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We compare and contrast two types of deformations inspiyealizing applications — one from the mixing of fluids
(stretching and folding), the other from the mixing of gremrumatter (cutting and shiling). The connection between
mechanics and dynamical systems is discussed in the caritiéng kinematics of deformation, emphasizing the equiv-
alence between stretches and Lyapunov exponents. Thehstiggnd folding motion exemplified by the baker’'s map
is shown to give rise to a dynamical system with a positivepraov exponent, the hallmark of chaotic mixing. On
the other hand, cutting and dfling does not stretch. When an interval exchange transfasmet used as the basis
for cutting and shfiling, we establish that all of the map’s Lyapunov exponergszaro. Mixing, as quantified by the
interfacial area per unit volume, is shown to be expondgtiast when there is stretching and folding, but linear when
there is only cutting and sffiting. We also discuss how a simple computational approachdismern stretching in
discrete data.

I. INTRODUCTION layer and the underlying static bed of granular materialnn a
avalanché.This new aspect of the flow leads tdférent mod-

The essence of mixing of a fluid with itself can be under-€ls for the kinematics. In particular, mixing in granulamto
stood in terms of an array of striations of, say, twfefient N rotating containefs(‘tumblers”) can be thought of as “cut-
colors of the same fluid (or two fierent fluids such as cof- ting and shéfling,”” a process dierent from stretching and
fee and cream) undergoing stretching and folding. On top ofolding 8 More_ on the fascinating behavior of granular matter
stretching and folding we may superimposéuion, reac- can be found in Ref. 9.
tion, and, in special circumstances, breakup processds lea Stretching is a fundamental concept in mechanics and is
ing to droplet formatior:2 This approach is the backbone of covered in every continuum mechanics textbook in the con-
lamellar models of mixing. A fundamental measure of thetext of kinematics (see, for example, the classic volumes of
quality of mixing isav, the interfacial area per unit volume of Truesdeft® and Gurti), where it is identified with shear or
the striations (lamella or layers). L8tbe the interfacial area €xtensional strain. Cutting and dfiing, in contrast, has been
between fluid layers within a volumé enclosing the point: ~ €xplored only recently. To illustrate the fundamentafeti

at timet, then the interfacial area per unit volume is giveR by ence between the mixing mechanisms of stretching and fold-
ing versus cutting and skiing, we compare two types of sim-

av(z, 1) = lim § (1) ple ideaI_ized mixing protocols: the weII—kr_10wn baker’'s map
V-0V and cutting and shiling maps based on interval exchange
A largeray corresponds to better mixing. trans_formations. AIong the way we d_iscuss the elegont con-
We can imagine many repetitive mixing protocols that gen_nect|0n between continuum mechanics ond dynamical sys-
erate large values @k, and create striations of the material of tems an_d show _how some of the calculatl_ons of t_he relevant
continually decreasing thickness in time. For fluids, a mul-<inematic guantities, such as the deformation gradientiamd

titude of clever mixing designs can lead to the thinning ofPfincipal stretches, are performed. Pertinent concepts fr

lamella, many inspired by a direct correspondence betweewe theory of mixing are also reviewed within this context.

the kinematics of mixing and chaotic dynamical systéms. We then disc_uss hOW to discern and measure stretching (or

The simplest representation of mixing in terms of stretghin 'aCk thereof) in practice.

and folding is the Smale horseshoe map, which stretches out

a piece of material and folds it onto itself to form the shape

of a horseshoe. A limiting case of this procedure is a map- KINEMATICS OF DEFORMATION

that stretches, cuts and re-stacks to generate intertaeal

the baker’s transformation, named after the process bytwhic We restrict our discussiuon to two spatial dimensions for

a baker kneads dough. simplicity1? Consider a motio from the undeformed (ref-
Granular mixing has been studied as well, but less extenerence or initial) configuration of the continuum (bodg)to

sively than fluid mixing. In many respects, the ideas appliedhe deformed (current or final) configurati®at timet, both

to fluids carry over to granular matteA key difference be- of which are regions in the Euclidean plane. Keeping with the

tween the two is that granular flows may present surfaces ahathematics notation, in this paper, we denote sets by capi-

