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Abstract

Closed form expressions in terms of multi-sums of products have been given for integrals of
sine-Gordon, modified Korteweg-de Vries and potential Korteweg-de Vries maps obtained as (p, —1)-
traveling wave reductions of the corresponding partial difference equations. We prove the involutivity
of these integrals with respect to recently found symplectic structures for those maps. The proof is
based on explicit formulae for the Poisson brackets between multi-sums of products.

1 Introduction

Integrable systems boast a long and venerable history. The history dates back to the 17th century
with the work of Newton on the two body problem. The notion of integrability was first introduced by
Liouville in 19th century finite dimensional continuous Hamiltonian systems. Since then, it has been
expanded to classes of nonlinear (partial) differential equations, see for example [4, 5]. More recently,
there has been a shift of interest into systems with discrete time, e.g. integrable ordinary difference
equations (or maps) and integrable partial difference (or lattice) equations. The first examples of
discrete integrable systems appeared in [0, 11]. And a classification of integrable lattice equations
defined on a elementary square of the lattice has recently been obtained [I], based on the notion of
multi-dimensional consistency. For maps there is the notion of complete integrability [2, 8, [I7], which
is the discrete analogue of Liouville-Arnold-integrability for continuous systems. Briefly speaking, a
mapping is said to be completely integrable if it has sufficient number of functionally independent
integrals that are in involution, that is, if they Poison commute.

In this paper we study the involutivity of integrals of a certain class of integrable maps related to
the fully discrete sine-Gordon, modified Korteweg-de Vries (mKdV) and potential Korteweg-de Vries
(pKdV) equations. These maps arise as travelling wave reductions from the corresponding lattice
equations. Such maps typically come in an infinite family of increasing dimension, and for this reason
it is not feasible to calculate Poisson brackets one by one and show that they all vanish. One way to
circumvent this problem is to use the so-called Yang-Baxter structure, and that is the approach taken in
[3,9]. This approach was used to prove the involutivity of integrals for the so-called (p, —p)-reduction of
the lattice pKdV equation. We refer to [10] [15] for the background on (p, ¢)-travelling wave reductions.
In this paper we study (p, —1)-reductions and we take a different approach. Starting from recently
found symplectic structures [7, [12], and recently obtained closed-form expressions in terms of multi-
sums of products for integrals of our family of sine-Gordon, mKdV and pKdV maps [16, [13], we proceed
to prove involutivity of the integrals directly, using explicit formulae for the Poisson brackets between
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multi-sums of products. These formulae will be proven by induction on the number of variables, or the
dimension of the maps.

Recall, cf. [2, 7, [I7], that a 2n-dimensional discrete map L : = +— 2 is said to be completely
integrable if:

e there is a 2n X 2n anti-symmetric non-degenerate matrix 2 satisfying the Jacobi identity

0 0 0
E Qi — i+ Qs — s + Upe=—Q;: | =0,
p < l@xl ik T l]&z:l ki lk@xl ]>

such that dL(z)Q(z)dLT (z) = Q(x'), where dL is the Jacobian of the map, dL;; := giﬁ

e there exist n functionally independent integrals Iy, Io, ..., I, satisfying {I,, I}, = 0 for all 1 <
r,s < n, where the Poisson bracket is defined by

{fa g}x = Vx(f)Q(vx(g))T7 (1)

with V, = 8%1, 8%2, e %. Note that we will encounter several (related) Poisson brackets
which are distinguished by the label x which indicates the different coordinate systems in which

the bracket is expressed. Also, V, will always have the right number of components.

The families of ordinary difference sine-Gordon, mKdV and pKdV equations are given as follows,
[16, [13]

sine — Gordon : o (VpVn4p+1 — Un+1Untp) + Q2UnUn41VntpUnipr1 — a3 =0, (2)
modified KdV : 34 ('Unvn—l—p - 'Un—l—lvn—l—p—l—l) + 52'Unvn+1 - 53'Un+pvn+p+1 =0, (3)
potential KAV : (vy, — Upyp+1)(Unt1 — Unyp) —7 = 0. (4)

These equations are obtained from the (p, —1)-traveling wave reductions of the corresponding partial
difference equations of the form

f(ul,ma ul—l—l,’mn ul,m+17 ul+1,m+1) = 07 (5)

where we have taken v, = v ,, with n = [ 4+ mp, introducing the periodicity u;, = w4pm—1, cf.
[10L 15].
The corresponding d = p + 1 dimensional maps derived from equations (2)), @), [{@) are R? — R4,

(U17U17~~~7Ud) = (1)2,’[)3,...,?}[14_1), (6)
where
vy = o1 L2V +ag gy = v B1va + Bav2
1= —_— 1=V —
" Yagvgvgtar’ T Brva + f3vq’
respectively. The integrals of sine-Gordon and mKdV maps can be expressed in terms of multi-sums of
products

Ud-i-l:UI_U Ud’
9 —

b= > T[T (7)
a<i) <ig<-<ip<bj=1
with f; = v;vi41. In [16] it was shown that |d/2] integrals of the sine-Gordon map are given by

G Vd ~1,d—1 , V1 ~1,d-1 1,d—1 1,d—1
[: = Q1 <—U @27,,71 + vy @27“70 > + 042@2T+171 + a3@2r+170, 0 S 2T < d - 1 (8)
1
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and |(d — 1)/2] integrals of the mKdV map are given by

_ 1 - - -
ITl,mKdV = 51 (UlUd@%f_ll’o + m@%;[i_ll’1> + 5265;«[,11 ! + 53@;;"?0 17 0<2r<d (9)

In [I3] it was shown that |(d — 1)/2] integrals of the pKdV map are given by
PRV = 0292 4 (0 —02) W22 o (v —v) TP T2+ U0 4 (vam1 — v1) (vg — v2) — ) $2972, (10)
where 0 < r < [(d —1)/2] and

b+1

UPfi] = > 11+ Hci, (11)

a<iy,i1+1<iz,ia+1,...,<ir<b j=1

with ¢; = v;—1 —v;+1 and f; = 1/(¢;jci41). In this paper we will prove that the integrals (8]),([d) and (I0)
are in involution with respect to accompanying symplectic structures.

The paper is organized as follows. In section 2, we prove the involutivity of integrals of the sine-
Gordon map. The first case we consider is the odd-dimensional map. We introduce a transformation
to reduce the dimension of the map by one and we present a symplectic structure of the reduced map.
Then we use properties of Theta with respect to the Poisson bracket associated to this symplectic
structure. These properties are proven in Appendix A. To prove the involutivity of the integrals, we
write the Poisson bracket {I,, I3} as a polynomial in oy, ae, ag and prove that all the coefficients of this
polynomial vanish. Secondly, we consider the even-dimensional map. We provide a symplectic structure
for it, and show that it relates to the symplectic structure for the odd dimensional map. Therefore,
many properties of Theta with respect to the new Poisson bracket can be obtained directly from the
ones with respect to the old Poisson bracket. The proof of involutivity is similar to the first case.

In section 3, we present relationships between symplectic structures of the sine-Gordon and mKdV
maps. We use these relationships to derive analogous properties of Theta with respect to the Poisson
bracket of the mKdV maps. Involutivity of the integrals of the mKdV follows from these properties.

In section 4, we prove that the integrals of the pKdV map are in involution (with respect to the
approriate symplectic structures). We again distinguish even and odd dimensional maps and present
a relationship of symplectic structures between the two cases. For the even-dimensional map, the
properties of multi-sums of products, ¥, with respect to the symplectic structure are proved by induction
in Appendix B. For the other case, the properties of ¥ with respect to its symplectic structure are
derived from the previous case. The involutiviy of integrals (I0]) is proved by using these properties.

