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Fully Localized Two-dimensional Embedded Solitons
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We report the first prediction of fully localized two-dimensional embedded solitons. These solitons
are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction
and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found
to exist inside the Bloch bands (continuous spectrum) of the waveguide, and thus are embedded
solitons. These embedded solitons are fully localized along both spatial directions. In addition, they
are fully stable under perturbations. These results show that multidimensional embedded solitons
may find applications just like non-embedded (regular) solitons.

PACS numbers: 42.65.Tg, 05.45.Yv

Embedded solitons are nonlinear solitary waves whose
frequencies (or propagation constants) reside inside the
continuous spectrum of the underlying wave system [1].
The existence of embedded solitons is quite counter-
intuitive, since inside the continuous spectrum, only non-
local waves with nonvanishing oscillating tails are com-
monly expected [2]. However, under certain conditions,
these oscillating tails are absent, hence truly localized
embedded solitons appear inside the continuous spec-
trum [1, 3]. Since embedded solitons exist inside the
continuous spectrum and are thus resonant with linear
radiation modes, they exhibit some interesting dynami-
cal properties. For instance, isolated embedded solitons
are often found to be semi-stable, i.e., they would persist
under energy-enhancing perturbations but perish under
energy-reducing perturbations [1, 4]. Non-isolated em-
bedded solitons, on the other hand, can be semi-stable
or fully stable, depending on the underlying wave system
[5, 6]. Embedded solitons are linked to other physical ob-
jects as well. For instance, moving discrete solitary waves
in lattices (if they exist) are also embedded solitons [7–9].
So far, all embedded solitons reported in the literature
are one-dimensional (1D) to the author’s knowledge. The
soliton trains reported in [10] exist inside the continuous
spectrum and are two-dimensional (2D), but these soli-
ton trains are localized only along one spatial direction
and nonlocal along the orthogonal direction. It has re-
mained a challenge to find 2D (and higher-dimensional)
embedded solitons which are localized in all spatial di-
rections. The reason is that in multi-dimensions, more
stringent conditions need to be satisfied in order for fully
localized embedded solitons to exist, thus such solitons
are more difficult to find.

From a broader perspective, embedded solitons are in-
timately related to linear bound states (i.e., localized
eigenmodes) inside the continuous spectrum of a wave
system. These linear bound states in the continuum were
first predicted by von Neumann and Wigner in 1929 [11],
who showed that the 3D linear Schrödinger equation with
certain localized potentials could possess bound states
above the potential well (see also [12]). These predicted
bound states were later observed experimentally for elec-
trons in semiconductor heterostructures [13]. In optics,

linear bound states inside the continuum have also been
predicted in various settings, such as a semi-infinite 1D
lattice [14], two parallel dielectric gratings [15], two ar-
rays of thin parallel dielectric cylinders [15], and open
2D quantum dots or optical waveguides [16, 17]. Re-
cently, linear 2D bound states in the continuum were
demonstrated both theoretically and experimentally for
light beams in a quasi-1D waveguide array with two addi-
tional waveguides above and below it [18]. The key idea
in the construction of linear continuum bound states in
[16–18] is to seek bound states of certain parity which are
embedded inside the continuum bands of opposite par-
ity. This idea inspires us to construct fully localized 2D
embedded solitons in this paper. The above theoretical
and experimental investigations on the counter-intuitive
nonlinear embedded solitons and linear continuum bound
states deepened our fundamental understanding of linear
and nonlinear wave phenomena, and they could lead to
unexpected applications in diverse physical fields.
In this paper, we construct fully localized 2D embed-

ded solitons for the first time. These solitons are obtained
in a quasi-1D waveguide array which is periodic along
the horizontal direction and localized along the vertical
direction. Under self-defocusing nonlinearity, we find 2D
solitons which are symmetric along the vertical direction,
and they are embedded in the continuum bands of odd
symmetry in the vertical direction. These 2D embedded
solitons exist as continuous families, with their propa-
gation constants (or equivalently their powers) as a free
parameter. We further show that these embedded soli-
tons are fully stable against perturbations even though
they exist inside the continuum bands. In addition, we
show how 2D embedded solitons of odd symmetry along
the vertical direction can be derived under self-focusing
nonlinearity. This construction method for 2D embed-
ded solitons is general, thus these embedded solitons are
not rare objects, but can appear easily in diverse physical
situations.
The theoretical model we use is the following 2D NLS

equation with a potential,

iUz + Uxx + Uyy + n(x, y)U + σ|U |2U = 0. (1)