discontinuity, such as the interface between a flowing serfa tal calligraphic letters. Typically, we concern ourselvéth


http://arxiv.org/abs/1010.2256v1

motions that map the body back into itself, thatd,= By,
but this restriction is not important for what follows. Weear
interested in discrete-time motions such as a repetitivéngi
protocol, that is, we allow only = nT, whereT is the dura-
tion (period) of the motion and is a positive integer. Then,
we may write the motion as a map
®: By - By 2)
such that after one iteration eve® in 8B, is mapped to an
x = ®(X)in B, where byr = (x,y)" we shall denote the po-
sition vector in the deformed configuration a’&d = (X, Y)"
represents the coordinates in the undeformed configuratio
The T superscript denotes the transpose, meaning g} (
is a row vector andx y)" is a column vector. Unless other-

wise noted, all vectors not written out in component form arey,

considered to be column vectors.
We can now define the deformation gradient (or Jacobia
matrix of the map) as

H0cY) IX OX

_ _ OXY) _|agx oY

F=02) =5 =| % oy | ®)
X aY

It is typically assumed that the map is invertible anffatt
entiable a sfiicient number of times so that exists and
0 < detF < c0.2%11|n this paper we relax the fierentiability

assumption to consider a wider (and, arguably, more irtteres

ing) class of motion.
The polar decomposition theoré®:11:13allows us to write

(4)

where U is a symmetric positive definite mattk (due to
the assumption that det> 0) andR is a proper-orthogonal

F = RU,

stretcho” = maxo1, o2}, which is a scalar field- = 5(X; n)
that describes the stretching experienced by the body dtge to
motion. In practice, it is convenient to calculate the eigdn
ues{k, ko} of the (right) Cauchy—Green strain ten§be FTF
instead. These are just the squares of the principal s&gtch
In this wayo can be computed without explicitly finding the
polar decomposition df.

Problem 2 Show that; = (riz using the definition o€, the
polar decomposition theorem, and the properties of eigenva
ues.

M. DYNAMICAL SYSTEMS FRAMEWORK OF KINEMATICS

Equation [[2) also defines a dynamical system, which in
e most general sense is defined as a rule of evolution on
a state space (the bodi) This connection between the kine-

"hatics of continua and dynamical systems has been success-

fully exploited in the study of both fluid mixirfgand granular
mixing 4

There is a direct correspondence between the languages of
dynamical systems and continuum mechanics, the most im-
portant of which, for the present purposes, is the correspon
dence between stretches dngpunov (characteristic) expo-
nents For a discrete-time map, these exponents are defined
(see, for example, Ref. 17, Sec. 5.3.1) as

A(X.) = fim T In][(7@") o, ©

where®" = ® o --- o ® (n compositions of the map). The
Lyapunov exponents depend on the positi§nand on the
directionv (|lv|| = 1). The quantityvV®" can be calculated
by the chain rule along a trajectory starting at a giv&nn
Bo. If F = (V®)T happens to be independentXf, we have

. . . T — i i -
matrix15 That is, we can locally decompose the deformation(V®")" = F". Lyapunov exponents are important in the con

into a rotatiorR and a stretch). Because the matrid is sym-
metric positive definite, it has an orthonormal basis of eige
vectors{es, e} and strictly positive real eigenvalu@s;, o}
satisfying

(%)

The eigenvaluesr; and eigenvectorg; are called, respec-
tively, the principal stretches and the principal directde-
cause an infinitesimal line segment of lendttoriented in the
directione; has lengthrid¢ after undergoing the motion (that
is, after the mapb is applied). Henceay; > 1 for stretching
and O< o < 1 for compression along the directien

Problem 1 Considedz = ®(X +dX) - ®(X), and show
thatdx = FdX + higher order terms whefd X | < 1. (Hint:
use Taylor’s theorem for a vector function.) HefdX|| =
VdX -dX is the norm induced by the usual Euclidean dot
(inner) product. Then ledX = (df)e; and show thatd X || =
d¢ and||dx|| = od¢.