2 Involutivity of sine-Gordon integrals

In this section, we distinguish two cases: the odd-dimensional and even-dimensional sine-Gordon maps.
In [16] it is shown that for the even-dimensional map, we have enough integrals for integrability. For
the odd-dimensional map, we need to reduce the dimension of the map by one. The involutivity of
integrals () is proved by expanding the Poisson bracket between two integrals {I,, I} as a quadratic
polynomial in the parameters a1, as, ag.

2.1 Thecased=2n-+1

Using a reduction f; = v;v;41, we obtain a 2n-dimensional map

fofa.. fon(arfofa... fon +a3f3fs... fon_1)
Jfifs. o fon—i(aafofa. . fon +orfafs ... fon—1)

SG:(f17f27"'7f2n)'_>(f27f37"'7f2n7 (12)
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This map has n integrals given by

G fofaoo fon 1on  Jifzeofonc1 12 1,2 1,2
P = (Wezrf + m@2r,g + @20y 1 + @305 o, (13)

where the argument of © is f; and 0 <r <n — 1.
A symplectic structure for the map ([Z) is given by Q55 where

0 fife  fifs  fifa oo fifp—r fifp
—foft 0O fofs  fofa oo fofoo  fofp

Q6 = —faft —f3fe 0 fafa o f3fpm1 f3fp ). (14)
toft —fofs —fofs —fofs o —fofpr O

cf. [7, 12]. One can verify that dsG - Q50 - dsGT = Q55 0 sG. Let g and h be functions differentiable
with respect to the f;’s. The symplectic structure Q;G defines the following Poisson bracket

{g.h}r = Vy(g) G- (Vy(h)T

_ (929 0h g Oh
- ;ﬂff(afiafj 77 1

We will prove that integrals (I3)) are in involution with respect to the symplectic structure Q5. i.e
{156, 156} § =0, forall 0 <rs <n-—1 The proof is based on explicit expressions for the Poisson
bracket between Theta multi-sums, which are provided in Appendix A.

Theorem 1. Let 0 < r, s <n — 1. Let I3¢ I5G be given by formula (I3). Then
{5, %) =0

Proof. First of all, we denote

_fifseo fon
F= fafa fon

For any g(f1, fo,. .., fon) and let Fy, = F we find {Fil,g}f = :I:FilEfg, where
B =Y 52, (16)
= 9fi

which scales any homogeneous expression by its total degree. Every term in the multi-sum has total
degree 0 if 7 is even and degree (—1)¢*! if r is odd, hence

if r even,

0
+1 1py

Also we find
{F,F71} =0. (18)

Now we expand {IﬁG, I EG} ¢ in terms of polynomials in a1, ag, a3 as follows

{IﬁG, [EG}f = Oz%Al + a%Ag + Oé?;,Ag + apagAis + cpazAqg + gz Asg,



where
Ay = {Floy + FOL F1 oy + FOL% s,
Ap = {@;%24?1,17 ;s%fl 1}
As = {95}24?1,07 58247}1 0} fs
Ay = {F'Oy% + FOLT, 0,20 1y + {05720 1 F 10327 + FOLZ s,
Ayy = {Fr O3 + FOLY . 0,20 o}y + {0570 0. F 10577 + FOL Yy,
Aoz = {@;}2}:1,17 ;5241:1 otf Tt {957«2&,07 ;5241:1 1}

We prove that all these coefficients equal 0. Using Lemma [I2] and Corollary 05 we have Ay = Ag =
Aoz = 0. We now expand Ajp, A1 and Aq3, we obtain

— 1,2 1 ,2 1,2 1 ,2 1,2 1 )2 1,2 1 2
Ay =F 2{@27“,?7 ou1 } T {091,055 0} + {00,055 1 } + F2{®27«3’ S

1,2 1,2 1 1,2 1,2 -1 1,2 1,2 1,2 1,2
@27“ ?@28 ?{F 7F } + 927’,39257?{}77 F } + @2T7?@28,8{F ) F} + @2r,g@2s,g{F7 F}

— 1 )2 1,2 — 1,2 — 1,2 1,2 1,2 1,2 1,2
F ( 2s ?{@27",?7 F l}f + @27",?{}7’ 1’ 623,?}f + 623,8{@27“,?7 F}f + @2r,g{F’ 623,?}f)

1 ,2 1,2 1,2 1,2 — 1,2 1,2 1,2 1,2
+ F ( 27’ {L{F @28 (T)L}f + @28,?{627”,3’ F 1}f + 627’ g{F 625 g}f + 62578{@27“7(?7 F}f)

= 0,

where the second and third terms vanishes pairwise, due to (62), and all other terms vanish according

to equations (I7), (I8), and (@9).
We also get
Aip = FH({037. 035 )y + {037,030 + F ({035 030y + (0321, 03350y
+ Og {F 71 03 1} + Oag {F, 0 1}y + 0201 {0011 F 1 by + 0200 {00 1, F
= F! <9%}2,?9522f171 - 9%}2&,1@%;2,?) +F <@é7s2,g@é;"2—i7}171 - eéﬁll,leé}?@
— POy 0 1 + FO5 050 1 + F 1050105 | — FOy ey

2r+1,1
= O7

where we have used (I7), (63), and (64). Similarly we get A13 = 0. Hence, we have {I3¢, 156}, = 0. O

2.2 The case where d = 2n
In this section, we consider a 2n-dimensional map

— _1 Q1 U2V2n + (3
sG : (v1, v, , Vo) > (V2,V3,...,0 e - 9 19
( 1,02, ) 2TL) ( 25 U35 - 2n, V1 QaUaVay, + al) ( )

This map has n integrals given by

n

sG U2n ~1,2n—1 V1 ~1,2n—1 1,2n—1 1,2n—1
LY=o <—,U1 g1  + . Os0 + @20y 11 + 307 g, (20)



where 0 < r < n — 1 and the argument of Theta is f; = v;v;41. The sine-Gordon map (I9) has a

symplectic structure QS;%E, where

0 V102 0 VU4 e 0 U1Up
— V21 0 V2U3 0 v V2Up—1 0
Q;G _ 0 —V3V2 0 v3vg . 0 v3lp |, (21)
—VpU1 0 —vpvz 0 o v 0

cf. |7, [12]. The Poisson bracket Vv(g)QiéVU(h) is denoted {g, h},. Before we prove that the integrals
[0) are in involution with respect to this bracket, we first establish the following Poisson brackets
between Theta multi-sums:

1, , 1,
{@71*:?7 @5755)}1) = 2{9%57 @57§}f‘fizvivi+17

where the right-hand-side is given by Propositions 12 and [[4l This follows as a corollary from the next
Lemma. Consider the map RP — RP~1,

Gp : (v1,02,...,0p) — (V1V2, V203, ..., Vp_1Up).
Lemma 2. With g, h differential functions on RP~' we have
{g0Gp,hoGply =2{g,h}r—c, )

Proof. The (p — 1) x p Jacobian of the map G, is

Vo U1 0 0
0 V3 V2 s 0
dG), = .
0
0 O Up  Up—1
By direct calculation, we have
dGy - 25 - (dG,)T = 208 |1, - (22)

Applying V to (g o Gp)(v) = 9(f)|j=c, ) (and omitting some arguments) we find
V(g0 Gyp) = Vi(9)dGyli—a,(w)-
Hence, we have

{goGphoGply, = Vy(go Gp)Q;GVv(g o Gp)

= V@Gl =g, )8 (V(h)dGp)T | t—c)(w)
= 2V ()8 (Vi (h) | p=c, (o)
= 2{g,h}r—c, @)

Now we will prove the involutivity of the integrals (20]) of the sine-Gordon map (I9)).



