in the study of [3] the “points” represent
masses with extension (e.g. proto-stars) and the centegtign the authors wish to address is whether these masses
survive or not the collapse of a cloud of which they are thestirents. This minimal radiuRmnin may be defined in
different ways, e.g., as the minimal value reached by theisadheasured from the center of mass, enclosing 90% of
the mass. Alternatively it can be estimated as the radiesred from the potential energy of the particles, the mihima
radius corresponding to the maximal negative potentialggnd&he behavior oRy,n, determined by the first method,
as a function oN is shown in Fig. 1. The fitted linBmi, 0 N~1/3 is the theoretical behavior predicted by the simple
arguments given in the previous section. Agreement withghmple prediction has also been verified in both [3] and
[4], the latter for arN as large as 10

1 As a test we have also performed simulations using a codeanititectN? summation, and without any smoothing. For the rang&l dfip
to a few thousand) for which we can run this code over the sdmgsigal time-scale, we find excellent agreement with thelte®btained with
GADGET?2 with the smoothing we have adopted (see [2] for egacameter values, as well as details of energy conservetion
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FIGURE 1. Behaviour of the minimal radiuBnmn attained, determined as described in text, as a functidti dhe solid line is
the best fit to the prediction of Eq. (5).
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FIGURE 2. The behavior offP(t), the fraction of the particles with positive energy, as acfion of time for two different
simulations.

Mass ejection

All particles start with a negative energy, but a finite fractcan in principle end up with a positive energy and
escape from the system completely. While evidently thetejemass is bounded above by the initial mass, the ejected
energy is, in principle, unbounded above as the gravitatiself energy of the bounded final mass is unbounded below.

Shown in Fig. 2 is the fractiorf? of the particles with positive energy as a function of timetwo different
simulations, while Fig. 3 shows the asymptotic valud &fn each simulation as a function bif(i.e. the value attained
on the “plateau” in each simulation after a few dynamicaleimcorresponding to particles which are definitively
ejected on these time scales).While some previous workg2}éor references) have noted the ejection of some small
fraction of the mass in similar cases, the significance ofethergy ejection abl increases, and it dependence,
has not previously been documented. Theoretical studitgeddjection of mass from a pulsating spherical system —
which is qualitatively similar to that described below fbetejection observed here— can be foundin [11, 12].

Although fP fluctuates in different realizations with a given particlewber, it shows a very slow, but systematic,
increase as a function d, varying from approximately 15% to almost 35% over the ran§&l simulated. A
reasonably good fit is given by

fP(N) ~ a+blog(N) , (6)

wherea = 0.048 andb = 0.022. Alternatively it can be fit quite well (in the same rangg) power lawf P ~ 0.1N°2,
Note that these fits cannot, evidently, be extrapolatedhdrarily largeN (as the mass ejected is bounded above),
and thus our study does not actually definitively determtieestsymptotic larghl behavior of this quantity despite the
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FIGURE 3. Behavior of the fraction of ejected particles as a functibthe numbem of simulation particles in the system. The
solid line is the phenomenological fit given by Eq. (6).

large particle numbers simulated. As we will discuss brib#iow, however, the mechanism we observe for this mass
ejection leads us to expect that the valud BEhould saturate whefP ~ 0.5.

Energy ejection

Let us now consider the energy carried away by these pastidsing total energy conservation, and the fact that
both the final potential energy of the ejected particles Aatlassociated with the interaction of the bound and ejected
particles is negligible, we have

Eo=W"+KP+K". (7
whereEy is the initial energy of the syste'" andK" are the potential and kinetic energy of the particles whieh a
finally bound, andKP is the kinetic energy of the escaping particles. Furthacesthe bound particles in the QSS are

virialized we have
2K"+W"=0. (8)

Thus we have
W = —2K" = 2(Ey— KP) 9)
Fig. 5 shows the rati&KP/{P, i.e., the kinetic energper unit ejected masas a function olN. Its behavior is fit
very well byKP/ P [ N%/3. Note that for the largest valuesNfsimulated< P is almost ten timethe initial (potential)

energyEy of the system. It follows that we have the approximate beitaW® 0 —N—1/3 (when we neglect the slow
observed variation witN of fP).