In spatial optics, this equation models paraxial light
transmission in a waveguide under cubic nonlinearity
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[19]. In this context, U is the complex envelope function
of the light’s electric field, z is the transmission distance,
(x, y) are the transverse coordinates, n(x, y) is the refrac-
tive index variation of the waveguide, and σ = ±1 rep-
resent self-focusing and self-defocusing nonlinearity re-
spectively (self-focusing nonlinearity is common in most
optical materials, and self-defocusing nonlinearity can be
realized in certain special materials such as photorefrac-
tive crystals [20]). In Bose-Einstein condensates, Eq. (1)
models the collective behavior of condensate atoms in
a magnetic or optical trap under nonlinear atom-atom
interaction (it is called the Gross-Pitaevskii equation in
the literature) [21]. Static solitary waves in Eq. (1) are
sought in the form

U(x, y, z) = u(x, y)e−iµz , (2)

where µ is the propagation constant, and u(x, y) is a real-
valued localized function which satisfies the equation

uxx + uyy + n(x, y)u + σu3 = −µu. (3)

To construct a concrete example of 2D embedded soli-
tons, we take a quasi-1D waveguide array

n(x, y) = 6 cos2x e−y2/4, (4)

which is periodic along the x-direction and localized
along the y-direction. This waveguide is shown in Fig.
1(left panel). We also take σ = −1 (for self-defocusing
nonlinearity). In order to find embedded solitons, we first
need to determine the linear continuous spectrum of Eq.
(3). For this purpose, we drop the nonlinear term in (3).
Since n(x, y) is periodic in x with π period, according to
the Bloch theorem, linear eigenmodes of (3) are of the
form

u(x, y) = eikxq(x, y), (5)

where k is the wavenumber in the first Brillouin zone
−1 ≤ k ≤ 1, and q(x, y) is an x-periodic function with
period π. The continuous spectrum of Eq. (3) consists
of the positive axis µ ∈ [0,+∞), where u(x, y) is nonlo-
calized in the y direction, and Bloch bands with µ < 0,
where u(x, y) is localized in the y direction. To deter-
mine the Bloch bands with µ < 0, we expand q(x, y) into
Fourier series in both x and y, then insert (5) into the
linear part of Eq. (3) and turn it into a matrix eigenvalue
problem, with µ being the eigenvalue and the Fourier co-
efficients of q(x, y) being the eigenvector [19]. This ma-
trix eigenvalue problem is then solved by conventional al-
gorithms. The resulting diffraction relation µ = µ(k) for
these Bloch bands is shown in Fig. 1(right panel). We see
that three Bloch bands are obtained. At the edges of the
lowest two bands, the corresponding Bloch modes u(x, y)
are displayed in Fig. 2. It is important to notice that the
Bloch modes in the lowest band µ ∈ [−2.9711,−2.7226]
are symmetric in y, while the Bloch modes in the second
band µ ∈ [−1.3030,−0.9260] are anti-symmetric in y.
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FIG. 1: Left: the quasi-1D waveguide array n(x, y) in our
model. Right: the Bloch bands in this waveguide. The edges
of the lowest two Bloch bands are marked by letters ‘a-d’.
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FIG. 2: Bloch modes at edges ‘a-d’ of the lowest two Bloch
bands in Fig. 1 respectively.

The existence of different Bloch bands with opposite y-
parity is important for our construction of 2D embedded
solitons.

When nonlinearity is present, locally-confined solitons
will bifurcate out from infinitesimal (linear) Bloch modes
of band edges [19, 22]. Under self-defocusing nonlinear-
ity, these solitons will bifurcate from the upper band
edges upward into band gaps. Here we consider the soli-
tons bifurcating from the upper edge of the lowest Bloch
band (i.e., point ‘b’ in Fig. 1). Near edge ‘b’, the soli-
ton is a low-amplitude broad packet which decays slowly
along the x-direction (see Fig. 3(A)). This soliton is a
regular gap soliton since it exists in a band gap. As µ

moves further away from the edge ‘b’, the soliton becomes
more narrow, and its amplitude as well as power becomes
higher (see Fig. 3). Here the power P is defined as the
integral of u2 over the (x, y) plane. The most interesting
phenomenon about this family of solitons is that, when
µ enters into the second Bloch band [−1.3030,−0.9260],
the soliton still persists, and it remains fully localized in
both x and y directions. To demonstrate, this soliton at
µ = −1.1 in the middle of the second Bloch band is dis-
played in Fig. 3(B). Since this soliton exists inside the
continuous spectrum (Bloch bands), it is a fully-localized