Theorem 3. Let Igé and 155?, with 0 < r,s <n—1, be given by the formula {20). Then we have
(58,156}, = 0.
Proof. With V' = vy /vy, we have

0 if r even,

+1 olpy _ ylp ole
{V 767“,5 v 14 U@T’vf { :FQ(—l)EVi@}*:? if 7 odd.

The Poisson bracket between 2 integrals is expanded as

{IﬁG, I:G}v = Oz%Bl + a%Bg + a%Bg 4+ ajasBis + ajasBis + asasBoag,

where the coeflicients Bj are similar to the A; given in section [2.I] replacing F by V and 2n by
2n — 1. The rules for simplification are also similar, except that we pick up a factor 2. Therefore,
{139,159}, =2-0=0. O

3 Involutivity of mKdV integrals

We consider the d-dimensional mKdV map

B1vg + ﬁ202> ' (23)

Biva + P3vg

As shown in [I6], this map has [(d — 1)/2] integrals given by the formula (@) with 0 < 2r < d. If
d = 2n + 1, the map (23]) reduces to a 2n-dimensional map with exactly n integrals via a reduction
zi = v;4+1/v;. For the other case, where d = 2n + 2, the map (23]) reduces to a 2n-dimensional map with
exactly n integrals via the reduction z; = v;12/v;. We will show that the integrals of these reduced maps
are in involution. In each case, we present a relationship between the relevant symplectic structures
and the symplectic structures of the sine-Gordon map in the even case (I4]). This relation can be used
to derive properties of Theta with new symplectic structures.

(v1,01,...,0q) = (vz,vg,---,’vd,m

3.1 The case where d =2n-+1

Using the reduction z; = v;y1/v;, we obtain the map

1 Brz223 ... zon + B2
mKdV : 21,22y...,22n) > (22,23,...,22n, . . 24
( n) ( " 2120 ...29n 1+ B32023 ... 29p ( )
The integrals of this map are given by
1
1,2 1,2 1,2 1,2
—[?]Kdv — /81 <2122 ce 22n92;,f170 + 2129 2_2 @2;“_71171> + 52@2}7? + 53@2;“7617 (25)

where arguments for Theta are f; = z%z% ... zf_lzi. Here we have used an ’inverse reduction’, v; =

V12122 -+ - 2j—1 to express f; = v;v;41 in terms of the z; and we omitted the v; dependence as both the
integral and the map do not depend on it.

We obtain a symplectic structure QXY for the map (24)), where

0 2129 — 2123 2124 o (F1)P2g,
—2921 0 2923 2924 S (—1)p_1Z2Zp
leKdV — 2321 — 2322 0 2324 v (1P 222, 7 (26)
()P 122 (—1)Pzpza (=1)P7lzpzs (=1)P2pzs ... 0
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cf. [7,12]. This gives us a Poisson bracket {g,h}, = V,(g)Q8KdVV_(h). As before we can express
the z-Poisson brackets between Theta multi-sums in terms of the corresponding f-Poisson brackets.
Consider the map

M, : (21,22, -, 2p) = (21,202, . .., 2223 - "zg_lzp).

We have the following result.

Lemma 4. With g, h differential functions on RP we have
{go My, hoMpy}. ={g,h}slr=ni, ()
Proof. The p x p Jacobian of the map M, is
0 1< J,
dMy, = 2_:11 % = J
222 [Thy 22 i > J.

and a calculation shows

dM, QR dM] = Q56 | 1_ap o) - (27)
The argument is finished along the lines of the proof for Lemma 2l O

We are ready now to prove the following theorem

Theorem 5. Let I;“Kdv and I?Kdv be given by the formula (23) with 1 < r,s < mn. Then we have
N (28)
Proof. With Z = (z129...22,)" " we have F*! o My, = Z*. Thus, Lemma @ implies

0 if r even,

+1 gl2ny _
{77,6;) { :F(—l)EZiG}nf" if r odd. (29)
and
{2,27'}, =0. (30)
Writing the left hand side of equation (28] as
{18V IRV, = BEPL + B3Py + B3 Ps + P12 Pra + P13 Pis + Bafs Pas, (31)

yields coefficients Py similar to the A; given in section 2.1 replacing F' by Z, 2r by 2r — 1, and 2s by
25 — 1. Now that we know the brackets between Z, Z~!, and the @;f’?, we can expand the coefficient
and show they vanish.

As before the coefficients P,, Ps, and P»3 are the easy ones. For P} we get, using equation (30 and
Lemma [ in conjunction with equations (62)) and (49,

b =7z (65’32?1,0{@;%2?1,07 Z}. + 65}2—73,0{27 @;752—n1,0 2t @;gz—nl,l{@;ffl,m Z7 + 95}2—7L1,1{Z_1’ 65’32?1,0 Z>
z (9%’52?1,1{9%}2?1,17 Z},+ @;}Zfl,l{z_lv 9%&1,1 2t @;;21‘170{2, 9%&1,1 2zt 9%;2—n1,0{95;*2—n1,17 Z}z)
+ <{®§;«2—n1,0’®§’s2—n1,1 2t {@;;,2_"1,1, @;752—711,0 Z)
=2z (_@éffl,o@%f—nl,o + 95}2—n1,0(—1)195;2—n1,0) +2z7? (‘95;2—71,195}2—”1,1 + 9%}2—n1,1@§é2f1,1>
+ <{9%}2—n1,07 9%&1,1 2t {9%}2—n1,1= @éf—nl,o Z)
+ eéffl,l@;}z—nl,o - 95}2111,095;2?1,1 + @;:92111,0@;;"2—”171 - 95}2111,195;2?1,0

=0,



where we have used (29]) and and (62)).
Expanding P9 yields

1,2 1,2 2 41,2 -1 1,2 1,2 m 1,2
Py =27 <{®27’—n1 0: Ot b2 + {ezrilv@%—nl,o Z> +Z ({92r—rl1,1= Oy tz + {@QT{‘, O3 1 Z>
1,2 1,2 QL2 1,2 1,2 —1 1,2 1,2 12n -1
+ 05" 012,051} + 057 ({091 23 + 05" ({270,051} + 057 ({00, 1, 27 ).
= 0,

where the first two pairs of terms cancel each other and the last four terms are equal to zero.

Similarly, we get Pj3 = 0. g
3.2 The case where d = 2n + 2

Now using a reduction w; = v;12/v;, we obtain the map

1 1WoWy . . . Won + P2
mKdV : (w1 w, ... w2n) = | w2, w3, ...,Wa, . B L B . (32)
bl ) ) ) ) ) )
WIW3 ... Wap—1 P11+ Bawawy ... wap
Integrals of this map are given by
DKdV 1,2n4+1 1 1,2n4+1 1,2n+1 1,2n4+1
ITI,TI = 1 <w2w4 oo w2n@27,,_1’0 + Wos w_2 (—)27,,_171> + a2@27“,1 + 043@27,,’0 s (33)

where © = Ole;] with e; = f;—1, with fo = 1 and f; = wyws...w; (i > 0). Note, we have changed
notation in order to relate the next Poisson bracket to the bracket {, } . The argument of © is v;v;11 =
e;. In the ’inverse reduction’, we have

v — ’U1H] 1w2] 1 n—2z+1
" 1)2H lng n = 2i.