The stretches may depend on the coordimétén the un-

Uej = oije;.

deformed configuration and also on time (or, in the present

context, the number of timasthat the mixing protocol is re-
peated). Typically, we are concerned with the largest jadc

text of the asymptotic stability of infinitesimal perturlmats
and, provided certain conditions are satisfied, can be-inter
preted as the growth (or decay) rates of these perturbations
along a trajectory.

Arelated concept is thinite-timeLyapunov exponents de-
fined as

V(X vin) = TNV vl ™
Note that if V®")" = F", we have
1
n) = = nyTEN
Lmax_ (X, vin)=In Ve(FYTF). (8)

wherep(A) denotes thepectral radiusof the matrixA, that

is, its largest eigenvalue in absolute value. As we disalisse
at the end of Se€.lll, the square root of the largest eigeavalu
of (FMTF"is the largest principal stretch (for the deformation
resulting from applying the maptimes). Therefore, thereis a
one-to-one relation between the largest finite-time Lyapun
exponent and the largest principal stretch:

Y"(X;n)= max y(X,v;n)=

v#0, |[v]|=1

% Ing(X;n). (9)
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If the limit in Eq. () exists, then this relation carries ove  kneads dough or a fiy pull machine makes cand$.Other

the largest (infinite-time) Lyapunov exponent as wWall. applications include the Kenics mi¥érand the related par-
Problem 3 Derive Eq.[(8) using the Rayleigh—Ritz theorem titioned pipe mixer (see, for example, Ref. 2, Sec. 8.2). The

from linear algebra2 Hint: write out the norm in the defini- baker’s map has even been used to explain the movement of

tion of y as an inner product and re-arrange terms. Also, youbbles in a foam networ In fluid mixing, the cut and re-

are allowed to bring the max inside any logarithm or squarestack step cannot be accomplished exactly, but cuttingend r

root because these functions are monotonically increasing stacking is precisely what happens in the extrusion of multi
We will call a dynamical system with a positive Lyapunov layer plastic®

exponentchaotic (although there are variety of sometimes Even though the baker's map constitutes stretching, guttin

equivalent ways to define chadp If a motion in the sense and re-stacking, it possesses (as we will show) the esbentia

of continuum mechanics stretches the continuwm>"1),  property of a stretching and folding motion — stretching in

the corresponding dynamical system has a positive Lyapunathe continuum mechanics senge £ 1) or, equivalently, a

exponent by virtue of Eq[19). Note that, in this context, positive Lyapunov exponent. The Smale horseshoe& s

the chaotic dynamics occur in physical space, not in phasis classical example of stretching and folding. Howeveg, th

space as is the case for the dynamical systems of classicabrseshoe map does not preserve area, which has significant

mechanicg? implications for the types of chaos exhibited by the dynahic
There is a temptation to equate stretching and folding mosystem because it allows for the existencaitfactors? We

tions (equivalently, ones that give rise to chaotic dynainic avoid such complications by idealizing the Smale horseshoe

systems) with flicient generation o&,. However, as we will map as the baker's map.

show in the following examples, there are other possibditi From Egs.[(B) and(10) it follows that

for generatingay without stretching and folding. 2 0
1
Fem = {0 1-] (X # 5)’ (11)

2

andFgy is undefined at the clX = 1/2. The polar decom-
One of the best known stretching and folding operations igosition of this matrix is simpleRgy = | andUgy = Fgw.

the baker's mag:t’ which can be found as early as 1951 in the The eigenvalues dfigm areo1 = 2 ando, = 1/2. Therefore,
mixing literaturé! and 1937 in the mathematics literatdfe. the largest principal stretch is = 2 > 1 everywhere after
In contrast, cutting and sffiling, two examples of which we one iteration of the protocoh(= 1). Clearly, the baker’'s map
construct using interval exchange transformations, ipabf  stretches the underlying material continuum.
mixing protocol that has been proposed only receftfy2> BecauseFgy is independent ofX, iterating the baker’s
Suppose we begin with a square region, half of which is filledmap results in
with a while material while the other half is filled with a gray > o0V (2 0
material (see Fid.]1). Then, from an inspection of the ihitia ( n )T Y [ 1] = { 1] (X ¢ Cam)
(undeformed) and final (deformed) configurations of the con- BM/ T UBM Q0 5 10 = BM7

tinuum undergoing deformation described by these progpcol 2" (12)

it is clear that two of them—the baker's map (BM) and the 5nqr,,, is undefined along the cuts, that is, the set of points
second cutting and skiling map (CS2)—lead to mixing of
the gray and white materials. However, the following simpleCgy, = {X in [0,1]?|X =i/2", i=1,2,...,2"-1; 0<Y < 1}.