3

−3 −2 −1 0
0

10

20

30

A

B

C

a b c d

µ

P

x

y

(A)

−10 −5 0 5 10

−5

0

5

x

y

(B)

−10 −5 0 5 10

−5

0

5

x

y

(C)

−10 −5 0 5 10

−5

0

5

FIG. 3: A soliton family under self-defocusing nonlinearity
(σ = −1). Upper left panel: the power curve; the shaded
stripes indicate Bloch bands, and the band edges marked by
‘a-d’ on top of the panel correspond to the edges of the same
marker in Fig. 1. Panels (A-C) are soliton profiles u(x, y) at
locations marked by the same letters on the power curve. The
soliton at location ‘B’ is an embedded soliton which is fully
localized in both x and y dimensions.

2D embedded soliton! Likewise, its nearby solitons with
µ still inside the second Bloch band are all 2D embed-
ded solitons as well. In other words, this is a continuous
family of 2D embedded solitons with its propagation con-
stant µ or power P as a free parameter. This is the first
report of 2D embedded solitons to our best knowledge.

Why do these 2D embedded solitons exist? Notice that
these solitons bifurcate out from edge ‘b’ of the first Bloch
band, thus they are symmetric in y (see Fig. 3). Notice
also that the second Bloch band consists of Bloch modes
which are all anti-symmetric in y (see Fig. 2). Thus when
this y-symmetric soliton branch enters the second Bloch
band of y-antisymmetric Bloch modes, even though µ

lies in the Bloch band, the soliton does not excite those
Bloch modes of opposite y-parity, thus it remains fully
localized. However, if this soliton moves into the third
band µ ∈ [−0.2488, 0] (see Fig. 3), since the Bloch modes
in this third band are also symmetric in y, this soliton
will excite these y-symmetric Bloch modes and become
delocalized (evidence of this can be seen in Fig. 3(C),
where the soliton becomes broad again near the third
Bloch band). Thus one can not find y-symmetric 2D
embedded solitons in the third band.

Stability of these 2D embedded solitons in Fig. 3 is an
important issue. In previous studies of 1D embedded soli-
tons, since the embedded soliton is in resonance with the
continuous spectrum, it could excite the continuum radi-
ation and perish under certain perturbations [1]. Those
1D embedded solitons could also be linearly unstable,
leading to their destruction under any generic perturba-
tion [3]. For the 2D embedded solitons in Fig. 3, we have

found that they are all linearly stable, i.e., their linear-
stability spectra do not contain any eigenvalues with pos-
itive real parts. This linear stability for the embedded
soliton in Fig. 3(B) is demonstrated in Fig. 4(i). Regard-
ing the question of nonlinear stability, we note that these
2D embedded solitons lie inside the second Bloch band
whose Bloch modes are antisymmetric in y. Thus if the
perturbation is y-symmetric as the embedded soliton it-
self, then since the waveguide n(x, y) is also y-symmetric,
the solution of Eq. (1) will remain y-symmetric for all
distances z. Hence the perturbed soliton would not ex-
cite y-antisymmetric second-band modes, i.e., the soliton
would be stable under y-symmetric perturbations. A less
trivial question is what would happen if the perturbation
is asymmetric in y. In this case, the perturbed soliton
would excite y-antisymmetric second-band modes since
it is resonant with those modes. Then could these y-
antisymmetric radiation break up the embedded soliton?
Intuitively, we can expect that when the y-antisymmetric
component of the perturbation is weak, then these weak
antisymmetric components would disperse away through
resonance with the second-band modes, and the other
dominant y-symmetric component of the solution would
adjust its shape into a nearby (y-symmetric) embedded
soliton. If so, then these 2D embedded solitons would
be nonlinearly fully stable. However, this expectation is
under the assumption that energy in the y-symmetric
component would not transfer to the y-antisymmetric
component during evolution. Since Eq. (1) is nonlinear,
this assumption may not hold, because the symmetric
and antisymmetric components could couple each other
and transfer energy between them. Thus in principle,
it is possible for the perturbed soliton to lose a signif-
icant amount of radiation to the resonant second-band
modes and break up. To clarify this question, we have
performed numerical simulations of these embedded soli-
tons under various asymmetric perturbations, and found
that they are always nonlinearly fully stable. Two typi-
cal simulation results are shown in Fig. 4(ii-iv). In these
simulations, the embedded soliton u(x, y) is the one in
Fig. 3(B), and the perturbed initial state is