Properties of virialized “halo”

The dependence of the ejected energiNamplies that the macroscopic properties of the virializedcture (which
we refer to as a “halo” in the sense current in cosmology) dégzend oN. Studying the radial density profiles of the
(approximately spherically symmetric) halos we find thaytban always be fit well by the simple functional form

n(r) =

This form of the profile agrees well with that found in prevsatudies for collapses from low initial virial ratio (see
[2] for references). Th&l dependence we find here is encoded in that of the two parasmgtandrg, which we find

(10)
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FIGURE 5. Observed behaviour of the ratid’/ fP as a function of particle numbét.

are well fit byro O N~1/3 andng O N2. In Fig. 6 we show the density profiles for various simulasigvith differentN
where the axes have been rescaled using these behaviors.

It is simple to show that these scalings Wihof ny andrg are simply those which follow from those just given for
fP andW": using the ansatz Eq. (10) one has that the nurhBesf bound particles is proportional tn@,rg while the
potential energyV" is proportional tomzngrg’ wherem is the mass of a particle. The best fit behaviorsripandng
thus correspond, singa 0 1/N, to N" ~ N (i.e. a constant bound mass, and therefore a constantejeattion of
the massfP) andW" ~ N/3. More detailed fits tay andro show consistency also with the very slow variation of
fP observed. In summary tHé dependence of the virialized structure manifests itse#f v@ry good approximation
simply in a scaling of its characteristic size in proportiorRmin, the minimal radius attained in the collapse (which,
as we have seen, is proportional to the initial inter-plrseparation).

FURTHER ANALYSIS AND DISCUSSION

Mechanism of energy ejection

We limit ourselves here to a very brief qualitative desdoipbf a detailed study we have performed (see [2]) of the
evolution of the system during collapse and the mechanisiohwbads to the mass and energy ejection. It is simple
to establish that the probability of ejection is closelyretated with particles’ initial radial positions, with esgially
particles initially in the outer shells being ejected. Tkeagon why this is so can be understood as follows. Firstly,
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FIGURE 6. Density profile of the virialized structure at a tihe: 4tscm for simulations with different number of particles. The

y-axis has been normalized 2 and the x-axis byN—1/3 (see text for explanations). The behaviour of Eq. (10) isnshéor
comparison.

particles closer to the outer boundary systematically lagface and time) with respect to their uniform spherical
collapse trajectories more than those closer to the céerties.is an effect which arises from the fact that, when mass
moves around due to fluctuations about uniformity, thera & iadial shell at the boundary no average inward flux of
mass to compensate the average outward flux. The mean maséty dems seen by a particle in such a shell decreases,
leading to a slowdown of its fall towards the origin. Thisdtawith respect to particles in the inner shells propagates
in from the boundaries with time, leading to a coherent ingddtig of a significant fraction of the mass by the time of
maximal compression. Secondly, these lagging partickeshemn ejected as they pick up energy, in a very short time
around the collapse, as they pass through the time-depepdemtial of the particles initially closer to the center,
which have already collapsed and “turned around”. Thislissitated in Fig. 7, which shows, for a simulation with
N = 131072 particles, the temporal evolution of the componehthe mass which are asymptotically ejected or
bound. More specifically the plot shows the evolutiorvg{andv,) which is the average of theadial component

of the velocity for the ejected (and bound) particles, ast & (and ¢) which is the mean energy per ejected (and
bound) patrticle (i.e. the average of the individual pagtiehergies). The behaviorswafandv, show clearly that the
ejected particles are those which arrive on average lateeateénter of mass, with reaching its minimum after the
bound particles have started moving outward. Considehiaghergies we see that it is in this short time, in which the
former particles pass through the latter, that they pickhepaidditional energy which leads to their ejection. Indéed t
increase ok sets in just after the change in signwgf i.e., when the bound component has (on average) just ‘turne
around” and started moving outward again. The mechanisimecjain of energy leading to ejection is simply that the
outer particles, arriving later on average, move througititne dependertecreasingnean field potential produced
by the re-expanding inner mass. Assuming that the fractitimedagging mass is independentfan analysis of the
scaling (see [2]) of the relevant characteristic velotity¢/length scales allows one to infer the observed scalitige
ejected energy withN. Quantitatively we have not been able to explain, on therdthad, the observed dependence

of the lagging mass, which should determinefthéependence off?. Given, however, that it is determined by a lag of
the outer mass relative to that of the inner mass, it seerasttlat, as required, the mechanism observed will naturally
lead it to saturate at a fixed fraction, of order onelNaacreases arbitrarily.