IV.  EXAMPLE MIXING PROTOCOLS

analytic calculations, which are confirmed by numerical cal (13)
culations in Se¢._V1, show that only the baker's map stretcheOnce againRg,, = | andU},, = Fg,,. Consequently, the
the material continuum and gives rise to a chaotic dynamicdargest principal stretch of the deformation is

system in the usual sense. A
y Gem(X;n)=2" (X ¢Cly) (14)
Turning to the Lyapunov exponents, the two directions of
interest are the principal directiors (the eigenvectors of
_ Ugwm), which aree; = (1,0)" ande; = (0,1)". Therefore,
We letB; = By = [0, 1]% and write the baker's masv:  upon multiplying the vectores, e, by the matrix in Eq.[(12)

A. The baker’'s map

[0,1]* — [0,1]?as and taking the norm of the resulting vector, |, e12ll =
1\" 1 +nln2. We substitute this expression into Egl (7) and obtain
(ZX, —Y) , (O <X< —) ; the finite-time Lyapunov exponents (along the principatdir
Oeu(X)={) 2 . (10) tions) of the baker's map
2X—1EY+E E<X<1
’2 2]’ 2 -~ 7 YBM (X, e12; n) =+In2 (X ¢ CEM)’ (15)

Simply put, this map involves compressing the unit square t@nd they do not exist foX in Cg,.
half its height, stretching it to twice its width, cutting rtie Problem 4 Show that the larger finite-time Lyapunov ex-

cally the resulting rectangle in half along= 1/2 and stack- ponent in Eq.[(T55) can also be calculated using Hds. (9) and
ing the pieces [see Fi§] 1 (BM)] — much like how a baker (14).
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The Lyapunov exponents defined in Hd. (6) can be obtaineday,k = 64 subintervals results in the same number and place-

by taking the limitn — oo in Eq. (I5): ment of layers of gray and white as= 5 iterations of the
baker’'s map. However, repeated application of the map CS1
Asum(X,e12) =+In2 (X ¢ Can)- (16)  does not result in mixing for any choice kf At n = 2 (for

k = 8), demixing® occurs: the number of distinct stripes de-
A subtle but important poiA is that the set of cuts},, does  creases from 8 to 4. Fortunately, there is a well-developed
not become dense in the doma#Bg asn — 3! because it theory to guide us in constructing interval exchange tramsf
is a set of measure zero. Thus the quantities in EEg$. (15) andations that mix well.

(186) exist almost everywhere. To this end, consider the more general case in which the
Sincedgu (X, e1) > 0, it follows that the baker's map gives intervals are not equal and are not fled in such an or-
rise to a chaotic dynamical system; that is, if we were tokrac derly fashion. It is well known that for an interval exchange

an infinitesimal ball of material points of the continuumgyh transformation to exhibit interesting behavior (specific&o
will spread exponentially fast from each other with repdate have no periodic orbits and to be ergdd)cit must satisfy the
applications of the map because it possesses a positive LyKeane conditiod? This condition requires that the ratio of the
punov exponent. The simplicity of the baker’s map and itslengths of adjacent intervals;|/| ;-] be an irrational number
ability to render many analytical calculations tractabédn  and that the permutatidi be irreducible; that is, applying
made it one of the classic examples of a chaotic dynamicab any of the subsetd}, {1, 2}, {1,2,3} up to{l,2,...,k— 1}
systeme* We refer the reader to, for example, Ref. 35, Sec. 5.-oes not yield a permutation of just the elements of the sub-
for a thorough overview, including the non-area-presegvin set. For example, the permutatidif{12345]) = [31254] is
(dissipative) version of the map. reducible (that is, not irreducible) because the first thalee
ments are a permutation of only themselves (neither 1, 2, nor
3 maps to 4 or 5). In contradil([12345]) = [31524] is irre-
B. Cutting and shuffing maps ducible because 3 maps to 5. To satisfy the Keane condition,
we considerk = 4 subintervals, and suppose their lengths
are chosen so that the first|i&| =  and each consecutive
ubinterval has lengthtimes the length of the previous one:
%’il = r|Zi_1]. Because the length df = [0, 1] must be pre-