Therefore neither the reduced map, nor the reduced integrals depend on these variables. Using (&1),
we obtain

O el = O3 e + O led]

= ol[fi]+ oL lfil

Let
K, : (wy,we, ..., wpy) — (w1, wiws,. .., wiws - wp).

and W = wowy . ..ws,. Then, the integrals can be written

KAV — ) (W‘l <@;’T2_"1 ot @;ng 1) + W <@;}2f1 1t 657«2“2 0))

(34)
+az (9%7»2? + 95}2f1,0) +as (@;%L + 95}2f1,1) .
where © = O[f;] with f = K,(w).
The map (B2]) has a symplectic structure QmKdV where

0 wi1w9 0 0 e 0

—wawy 0 wowsz 0 0

et 0 —w3wsy 0 W3wy PN 0
Q=1 . . . . e (35)

0 0 0 ... 0 Wp_1Wp
0 0 0 c. o T WpWp—1 0



—

This gives us a Poisson bracket {g, h}, = V4, (9)Q2KVV,, (h). Once again we can express the w-Poisson

brackets between Theta multi-sums in terms of the corresponding f-Poisson brackets.

Lemma 6. With g, h differential functions on RP we have

{g © Kp7 ho Kp}w = {97 h}fZKp(w)

Proof. This follows from
mKd sG
dK, N VAKT = 55 | g () - (36)

Because F*! o K5, = W*! this Lemma implies that {W, W1}, =0,

0 if r even
£1 gl2ny  _ ’
{(W=,0,"}w { :F(—l)EWil@%j?" if r odd. ’

and we can also evaluate the brackets between @,11,’62 "

mechanical expansion and evaluation of the bracket.

Thus, the following theorem can be proven by

Theorem 7. Let I™XYV and I™KV be given by the formula (33). Then

[V, pmsavy, =,

4 Involutivity of pKdV integrals

In this section, we prove the involutivity of the integrals of order-reduced pKdV maps. Similar to the
sine-Gordon map, we consider two cases where the dimension d of the map () is even or odd. Here,
in both cases there are not enough integrals for integrability, and therefore we perform reductions. We
present symplectic structures for the reduced maps in both cases and give a relationship between these
symplectic structures. For the case where d is even, properties of multi-sums of products, ¥, with
respect to its symplectic structure are proved in Appendix B. For the case where d is odd, the Poisson
bracket between W multi-sums are derived from those in the even case and the relationship between
the two symplectic structures.

4.1 The case where d = 2n + 2

We have a (2n+2)-dimensional map (@). The integrals I, of this map are given by (I0) with0 <r < n-—1
which are not enough integrals for integrability in the sense of Liouville-Arnold. Therefore, we use a
reduction ¢; = v; — vij+2 to reduce the dimension of the map by 2. From equation (@), we obtain the
following map:

i

KAV : (c1,c9,...,¢con) — (c2,c3,...,Con, —Cc—C3—...— Cop—1)- 37
b (c1,e2 2n) (c2,¢3 2n ezt Cat ..+ Con 1 3 2n—1) (37)

This map has exactly n integrals given by

PRV g 2070 (e beg o o) T TR = (e ey e o) U
U2 L (e + ez 4 Feom1)(CaFeat ..+ egy) —7) UL (38)
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with r =0,1,...,n — 1. The map is symplectic, we have dpKdV - QpKdV dpKdV7T = QpKdV o pKdV,
where

0 1 0 0 0
-1 0 1 0 0
0 -1 0 1 0
QpKdV , (39)
o o0 ... 0 1
0 0O ... =1 0

which is given in [7, [12]. The corresponding Poisson bracket is denoted {g,h}. = Vc(g)ngf VY.(h).

We prove that the integrals of the map pKdV are in involution with respect to this Poisson bracket.
The proof is based on knowledge of the Poisson brackets between two ¥ multi-sums which is given, and
proved, in Appendix B.

Theorem 8. For all0 <r,s <n—1, we have {I,,Is}. =0, where I, Is are given by ([38).

Proof. To prove this theorem we need the following formulas. Let g(ci,co,...,co,) be a differentiable
function on R?”. Denote

Ci=ca+e+-+em, Ca=catcat -+ cm,

we have
dg 0g

{97 Cl}c = —ac—%7 {97 C2}c = 8—01 (40)

In addition, since we have

q, ab __ = Cpy 1q,ab + \Ifab 1 and q,;},b _ Caq’?—i_l’b + \Ila+2’b

r—1 >

we obtain

P . s
—pob and 20
Ocpta dcq

Now we write {[T,IS}C =A1+ Ay + A3+ Ay + A5 + Ag + A7 + Ag + Ag + Ao + Aq1, where

_ Fatlb
— potle,

. {\1,1271 1 _ G \1,1,271—2 \1,1,2?—1 \Ill 2n 2}67

Ag _ —{\Ifl 2n— 1 22n 1}c {C \II22n 1 \IIl 2n 1}c+{C \1,2,271—1 22n 1}07
A3 —{\Ifl 2n— 1 22n 2}0“‘{\1’22” 2 12n 1}0‘1'{‘1/22” 2 22n 2}0’

Ag: = {Coul? an-2 0&32? 1}C+{01\1f2 o ,CoW 212y

A5 _ —{O \I’l 2n 2 22n 2}0 {\If2 ,2n—2 02\1118?—2 o

Ag:=—{C} \1122n 1 22n 2}0—{‘P22n 2 01\1’28?_1 .

A7 — —{\I’l 2n—1 (0102_7)\1,;,2n 1}0_{(0102_ )\I’l 2n—1 \I’l 2n l}c’

As s = —{CoU, 272 (C10 = )P e — {(C1Cy — 7)™ 1,02\1@_2? ).,
Ag i = —{CrUZHTH (C1Cy — ) UL = {(C1Cy — 7)WL w2
Ay o= {UF7 (0102—7)\1/;72"—1}c+{(0102— DN ZEEU el 99

A1 = {(C1Cy — ) U2 (C1Cy — 7)WL

11



Using Lemma [T6] Corollary [T and formulas (40]), we have

1,2n—212.2n—1 1,2n—-2.122n—1 1,202 1.2,2n—2 1,2n—2 1.2,2n—2
Al = \Ilr—l \Ils—l - \Ijs—l \Ijr—l + 02 (kIIs—l \Ilr—l - \Ilr—l \Ils—l ) )

1292011202 2,9n—1.1,1,2n—2 22n—1.1,2,2n—2 22n—1.1,2,2n—2
A2 - \Ils—l \Ilr—l - \Ijr—2 \Ijs—l + Cl (\Ilr—l \Ils—l - \Ils—l \Ilr—l ) )

 0292n—1.1,2n—2 2,9n—1.1,1,2n—2
A3 - \Ilr—l \Ils—l - \Ijs—l \Ijr—l ’

B 1,2n—2 12.2n—1 22n—1.1,1,2n—2
A4 - _\Ijr—l \Ijs—l + \Ilr—l \Ils—l ’

1,2n—2 1 2,2n—2 1,2n—2 12,202
A5 = _CQ <\Ils—1 \Ilr—l - \I/r—l \I/s—l ) ’

29n—1.7.2,2n—2 2,2n—1.7.2,2n—2
AG = _Cl <\Ijr—1 \Ijs—l - \Ils—l \Ilr—l ) :

It follows that A; + As + Ag + Ay + A5 + Ag = 0. Now we show that A7 + Ag + Ag + A9 + A1 = 0.
We also have

b=y (W ) (e e,
o = ClCACy =) (B2 gl gns) .y (2 yhint _gl2p-tgon)
OO (WP AT (GG ) (W - e,
Ao = G101y — ) (W hg2ont — gnog2anct) | (w2t g2ty
+CiCy (VR TIWI2 T W2 4 (C1Cp — ) (W22 w22 g2
o= (O ) (VW g
Aut = (G0 — )0 (WP 1g220m1 gl ganct) | (glantgbanct gloigliny
(Crez = 7)Co.
This implies A7 + As + Ag + A19 + A11 = 0. Therefore, we have {I,, I} = 0. ]