Is dynamics collisionless?

The mechanism we have described for the mass and energioejectlearly of the “mean-field” type — the
particles have been considered to move in the field produgedebbulk of the mass and no role has made ascribed,
notably, to collisions with individual particles. As thestgm has contracted so much before re-expanding, particula
care should evidently be taken in verifying that this is iedéhe case, i.e., that the simulations do indeed represgint w
the collisionless limit. As discussed briefly this is nonkestthan a particular case of a question which can be posed
about gravitationaN-body simulation, but one which shows the subtleties theag be in defining an appropriate
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FIGURE 7. Radial velocity, and average energy per particle, as a ifumatf time, of particles which are bound/ejected at the
end of the simulation of 131072 particles. The energy of tirtigles has been arbitrarily rescaled.

numerical extrapolation to provide a clear answer. Moreigady the question is whether the system approximates
well the evolution which would be obtained from a set of “@tinless Boltzmann equation” coupled to the Poisson
equation, i.e. the Vlasov-Poisson (VP) equations. Is tiéscase? To determine whether it is we need to understand
how we can test for its validity. As the VP limit is an appra@ieN — oo limit for the system, this means specifying
precisely how this limit should be taken. We can then exti@gamur numerical simulations to largdrto test for the
stability of results.

Firstly it is clear that the appropriate extrapolation foe system we have studied is not the naive lishit> o, i.e.,
in which we simply increase the number of Poisson distribpigrticles: we have explicitly identified macroscopic
dependencies in fundamental quantities, so the resultsyagigsenN do not approximate those at any otierand
indeed do not converge towards awyindependent behavior.

Formal proofs of the validity of the VP limit [13] for a selfrgvitating system require, however, that the singularity
in the gravitational force at zero separation be regulateeinithe limitN — o is taken. This suggests we should take
the limit N — oo while keeping fixed a smoothing scale, like theve have introduced in our simulations. Doing so we
would indeed expect to obtain a well defifddndependent result, corresponding to the uniform sphbmodel with
such a regularization of the force: the sphere will not gstabelow a radius of order as the force is then weaker
than the Newtonian force (and goes asymptotically to z&ak would then expect to obtain, for sufficiently lafde
a final state which is well defined ahlindependent, but dependent on the scale of the regulamizaiid indeed even
on the details of its implementation.

This limit is not the VP limit relevant here. We have indeeladuced a regularization of the force, but this has been
done, as we have discussed, only for reasons of numerican@nce, and our criterion for our choiceadt that it be
sufficiently small so that our numerical results are indelgen of it. Our results are thus, a priori, independent of the
scales (and of how the associated regularization is implemenfgdilustrate this we show in Fig. 8 the evolution of
fP (the fraction of particles with positive energy) as a fuaatof time, in simulations from identical initial conditien
with N = 32768 particles in which only the value ethas been varied, through the values indicated. Other dignti
we have considered show equally good convergeneadasreases. Note that for the given simulation the mean inter
particle distance in our units 5= 0.016, so that the convergence of results is attained erisesignificantly less
than/. As we have seen, the minimal size reached by the collapgsigra scales in proportion to We interpret the
observed convergence as due to the fact that the evolutidmedfystem is determined primarily by fluctuations on
length scales between this scale and the size of the systeoe.c0s sufficiently small to resolve these length scales
at all times, convergence is obtained.