Cutting and shffling is an operation well-known to card
players and mathematicians. One of the simplest dynamic
systems that can be successfully studied analytically és th

2 3, _ R
interval exchange transformation; see, for example, [R&f. 3 Sﬁ_rvedlnfmﬂ 77+|£ n__\l/flvegr we an §0|er fory;‘)rom
Sec. 14.5. An interval exchange transformation, which wdhis relation. We take = V1.3 and, numbering from bottom

write asMsy: I — 7, replaces a deck of cards with a con- 1© 0P, I1([1234]) = [2431] to satisfy the Keane condition.
tinuous intervalf of the real line (we takd = [0, 1] with- In terms of the continuum mechanics language introduced in

out loss of generality) and subdivides it into a collectidn o Seclll, the map takes the form
k disjoint subintervalsS = {7,,...,Zy}. These subintervals
are translated (“stfled”) according to a rule given by some ~ @csAX) =

permutationll of the integers between 1 akd Finally, the XY+ +r2+3n)", (0<Y<n)
interval 7 is put back together a6 = I3y U - -+ U I . The ’ ’ B

:
unusual type of continuum motions encountered in tumbled] (%Y ~ m . (=Y <[1+r]n)

granular flow&23-25that we noted in Sec. | are specific two- | (%Y +(r* = 1)), ([A+rlp<Y<[1+r+r2p)
dimensional generalizations, callpiécewise isometrig¥:38 XY-=@A+rdnT, ([A+r+rip<Y<).

of these simple maps. (17)

To mix the domainBy = [0,1]? we can apply an inter-
val exchange transformation in thedirection and extend it The action of this cutting and shling map, constructed from
in the X-direction by making each subinterva] into a rect-  an interval exchange transformation, is illustrated byritiat
angle of unit horizontal length. This construction is a spe-path in Fig[1 (CS2).
cial case of the more general classrettangle exchange Problem 5 Derive Eq.[[IV) by considering where the rect-
transformations®® Consider the simple special caselof=  angles go in Fid]1 (CS2). (Hint: rectangle 1 moves up by the
8 equal subintervals skied according to the permutation height of rectangles 2, 3, and 4, that is;{(r? + r%)p, etc.)
T1([12345678]) = [15263748], numbering the subintervals Because we are simply translating the strips in the vertical

from bottom to top so that intervals 1 through 4 are gray andjirection, calculating the deformation gradient from E3).i6
intervals 5 through 8 are white. This interval exchangestan trivial:

formation is equivalent to cutting a deck of 8 cards exactly
in half and shdling them perfectly so that the bottom card
from the first half (gray) is just below the bottom hard from
the second half (white), and so on. As shown in the middle
path of Fig[d (CS1), one iteration of this map results in lay-and it is undefined along the cuts, that is, the set of points
ers of gray and white that appear identical to those producedész ={X in [0,110 < X <1, Y =1y, i =0,1,2}.

by two iterations of the baker's map. It is nofiitult to see  Unlike for the baker's map, finding the set of c@g, for
how one iteration of the same cutting and Shiig map with,  any n for the above cutting and skling map is not trivial

10
Fese=(5 5 (X #cho (18)
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FIG. 1. lllustration of mixing by three dierent protocols. The left path (BM) shows two applicatiohthe baker's map, which stretches the
underlying continuum. The middle path (CS1) is one iteratiba cutting and shiling map withk = 8 intervals and length ratio= 1, which
does not stretch and leads to the same macroscopic pictheeright path (CS2) is two applications of a cutting Slting map based on an

interval exchange transformation with= 4 andr = V1.3, which also does not stretch but results inféedent macroscopic picture. Only the
maps BM and CS2 produce an increasing number of finer smg&tibeach color upon repeated application.

and, in general, an open problédsStill, it is a countable set,
and therefor€gg, is not dense irBo.

into a proof showing that all Lyapunov exponents are zero
for the more general class of piecewise isometry maps on the

Problem 6 Write a computer program that finds the numberplane?*

and location of the distinct cuts aftarapplications oi®csp.
What happens if you changeor I1?