4.2 The case where d =2n+1

We introduce a reduction u; = v; — v;41. We obtain a 2n-dimensional map

i
KAV : (ug,u1,...,u2,) — (ug,us, ..., U, —U] — U — ... — U 41
p (u1,uq 2n) (uz2,u3 2n Up + Uz + o+ Uz 1 2 2n) (41)
with n integrals (0 <r <n —1)
IR = w2072 (g g+ ugg) T (g g g DT
+ U2 4 (up +us 4+ uge)(un + g+ ugeog) — ) B2 (42)

where the argument of ¥ is f; = 1/(¢;ci+1) with ¢; = w; + ui+1. Based on the method given in [12], we

—_—

obtain a symplectic structure ngf 4V for the map (AI]), where

0 1 —1 1... (=P
-1 0 1 —1... —1p1
— 1 -1 0 1... 1
QpraY = : : o |- (43)
(1Pt (1) 0 1
SV -1 0



—

The Poisson bracket is denoted {g, h}, = Vu(g)Qngf V7, (h). Next we present a relationship between
the two symplectic structures ([39) and ([43]) and the corresponding Poisson brackets. Consider the map

Qp : (ur,ug, ..., up) = (U1 +ug,ug +us, ..., Up—1 + up).

Lemma 9. We have

{f © Qp7g © Qp}u = {f7 g}c ‘CZQP(U)7 (44)

where f(c) and g(c) are differentiable functions.

Proof. By calculation we obtain -
dQ, PRV aQT = PV, (45)

Theorem 10. Let I, I be given by ({{3). Then, for all0 <r,s <n —1 we have
{I;,Is}, = 0.

Proof. As the following formulas hold,

{guu2+u3+.--+u2n}u:(.;a—uglu (46)
0
{gvu1+u2+---+u2n—1}u:_ag ) (47)
U2n

and the properties of Psi with respect to the bracket {, },, which are the same as those with respect to
the bracket {, }., one can prove the involutivity of the integrals ([@2) similarly to what we did for the
case d = 2n + 2. d

5 Discussion

In this paper, we have proved the involutivity of sine-Gordon, pKdV and mKdV maps directly by
using induction and recently found symplectic structures of these maps. In order to prove these maps
are completely integrable in the sense of Louville-Arnold [2, I7], we also need to prove functional
independence of their integrals which we hope to publish elsewhere [14].

It should be noted that the integrals of maps obtained as (p, —1)-reductions of the equations in the
ABS list [I], with the exception of @4, can be expressed in terms of multi-sums of products, ¥ [13].
Therefore, it would be interesting to study their symplectic structures and furthermore their complete
integrability.
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A Properties of © with respect to the Poisson brackets

First of all, the following lemma follows from property of the operator £y (I0).

Lemma 11.

(oL _1)5}f _ 0 o T even (48)
rerJp+1 (—1)6+6+1f;;1) @i:é’ r odd

Proof. 1t is because
_1)0
(o1 150"y = 0P Bl

The following proposition provides the Poisson bracket between two Theta multi-sums with the
same epsilon.

Proposition 12. Let 1 <r,s <p and e € {0,1}. We have

0 r,s are both odd or both even,
(-1)ekr elr § r even, s odd and r > s,
(erp.0tp), = | &R (49)
Z( 1) 1(9T’p”@s’4‘7_’26 r even, s odd and r < s.
i>1

Note that the right hand side of ({9) is a finite sum.
Remark 13. If we introduce t; = 1/ f;, then we get

OrL(fi] = ©,7 1 lti].
We have

{er,0n}, =3 0012 00.F 00 O3
€ = af; afj 8f] ofi iJj

17
o Z <8@rf+l 863 041 t2t2 8@rf—l—l 863 §+1 ) i

~\ ot oy 7ot on Y

1, 1,
= {@r,f+17 @s,§+1}t ’t:T(f)

where T is defined as follows

1 1 1
T.(fl,fg,...,fp)!—) (E,E,,f—p>

Proof. We will prove this lemma by induction. The following properties, given in [16] [13] will be used
in our proof:

out = bt fV et L (50)
et = @b ¢ f(-U ettt | (51)

Using Remark [T3] it is sufficient to prove for the case e = 1. One verifies that (49]) holds for p = 1,2
and for all 1 <7, s <p. Suppose that (49]) holds for p—1 and p (p > 2). We will prove that ([49) holds
for p+ 1.

14



Using identity (B0), we expand the left hand side of (49]) and we obtain

Pl Alpt+l
{e,1* @s’f+ }f

1, 1,
_{67“1’ }f + /, p+1 {67" 1,1 p}f + @ 1{ p—l—l @ p}f + f1§+1 {®r17 1}f
1 7‘+1+ s+1 'r+1 1 s+1
+®s 11{67“1’ p—l—l }f ;zE—I—l {67" 11,92 11}f+@r 11952 ll{fp+1 f;zg—l—l by
D gl ob - ol 1, —1)stt
f;§+1 rpll{fp spll}f +fp+1 sp11{9rp1,1vf;§+1) }f' (52)

The case r = s is trivial. Now we distinguish 3 cases.

1. 7 and s are both even or both odd. Since {Gl’pH @1’p+1} {Gl’pH 1’p+1}f, without loss
of generality we assume that r > s.
If both r and s are even, on the right hand side of (52)) the first, third, fifth, sixth, seventh terms
vanish. Thus, we have

Pl glptl
{@ D+ p+ }f p+1 <{®T 11, }f+{@r1’ s 11}]") +fp+1®7" ll{fp+17 S— ll}f
+ fp_+1@if1,1{911~f1,17fp_+1}f

_ =1 E: i 1
—Jp+1 (_1)65 7,1 r—i—z 11+§: r—i—zl slzl

i>1 >0
+fp+1@r 1198 1,1 fp-i-l@s 11@7’ 1,1
_p-1 E : jtlglp oLp E : olr @lp
—Jp+1 (_1) @s —j—1,1 r+] 1 r+z 1 s—1—4,1
j>0 >0

=0.

With r» > s and r, s are both odd, on the right hand side of (52]) the first, sixth, seventh, eighth,
and ninth terms vanish. Therefore, we have

Pl Alpt+l
(o, 7+ o1t }f

—fp+1 {®r 11’ }f+{@r17 s5— 11}f) "’6 pll{fp-i-lv }f+@s 11{@r1’fp+1}f

17p Lp i—-1nlp 1p 1p
=fp+1 0,~ 1+11@s—i,1_§ (=D)"70.0 10,71 fp+1@r 11@ 1+fp+1®s RIS
z>0 i>1
=f el N (—1yelr er  _—elr e el? elr
—Jp+1 r 1+11 s—i,1 s—j, 1 r+j—1,1 r—1,1%s,1 s—1,1%r1
z>0 §>2
1,p Lp
—fp+1< 22110 ~- 0y @s 11— 6,2 116 +0,7 11fp+1@r,1)
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2. ris even, s is odd and r > s. We have
p+1l Alp+l
CRARNCI AR
1, oL 1, 1, —1 Al, 1,
={0,7,0,7} s +{0,%11,0,%1 1 }r + 1071 1{@7’ 11 fprids + 97“ P l{fp-l-l’ 0.1}y

_ 1p 1p i—-1lp 1p 1,p 1L,p -1 olp 1,p
E : ®r+7,1@s i1 E :( )00 110,040 | 9511050 + 519,519

>0 i>1
E : Lp Lp E : Lp 1p 1p 1p
- GT—H 1@ 1+ 93 i— ller 1+zl+fp+1@ 1@
>0 >0
_§ : 1,p+1 1p+1
®r+7, 1 ~s—1i,10
i>0

where in the last step we used (50).