Given the essential role played by fluctuations to the measitiein determining the final state, it is clear that
only an extrapolation oN which keeps the fluctuations in the initial conditions fixedhde expected to leave the
macroscopic results invariant. Any changeNmecessarily leads, however, to some change in the fluchsatif
however, as indicated by the above results, there is a minangth scale in the initial conditions for “relevant”
fluctuations, we expect an extrapolationNfwhich leaves fluctuations above this minimal scale unchangeive
stable results.
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FIGURE 8. Evolution of the fraction of the mass with positive energy $amulations withN = 32768 for the different values
indicated of the smoothing parameter

Such an extrapolation for our initial conditions can be dedias follows. Starting from a given Poissonian initial
condition ofN particles in a sphere, we create a configuration Wth= nN particles by splitting each particle into
n particles in a cube of siderg centered on the original particle. The latter particlesdistributed randomly in the
cube, with the additional constraint that their center o located at the center of the cube, i.e., the position
of the center of mass is conserved by the “splitting”. In thésv point distribution, which has the same maeaass
density as the original distribution, fluctuations on ssdégger thams are essentially unchanged compared to those in
the original distribution, while fluctuations around anddve this scale are modified (see [14] for a detailed study
of how fluctuations are modified by such “cloud processe¥¥®. have performed this experiment for a Poisson
initial condition withN = 4096 particles, splitting each particle into eight= 8) to obtain an initial condition with
N’ = 32768 particles. Results are shown in Fig. 9 for the ejectadsmas a function of time, for a range of values
of the parameters, expressed in terms df the mean inter-particle separation (in the original dstion). While
for rs = 0.8¢ the curve of ejected particles is actually indistinguidbah the figure from the one for the original
distribution, differences can be seen for the other valgesater discrepancy becoming evidentascreases. This
behavior is clearly consistent with the conjecture thatntiaeroscopic evolution of the system depends only on initial
fluctuations above some scale, and that this scale is of trdenitial inter-particle separatioh And, as anticipated,
this translates into aN independence of the results whehis extrapolated in this way for aig smaller than this scale.

This prescription for the VP limit can be justified theoratlg using a derivation of this limit through a coarse-
graining of the exact one particle distribution functioreoa window in phase space (see e.g. [15]). The VP equations
are obtained for the coarse-grained phase space density twiras describing perturbations in velocity and force
below the scale of the coarse-graining are neglected. Aesys thus well described by this continuum VP limit if
the effects of fluctuations below some sufficiently smallesgday no role in the evolution. The definition of the limit
thus requires explicitly the existence of such a lengthescahd the limit is approached in practice when the mean
inter-particle distance becomes much smaller than thie s@éth the kind of procedure given we have defined not
only an extrapolation ol which gives stable results, but also a method of identifyimg scale.

Some conclusions

The most surprising result of our study is that a simpleahitionfiguration of particles interacting by Newtonian
gravity only can liberate, in a time of order the dynamiceldj an energy which is, apparently, unbounded above,
growing approximately in proportion t§/3. We have given a physical description of this ejection wkicbounts for
this scaling, and performed careful numerical tests to klieat the evolution is indeed collisionless. This lattepst
required the definition of the appropriate numerical exdtaton, which in this case is quite non-trivial. This proes
an illustration of the subtleties which may be involved inatmining finiteN corrections to the collisionless limit,
which we have argued elsewhere [1] are important notabligércontext of cosmological simulations of dark matter.
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In considering possible astrophysical relevance of thesasSical gravitational explosions”, a question which
evidently arises is whether the energy ejection, which $eaated essentially with the strong contraction durireg th
collapse phase, is specific to initial conditions with sptedisymmetry. In this respect we note that, although we etxpe
smaller contraction factors for a generic initial conditiwery large collapse factors may occur for non-symmetric
initial conditions. This question has been consideredragtiein [4], which presents a detailed numerical study of the
generalisation of the fluid SCM to axisymmetric and triaxiahfigurations. In the former singularities remain intact,
and a relatiorRmin O N~1/8 is found empirically to replace th&nin O N~/3 behaviour of the spherical case. In the
triaxial case the collapse factors are found to be typidatiye, but they can be very large and no upper bound is
placed on them. In forthcoming work we will address the épecof mass and energy also for initial conditions with
non-zero initial velocities. The divergence we have idediwill be regulated again in this case, but this does not
exclude that significant energy ejection may occur and levaelt, in particular, to understanding the properties ef th
“remnant” virialized structure.
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