For any given trajectory that does not start at saken
Clsy itis clear that the deformation gradient afieterations
is the product of identity matrices like the one in Eg.1(18).
HenceF!., = |. Therefore, the principal stretches are =

CS2 —
or=1,and
FesAXin) =1 (X ¢Clg) (19)

From Eq.[7) andrg, = |, we can calculate the finite-time
Lyapunov exponents along the principal directions:

YesA X, e1;n) = yesA X, ez;n) =0 (X ¢ Csy), (20)

and they do not exist along the cuts. If we take the limit
oo in Eq. (20), we arrive at the Lyapunov exponents [[EY. (6)]:

/lcsz(X, 61) = /1(;52(X, 62) =0 (X ¢ CECS2) (21)

Problem 7 Show that the finite-time Lyapunov exponents
in Eq. [20) can also be obtained from Eqg. (9) dndl (19).

Therefore, the ma@cs; (and, by the same logic, the map
®dcs;) does not give rise to chaotic dynamics. Specifically,
an infinitesimal ball of material points in the continuum doe
not spread apart undaiiterations of this map (for any choice
of n), unless the ball happens to overlay a cut. Hence, the
distance between any two points#y can grow only if they
become separated by a cut.

We have assumed that the same specifi¢igh(defined by
the given permutatiofl) is performed once at each iteration
of the map. In doing so, we did not consider the possibility
that a white piece of material may be moved next to another
white one, meaning that the dfle is not necessarily optimal
in terms of mixing. Thus, an improvement would be to allow
multiple shufies to be performed at each step of the proto-
col. There is an elegant thed®# (in the context of shiling

Equations[(20) and_(21) are in stark contrast with Elqs. (15fecks of cards) that gives an estimate of how many such shuf-

and [16). In addition, this type of argument can be formalize

fles are required for the stack to be f&ciently random.”
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V. DEFINING AND QUANTIFYING MIXING and right-hand sides in Eq. (24) are equal, and the bakeps ma
represents strong mixing.

The goal of the protocols we have considered is to mix the For the cutting and stifling maps it should be clear that
gray with the white in FiglJ1, but what do we mean by “mix"? this argument breaks down. The second cutting andighg!
If we go by the earlier intuitive definition, that is, to mixts ~ Map (CS2) in Fig. 1L illustrates how the gray and white stripes
generate interfacial ares, then one thing is clear about the under this map have non-uniform thickness and a pair of pre-
baker's map protocol from Selc_ IV A: the number of stripesViously cut gray pieces may be “glued back together” at a late
(of unit length) in the final configuration is™®. Thus, the iteration. Thus, a cutting and sfiling map based on an inter-
bulk interfacial area between the gray and white matersals i Val gxg(iglange transformation can only be shown taveekly

mixing*®:
ay=2"t_1=2d"-1 (22) .

1 i
By expressingy as an exponential function afwith growth n'[‘;, n Zc; ‘ Area(®' (A1) N Az) — Area(#y) Area(ﬂg)| =0.
i=

rateh = In 2 = Y2147 we are able to illustrate the well-known (25)
result that chaotic advectio_n, through stretching andifgld ;g proof is far too involved to present here. Put simply,
generatesy at an exponential rate. Eq. [25) relaxes the requirement that the same amount of ma-
~ Forthe cutting and shilling maps from Se€. IVB, the most tgria| from the subsefd; be found in any other subs@t,.
interfacial area that can pe generated in one iterationusleq Instead, it is only required that this be true on averager ove
to the number of cuts, which ls- 1 for k subintervals. Hence, many iterations. Still, weak mixing is a stronger resultrtha
assuming that the interfacet= 1/2 in the initial configura-  he ergodicity property mentioned previously that an inter
tion does not coincide with a cut, the upper bound is val exchange transformation acquires by satisfying thenkea
condition2°

av <1+ (k-1)n (23) To summarize, according to both the practical measure of
ixing defined in Eq.[{l1) and the measures of mixing defined
Egs. [2#) and[(25), both of these protocols mix, albeit at
different rates and with fierent “strengths.” In this respect,
the cutting and shiling map defies conventional wisdom —
ere is no stretching, all Lyapunov exponents are zero, and
e trajectories of material points in the continuum undiés t
ap are not chaoti:

Equation[(2B) is only an upper bound because not every cqrﬁ
gives rise to an intermaterial interface after Shig. For ex-
ample, while on the first iteration of the map CS1 in Eig. 1 the
seven cuts produce seven interfaces, on the second iterati
only three interfaces remain though we have made seven fre§
cuts. The nature of the upper bound in Hg.l (23) iIIustrate%
a general principle about interval exchange transformatio
and a conjecture about their cousins piecewise isomethes:
growth of ay is sub-exponential (specifically, algebraic) be-
cause of the lack of stretching by the map.

Another way to define mixing is by using ideas from the ) ) ) )
ergodic theory of dynamical systems. There, (strong) mgixin  SUPPOSe we did an experiment with white and gray putty

is succinctly defined (see, for example, Ref. 17, Sec. 3.7 ofnd recorded the initial and final configurations. We would
Ref[48) as ’ ' ’ like to find out how the putty was stretched due to the mix-

ing protocols depicted in Fig]1. In a typical experiment
lim Area(®"(A1) N Ay) = Area(Ay) Area(#A),  (24) only a finite number of material point_s ina contin_uum can be
N—co tracked. In other words, some collectionf material points
{Xi j}ij=1..m in Bg in the undeformed configuration are iden-
tified, and their location; j}i j-1..m in Bi—nt in various de-

VI. INFERRING STRETCHING FROM DISCRETE DATA

whereA; andA, are any two subsets &, andn denotes the

intersection of two sets (that is, the material they haveoinc ' : .
; . . formed configurations (for example, forfifirentn) recorded,
mon). Put simply, under iteration of the mdn the setA; ! :
eventually becomes spread out evenly throughout the domafiy shown schematically in Figl 2. From these values the mo-
y b y 9 ¥ibn and deformation of the continuum can be reconstructed.
Bo so that no matter what other s@p we choose, the amount

of material in it that came fronfl, is the same. In a more for- A particularly simple and #ective numerical approach to

o . o . achieving this reconstruction is the standard centféédince
mal definition, Area() is replaced by the appropriate iremati L2 . : i
) . approximation to the deformation gradient [recall Ed. (3)]
measure. The maps we consider here are area-preserving, a

therefore area is the proper measure of “size” for the defini- Xislj = Xie1j  Xij+1— Xij-1

tion. i = ) Xisrj = X1 Yije1— Yij-1 mT
Following the argument of Ref. 17 (Theorem 3.7.2), sup-F(Xiiim = | vy —yia} v —via | = (V@) |y -

posed; is the gray region of the initial configuraticBy (re- Xorj — X1 Yipr—Yia Y

call Fig.[1), that is,; = [0,1] [0, 3]. Then, no matter what ’ o ’ (26)

set we pick forA,, the number of stripes of each material This approximation is used, for example, in extractlray
within this volume grows exponentially, eventually regudt  grangian coherent structure@arriers to mixing and trans-
in half of each. Therefore, as— o, Area(®"(A) N Az) — port) from experimental and simulated d&%an determining
%Area(?(g). Because Aredf;) = % it follows that the left-  the type (hyperbolic, elliptic, or parabolic) of periodioipts