3. ris even, s is odd and r < s. We do similarly as in the previous case. Therefore, with ¢ = 1
identity (49) holds for p + 1. Then, it holds for all p > 0.

O

The next proposition provides the Poisson bracket between two Theta multi-sums with different es.
Proposition 14. Let 1 <r ;s < p.
1. If r = s (mod 2), we have

il 1,
Z(_l) 0,01 20ij2), Ot isnlijoiv1 TES

(00,011 =3 &, ot : (53)
Z(_l) @sf1—2|_i/2j,i®r—il-)1+2Li/2J,i+1 r>s.
>0

2. If r # s (mod 2), we have
Z(_l)igif@i—i—l@gfi,i T odd, s even,

tOrd ! Z( 1) l@s’pZ ZH@Tl,fM reven, s odd. (54)
i>0

Proof. We prove by induction again. It is easy to see that (53]) can be rewritten as follows (respectively)

1p 1p 1,p 1,p

Zizo 9r—2i—1,095+2i+1,1 - 9r—2i—1,1@s+2i+1,0 r<s,
1p 1p 1p 1p

Zizo 93—2i—1,0@r+2i+1,1 - @s—2i—1,1@r+2i+1,0 r>s

Identities (53) (or (B3) and (54)) hold for p = 1,2. Suppose that they hold for p—1 and p (p > 2). We
will prove that they hold for p + 1.
Using identity (50), expanding the left hand sides of (53] (or (B3))) and (54]), we have

7+1 7+1
{e,5 i }f

{e,5.0.7; (55)

:{@r,’g + f 0, o, 6?1) + f;gﬁ)wl@iﬂ,ﬁf
:{@i’gv@ ’ }f + fp+1 {67" 107931 15f "'@71«75@ {fp+1 ;zE—I—i) l}f
;§+i )+ {@i%)v i’pl At t fp+1 {97131)1 09 1’p}f + Gi’pl 1{97136)7 p+1 Sﬂ}f
+91’1710{ 1’p}f+fp+1 @17p11{971~’p1,07f1§:) " }f+f;§+1 91’1710{( p+1 =@if1,1}f' (56)
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1. r=s (mod 2). We distinguish 2 cases.
Case 1: s —r =k >0, we first prove the following

+ 1, _ i+eql; L,
Z( )Z E®s 1—i z+e®r-€i,i+5+1 - Z( 1)70 fz—l Z+E@Sfi,i+5+1' (57)
i>0 120

The left hand side of this identity equals

@
|
—

1+€ Z+€ 17p
( ) 68 1—3 z—l—e@r—}—z i+e+1 + § : 68 1—3 z—i—e@r—l—i,i—i-e—i-l

i

r—1
— _1\kt+iteglp Lp
_Z( 1) 0, 1kt Os ikt jrett
Jj=0
£
ite 1p k—1—i+e 1,p
T (( ) 65 1—i 1+€®T+i7i+5+1+(_1) 68 1—(k—i—1 )k—i—1+e®r+k—i—1,k—i+5>
=0
r—1 E—l

anﬁ

_ ]“1‘6 17p 17p Z+€ 17p 17p _ i+e+1 17p 17p
( 1) @T’—j—l,j—i-e@s-‘rj,j—}—e—i-l + § : 98 1—i,i+e@r+i,i+e+1 +( 1) ®r+i,i+5+1@s—i—1,i+5

ﬁ
|
—_

i+eql,p Lp
( ) ®r—2—1 2+e@s+i,i+e+17
=0

which is the right hand side of (&1).
Now using (B0)), we expand the right hand side of the first identity of (55). We have

1,p+1 1,p+1 ,0+1 1,p+1
§ :<@r—2i—1,0@s+2i+1,1 @r 2i—1 1@s+2i+1,0>

~
|

i>0
2 : Lp Lp Lp Lp 1p 1p Lp
- < r— 27,—1 0@s+2i+1,1 - @r—2i—1,1@s+2i+1,0 + 67“—2—22',0@84—272,1 - 67“—2—22',1@84-272,0)
>0
(=1t Lp Lp Lp Lp
+ fp+1 E : 0,705 21095 2111 — ©, 092119520
>0
17p 17p 1717 17p
fp+1 E : (@r—2i—1,0@s+2i,1 - Gr—2—2i,1®s+2i+1,0
>0
. 1,p 1Lp Lp
- E : <@r—2i—1 0@s+2z+1 1 @r 21—1, 1@ +2:+1,0 + 97“ 2—24 095—{—22',1 97“ 2—24 195—4—22 0>
i>0
( 1 s+l i—1 17p 17p A 17p 17p
+ fp-l—l § :( ) @ - —i,i+1@s+zz + f E :(_1) Gr 1—14 z®s+i,i+1‘ (58)
>0 >0

If r and s are both even. Using (56) and the induction assumption, we have
P+l olpt+l
(CRARCH A

_ } : Lp } : Lp Lp
- <@r—2i—1 063—1—2@—1—1 1 @r 21—1 1@s+2z+1 0) + (97"—2—21',0@5—1—22',1 97“ 2—24 163—1—2@ 0

>0 >0
(_1)7‘ ] 17 17 17
+ fpm1 Z(—l)ZQsz z+1® i T @s 1, l@r 10— 0710071
>0
(_1)S+1 i—1 17
+ fp-‘rl Z( )Z 68 1—1 z—l—l@r—ll—)i,i’
i>0
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which equals (58]) by using (B7) with € = 1.
If r and s are both odd, we have
{@ 1,p+1 91,11)+1}f

E : Lp oLp Lp oLp E : Lp oLp Lp Lp
- <@7” 2i—1,0 s+2i+1,l - @7’—2i—1 1~542i+1,0 + 97“ 2—24,0 s+2i,1 - @7’—2—272,1@5—}—22',0
>0 >0

( 1 s+l i 17p i—1 17p (_1)S+1
fp—i—l Z(_l) ®s—l+i,i+1 r 7, ) fp—i—l Z( ) 68 7 H—l@r—l—}—i,i B fp—l—l @s 1, 1@
>0 120

+ fp+1 e 09
— Lp Lp s
Z <@7” 2i—1,0 s+2z+1 1 @7” 2i—1,1 s+2z+1 0) + Z <®r 2—24,0 s+2i 1 @7” 2—23 1@s+2z 0)

>0 >0
( 1 s+l i—1 Y (_1)7‘ A 17p 17p
+ fp+1 E (=1) ®s+z O i1 T fp Z(—l) 0,519 it
>0 >0

which equals (B8)) by using (57) with e = 0. Thus, the first identity of (53] (or (55])) holds for
p+1.