U(x, y, 0) = u(x, y) + ǫ(1 + sin y)e−(x2+y2)/4, (6)

where ǫ is the strength of perturbations. Notice that
this perturbation contains both symmetric and anti-
symmetric components in y. For ǫ = 0.2, this perturbed
initial state is shown in Fig. 4(ii). At propagation dis-
tance z = 50, the solution is shown in Fig. 4(iii). It
is seen that this embedded soliton is stable under this
perturbation. This stability can be seen more clearly in
Fig. 4(iv), where the peak amplitude |U |max of the solu-
tion versus the propagation distance z is displayed. We
can see that the peak amplitude approaches a constant
value close to the amplitude of the unperturbed soliton at
large distances. If we take a different perturbation with
ǫ = −0.2, the result is similar, i.e., the peak amplitude of
the solution also approaches a constant value close to the
amplitude of the unperturbed soliton at large distances
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FIG. 4: Demonstration of stability for the embedded soliton in
Fig. 3(B). (i) the linear-stability spectrum, showing that this
soliton is linearly stable; (ii) an initially perturbed embedded
soliton (6) with ǫ = 0.2; (iii) evolution of the perturbed soliton
in (ii) at z = 50; plotted in (ii, iii) are |U | fields; (iv) peak-
amplitude evolutions of the perturbed embedded soliton (6)
for ǫ = 0.2 and −0.2.
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FIG. 5: 2D embedded solitons under self-focusing nonlinearity
(σ = 1). Left panel: the power curve of this soliton family
(same notations as Fig. 3); right panel: an embedded soliton
in the first Bloch band (at location ‘A’ of the power curve).

(see Fig. 4(iv)). Thus this embedded soliton is nonlin-
early fully stable. This result resembles the full stability
of 1D embedded solitons in a generalized third-order NLS
equation [6]. It contrasts some other 1D embedded soli-
tons which are semi-stable and perish under certain types
of perturbations [1, 5].
It is important to recognize that the method in this pa-

per for the construction of 2D embedded solitons is quite
general, and it can be used to construct many other fully
localized multidimensional embedded solitons in various
physical systems. For instance, in the same quasi-1D
waveguide array described by Eqs. (1) and (4), if self-
focusing nonlinearity is taken (i.e., σ = 1), then a soli-
ton family which is anti-symmetric in y will bifurcate

downward from edge ‘c’ of the second Bloch band (see
Figs. 1 and 2). This solution family passes through the
first Bloch band whose Bloch modes are symmetric in
y. Inside the first Bloch band, these solitons are also
fully-localized 2D embedded solitons. To demonstrate,
the power curve of this soliton family is displayed in Fig.
5 (left panel). At point ‘A’ inside the first Bloch band,
the embedded soliton is shown in Fig. 5(A), which is
fully localized in both dimensions. Using similar meth-
ods, we can construct fully localized 3D embedded soli-
tons as well. Previously, embedded solitons were gener-
ally regarded as rare objects which appear by “accident”.
Now we see that embedded solitons can arise frequently
in diverse physical situations, thus they are an important
physical object in nonlinear wave systems.

Now we address why the above results are of interest to
physics and mathematics. Intuitively, solitary waves are
only expected outside the continuous spectrum. In the
past ten years, the counterintuitive concept of solitons
embedded inside the continuous spectrum was proposed
and demonstrated in one dimension [1, 3]. This con-
cept significantly deepened our general understanding of
nonlinear wave phenomena. In addition, it fostered the
construction of other physical 1D objects such as moving
discrete solitons in lattices since those objects are also
embedded solitons under disguise [7–9]. In this paper,
for the first time to our knowledge, we demonstrated
the existence of embedded solitons in two dimensions,
and pointed out a way to construct embedded solitons
in even higher dimensions (such as three dimensions).
This significantly broadened the scope of embedded soli-
tons. It could also stimulate the construction of related
objects such as multidimensional moving discrete soli-
tons. From the viewpoint of physical applications, regu-
lar (non-embedded) solitons have found applications in
numerous situations. Now with the demonstration of
families of stable multidimensional embedded solitons in
this paper, these embedded solitons may find applications
analogous to regular solitons in situations where regular
solitons do not exist.

In summary, we have predicted fully localized 2D em-
bedded solitons for the first time. These embedded soli-
tons were obtained in a quasi-1D waveguide array, and
they exist inside the Bloch bands whose Bloch modes
have opposite parity from the solitons themselves. These
embedded solitons form solution families with continu-
ous ranges of power values. In addition, they are fully
stable under perturbations. The method of construction
in this paper is general, and it can be used to obtain
multi-dimensional embedded solitons in diverse physical
systems.

This work was supported in part by AFOSR grant
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