Case 2: s —r = —k < 0, identity (53) (or (5H)) also holds by using Remark

. r#s (mod 2). Case 1: s —r =k >0 With r even, s odd and r < s, we now expand the right
hand side of the first identity of (54]) with p 4+ 1. Similar as (57), we have the following identities

i—1nl, 1, il 1,
Z(_l) lesfi,i—l-l@r—fzz = Z(_l) Gsfl—i,i—i-l@r—fi—l,i (59)

>0 1>1
Z i—1 z 1 Lp _ Z iqlp Lp
( ) @s i—1,4+1 r+7, i T Z @s i z+1@r+i—1,i - (_1) ®r—1—i,i@s+i,i+1
>0 >0 i>1
z 1 Lp
+ Z(_ 67“ 1— Zz+1@s+i,i‘ (60)
i>0

We now expand the right hand side of (54]) by using (50, we obtain

i—11l.p+1 1p+1 _ 1 i—1 1p
Z( )Z @s ) z+1@r+i,i - Z( )Z 68 7 H—l 7’-‘,—2 7 + fp+1 Z Z @s i—1 z+1@r+i—1,i
i>0 i>0 i>0

Z 1 QLr z 1 Lp
+fp+1§ (1) 65 i—1,i+1 r+i,i+fp+1§ :(_ @s zz+1@r+i—17i‘

120 >0
(61)
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For the left hand side of (54]), using (50) and the induction assumption, we have
P+l olptl
{57 0,7
1 ). 17
= Z - Z @s pz 7,+1 7’-‘,—2 it fp-l-l Z s 1+7, z+l®r£)1—i,i

i>0 1>0

1p 1p 1p
+fp+1 E ( r— 22 1093—1+2i+1,1 - @r—zi—1,1@s—1+2i+1,0

>0

1p 1p 1p 1p 1p 2 1,p 1p
+ fp+1 E : ( r— 1 2i— 10@s+2z’+1,1 - @r—1—2i—1,1@s+2i+1,0 - fp+1@ 10@ fp+195—1,19r—1,0

>0
_E : z 1gLlp 1,p E : 1p Lp E : Lp
- (_ @s 22+1@r+zz +1 @s 1+22+1®r 1— 22+fp+1 97“ 1—i,i
>0 i>1 i>1
z 1 P 1p
+fp+1§ C 1,419 ki
i>0
_E : z 1glp+1 1,p+1
- (_ @s 7,7,-1—1@7’-1—2',2'
i>0

Lp
®s+z i+1

where in the final equality we used (B9) and (60). That implies that the second identity of (54))

holds for p + 1.
With r odd, s even and r < s, we do similarly to what we did in the previous case.
Case 2: s =r = —k < 0, identity (54) still holds by using Remark I3l

Using Lemma [I2] and Lemma [14], we have the following corollary.

Corollary 15. Let r and s be both even or both odd and let ¢ € {0,1}. Then

17 ’. ’.
{@7”7(11))7 @ } + {67“ {)7 @ p}f - 0
0 T, S even

0,7, ., O +{OpF OF Yp=1 :
{ r—1,e S,E}f { € s 175}f @171’176 ;:5_98 1597" r, s Odd,

r—

0, T, S even,

17 17 17
{@T’fl,dﬂ’@&f}f + {@7*?7@5 15:|:1}f = { @ . :I:lerf _ @Su?@ it r.s odd
S§—1,€ r—1,e 9 Y .

B Proof of properties of Psi
Lemma 16. Let p > 1 and 0 <r,s < [(p+1)/2]. Then we have the following identities

{qlivp’ \P;J)}C — 0’
{027, 0P e + {077 WPy = 0.

Proof. We prove ([65]) and (66]) simultaneously by induction. We use the following property
\Pa,b—l—l — Cb \Pab + \I’ab 1
T

and therefore we get
8\Ija7b+1
T

- Wa7b;
T
8Cb+2
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We see that (1) and (2) hold for p = 1,2,3. Suppose (1) and (2) hold for p — 2,p — 1 and p. We need
to prove that (1) and (2) hold for p + 1. Expanding the right hand side of the first identity, we have

1,p+1 g lp+1y 1, 1,p—1 1, 1,p—-1
{\Ilr P ’\Ils P }C - {Cp+2\IIr P+ \Ijr—l ’CP+2\II8 P+ \Ils—l c
_ 1, 1, 1, 1,p—1 1,p—1 1, Lp—1 glp—1
= {cpt2V, P cpiaWiPhe + {cpa W P WP e +{U T o WP e + {007, 00 )
1, 1, 1, 1, 1, 1,p—1
= cpt2¥, P{w, P, Cp+2}c + cpt2V; p{cp+2a WP} + W p{cp—i—% WP e

F OO b + appa (1017, WP+ ()2 i)

r—1 >

1Lpglp—1 1Lpglp—1 1 1,p—1 Lp—1 1,
= Cp+2 (qls’p\IJT’JJ - \Ilr7p\1js7p + {\IJT’JJ’ \Ilsfl ct {\Ijrfl ’ \Ijs p}C) :
For the second identity, we also have

{\Ij7l‘7p+17 \Ij;p}c + {\Ij7l*7p7 \Ili’p—i_l}c = {Cp+2\II71"’p + \Ij}‘f)l_17 \Ilé’p}c + {\1,714,1)’ CP+2\P;7P + \Ill’p_l

s—1 c
1p—1 1,p—1 1p—1 1,p—1
= (U WP e 4 (WP, WP = WPW P WP
Now to prove (1) and (2) hold for p+ 1, we only need to prove that
1,p—1 1p—1 1,p—1 1,p—1
T o= {0 P WPy + (WP, U Py — WpPO P WPl P = (),
Using (67)) and the induction assumption to expand T, we obtain
1,p—1 Lp—2yy,1,p—1 1,p—1 1L,p—2y g 1,p—1
T = (CP-I-l\IIs’p + \Ilsfl )\Ijrp - Cp+2(cp+1\117’p + \Ilrfl )\Ils P

1, -1 17p_2 17p_1 17p_1 1, -1 17p_2
+ {cp-i‘l\I/r P+ \I,r—l 7\P8—1 et {\Il cp+1\I/s P+ v

r—1 » s—1 c
_ gylr—2glp-1 1p—2g1,p-1 1,p—2 glp—1 1p—1 gl.p—2
- \Ijs—l \IIT - \Ijr—l \Ils + {\Ilr—l ’\Ils—l et {\Ilr—l ’\Ils—l c
17p_1 17]7_1 17p_1 17p—1
+\I/r {cp‘i‘l’\I/s—l }—’_\I/s {\Ilr—l 7CP+1}C

_ glr—2glp-1 Lp—2g1,p-1 1p—2 glp—1 1p—1 l.p—2
- \Ils—l \I/r - CP+2\IIT—1 \I/s + {\Ilr—l 7\Ils—l ¢t {\Ilr—l 7\Ils—l c
1,p—1g,1,p—2 1,p—1g,1,p—2
- \Ilr \Ijs—l + \Ils \Ijr—l

1,p—2 1,p—1 1,p—1 1,p—2
= <{\Ilrfl ’\Ilsfl } + {\Ilrfl ’\Ilsfl )
=0.

That means (1) and (2) hold for p + 1. O

Corollary 17. Let p > 1 and let r,s € Z. Then,
TR e PR R Sl (g P o S T T
2. {U2 WY =0 with0<r,s < |[(b—a)/2] +1,
EARE T Gt PR L ot g PR Gl e g il

17p 27p 27p 17p

4- {\IJT 7\Ils }c"‘{\IlT’ 7\Ils }c:O;
5. WP, OSP4 (TP WPy = 0,
6. {\I’}«’p, \Ijifl_l o+ {\1,2,17—1 \P;JJ}C — \I’g’p\l’;’p_l _ \I’g’p\l’}«’p_l,

r—1 >

17p 17p_1 17p_1 17p — 17p 17p_1 17p 17p_1
7w P e+ {Y VP, =0, 0 — U

r—1 >
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8. (WPt WPy + (WP, witthy =0,
9. {0 WP Y+ (U WPy = WRPW P WP P uRP weP T P g
Proof. 1. It follows from the proof of Lemma
2. Tt follows from Lemma
3. Using (2) we have {U%* W9} = 0. On the other hand, we have
(0P, W} = {eoWy? W2 oW 4+ WP o
= {coW}?, WP Ye + {0 WP, UoT Yo + {70, WP Yo + {70, 37,
= coWP{UP, o} + oWy P{co, UiP}e + co <{‘I’i’p, TP Y+ (T2 \P;m}c)
WL cobe + WP {eo, Wiy e

= —cqUIPUZP 4 U PUZP + ¢ (Wi’p’ U2P Y WP ‘I’i’p}>

Therefore, we get {07, U2}, + {T2P U P}, = U U7 — UpPws?.

r—1»
4. For this identity, we expand the left hand side. We have
LHS = {WL?, 00P — cqWlP .+ {W0P, — oW P whr),

s+1 r+1»
_ 1,p 0,p 0,p 1,p 1p 1p Lp Lp
- {\Ijr ) \Ijs—l—l ¢t {\Ijr—l—l? \Ijs }C - \Ils+ {\Ilr 760}6 - \Ilr—l—l{c(]’ \Ils }C
_ 1p 0. 0,p 1p Lp 2.0 Lp 2.0
- {\Ijr ) \Ijs+1}c + {\Ijr-i-lv \Ijs }C + \Ils+1\1jr - \Ilr—l—llljs .

By property (3) we have
17 07 07 17 J— 07 17 07 17
{\Ilr p’ \Ijs-fl c + {\Ilr-flv \Ijs p}C - qlsflqlrfl - \Ilr—flqjs—fl
1, 2, 1, 1, 2, 1,
= (CO\I’HI.]l + \I’r p)\Ilr—ll—]l - (Coqufl + \Ijr n)qlsfl

_ w2prgylp 2,p\y 1.
_\Ils \Ijr—l—l_\ljr \Ijs—l—l‘

It means that {\If,lfp, \Ifg’p}c + {‘If%’p, ‘Ifi’p}c =0.

5. One can verify that this identity hold for p = 1,2,3. Expanding the left hand side using (67]), we
have

LHS = {07, cpu0037 + WP Yo 4 {077 + W27 W1PY,
= cpra({WpP, W2P Y 4 {W2P, WEPY) + W2P{ULP ¢y iote + WPP{cpra, UiP e
SR AL SO PR U g ¥
= U2PULP — WRP P 4 o WP WP WP,
U e WP WP,

 a2palp—1 2.pq1,p—1 1Lp—1 q2.p—1 2p—1 g 1p—1
- \Ils p\Ijrp - \Ilr p\Ijs + CP+1({\IJ7’ ) \Ijs—l ¢t {\Ij \Ijs }C)

r—1 o
1,p—1 2,p—1 1,p—1ypq2:p—1 1p-2 g2,p-1 2,p-1 qlp—2
+ \Ijr {Cp+17 \Ijs—l }C + \Ils {\Ilr—l ’CP+1}C + {\Ilr—l ’\Ils—l ct {\Ilr—l ’\Ils—l [
— p2pgylr-1 2pglp—1 1,p—1,2,p—1 1p—1y2,p—1
- \Ils \Ijr - \Ilr \Ijs + CP+1(\IIS T,Z) - \Ilr \Ijs )

T

1,p—1 2,p—2 1,p—1 2,p—2 1,p—2 2,p—1 2,p—1 1,p—2
- \Ijr \Ils—l + \Ijs \Ilr—l + {\Ilr—l ’\Ils—l ct {\Ilr—l ’\Ils—l c

_ 1p—2 g2,p-1 2,p—1 g lp—2
- {\Ijr—l 7\Ijs—1 ¢t {\Ijr—l 7\Ijs—1 c:

Therefore, using induction we prove our statement.
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6. This identity follows from the proof of the identity in (5).
7. We have
e e T e o R A
SR E R R R

1, 1, 1, 1,
= _\Ijs p{\IIT p? CP+2}C - \PT p{cp+27 \I/s p}C
17p 17p_1 17p 17p_1
_\Ils \Ijr + \Ijr \Ijs

8. We prove this by induction. This identity holds for p = 1,2. Suppose that this identity holds for
p—2, and p — 1 we need to prove that it holds for p. We have

{\I/i’p+1, WEJJ}C _|_ {W27p7 Q[;ﬁn"rl}c
= {cp+2gfi7p 4+ plrl \1,2,;0} + {\1,2,pjcp+2\111,p + \1,1710 1

r—1 >
_ 1p—1 2, 2, 17p 1 1,pq,2.p—1 1,p\7,2,p—1
_{\I/r—l 7\I/sp}0+{\11 P \II _\I/rp\I/sp +\I/sp\Il P
_ 1,p—1 2,p—1 2,p 2 2,p—1 2,p—2 1,p 1
= {\I/r—l 7cp+1\Ils + \I/ ct {cp-i-l\llr + \I/r—l ) \Il

_\I,lep\l,lp—l_i_\l,;vp\l,%p 1
_ 1,p—1 2,17 2 2,p-2 l,p 1 p—1 g2,p—-1 2,p—1 l,p 1
_{\I/r—l 7\11 +{\PT—2 7\11 +CP+1({\I/T 1 7\11810 }C+{\I/rp \II )
_\I,lp 1\I,17p 2+\I,27p—1\1,if12_\1,17p\1,27p 1_,_\1,;43\1,343—1
—c ({\IIl’p 1 \Ifz’p_l} +{\P2,p 1 \IIl’p 1 )+\I,2,p—1\111717—2_\1,2,;0—1\1/1717—2
— Cp+1 s c r s r—1 r s—1

_ \I,lep\l,gvp 1 + @;7p@37p—1_

Since {@, 77", WP~ 1}c+{w2*’ ' \P“”}c = 0 (by (4)), we get {0, WEPTH} . = (WP~ wie
Similarly, we obtain {U3F~ \Ifl’p N = {21 WP | Therefore, we have

(WP P e (U WP e = (WP R 4 {0 wr

r—1 >
_ wlp—1y2,p—1 1,p—1q,2,p—1
=v, v — U v .

Thus, we get {UpPTH O2PY 4 {w2P @wlrth) =0
9. We have

LHS = {U}*, ‘1’2’p+1 - Cp+2‘1’s Pite + {‘PQ’pH — Cp+2\I’i’p17 wlry,
= {\I,Lp \I/2,p+1}c + {\1,2,10—1-1 \P;,p}c \1,243 \I,l,p 1+ \112,1: \Ill,p 1 cp+2({\I/1’p \Ilg,pl}c I {\1124) \Ili’p}c)

r—1 » r—1»
= {Tle, \1,2,p+1} {\1,27p+1 gl — \1,2710 glr=t 4 \1,2,17 \I,l,p 1_ (Lrg2Pr _ glryle)
- c r—1 »*s Jc Cp+2(¥s r r s )

Now we have

(P, W2 e+ WP Wiy

— {\1171“,177 \I,gm-kl _ 00g,;7p+1}c + {\I,gm—irl _ co\Ilrl,’pH, \I,;,p}c

= {WpP WP e o (UL WP} — c({ WP, WPt + WPt WoP) — WP P, el
_ \I,i,p+1{607 \I,;,p}c

— \I,;,p+1\1,3,p _ \1,711,;0+1\I,§,p'
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Therefore, we get

_ awlp+lg2, 1,p+1.7,2, 1,p02, 1,0, 2, 2,p q,1,p—1 2,p glip—1
LHS = Obrtlg2r _ glrtlg2e o o @lry2?  glry2r) - g2P yle=l 4 g2P glP
1,p—1 1,p—1 2, - 2, -
= UEPY P wEPg P 4 P Pl P glrtt = RAS.
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