(that is, X such thatbP(X) = X, p = 1,2,...) of mixing  arbitrarily thin. (Their thickness is 2/M, that is, twice the
protocols>#>® and in calculating the largest principal stretch spacing between points because we used a centfatatice
in fluid mixing experiments with lamina®>” or turbulen®®>°  approximation taF.) If we had applied the map more times
velocity fields. Understanding stretch fields is of immense(largern) andor had fewer material points, then the resulting
practical importance in both the industrial and laboras®t  thicker cuts would completely obscure the picture.
ting from the micro to the planetary scale. Theiruse infigdin  In Fig.[3 the expected results are found. We applied the
barriers to transport and mixing in the ocean was discussed baker's map twice [recall Figl1 (BM)], so that= 2. From
Ref.|60. Eq. (I3), the largest principal stretchds="22 = 4. We can
also calculater from the numerical data by taking the square
undeformed root of the largest eigenvalue dfgw(X; 2)] Fam(X; 2) (re-
call the discussion at the end of SEg. II), wheres defined
in Eq. (26). In complete agreement with the theoreticalltesu
the numerical calculation produces a “background” valbat(t
is, the value ofr"away from the cuts discussed above) of 4,
as shown in Fig.J3(a). This result can also be anticipated by
realizing that the baker's map stretches the continuumen th
X-direction by a factor of 2. Applying the map twice gives a
stretch ratio of 4. Similarly, for both of the cutting and $hu
fling maps, the largest principal stretch is equal to 1 fonall
from Eq. [I9). The numerical calculation shown in F[gs. 3(b)
and (c) confirms that- = 1 because the “background” value
in the plots is 1. In both cases,i$ different from the “back-
ground” value only along the cuts, where it is infinite.

cofiguration ‘B

q)n

deformed
cofiguration B, _

VII. CONCLUSION
FIG. 2. Cumulative movement of material points of the undwafed
continuumgy aftern iterations of®, resulting in the deformed con-

figurationB,_r. The mixing of continua can be accomplished by a great

variety of maps of dferent complexities. In mechanics, the
central theme is stretching. Stretching leads to a poditrae

Tracking the motion of a collection of material points, as punov exponentand chaos when the problem is translated into
illustrated schematically in Figl 2, is the objective ofsthiu-  the language of dynamical systems. For mixing, the central
merical approach. It may seem that many rearrangements @ieme is generation of interfacial area per unit voluae
the continuum can resultin a non-trivial deformationgeadi  Stretching and folding (equivalently, chaotic dynamicsian
at least somewhere in the domain. Therefore, it would appeaficient way to do this.
that stretching occurs under most maps. However, such intu- Surprisingly, cutting and shifling can also “rearrange” ma-
ition can often be wrong. terial points in a continuum quite well. The cutting and shuf

Figure[3 shows the numerical results fobased on track- fling maps, which would be considered pathological in “clas-
ing the movement oM? = 2512 uniformly-distributed mate-  sical” continuum mechanié€:! do not stretch, possess no
rial points under each of the maps in Hig. 1 for the numbeipositive Lyapunov exponents, and exhibit no chaotic bedravi
of iterations of each map depicted there. Note that the threi the usual sense, yet they mix. Even though interfacial are
narrow vertical lines of higl- Values for the baker's map and is produced at an asymptotically slower rate than for a ébaot
similar horizontal lines for the cutting and dfling maps are  motion that stretches, for short times it appears possile f
due to the cuts in these protocols causing the stretch to-be irutting and shfiling to dominate stretching and folding, de-
finite there (that isF" is undefined). The lines are vertical pending on the number of cuksin Eq. (23) and the growth
for the baker’'s map, because the cuts are vertical. The middkateh in Eq. (22). Although we may be misled to conclude
line in Fig.[3(a) corresponds to the cut that is made in thé firsthat a cutting and sHiling map stretches the underlying con-
application of the map, and the other two lines correspond ttinuum based on the complicated pattern of non-uniform stri
the cut made in the second application of the map, which ilations produced by it, analytical andfBciently-refined nu-
lustrates the se:t‘éM defined in Eq.[(Z13). For the cutting and merical calculations show otherwise.
shufling maps, the lines are horizontal because the cuts are Recent work23-2>takes the idea of cutting and gHing
horizontal. Specifically, the dark horizontal lines in H8ifb)  even further, arguing that it provides the “skeleton” oftaar

depicts the set of cutSg, = {X in [0,1]°|0< X < 1; Y =  regimes of granular flow in tumblers. In the present work, we
i/8, i = 1,...,7}, while those in Figl13(c) depict the set of illustrated how cutting and siilling can lead to mixing with-
cutsCg, (n = 2) noted after EqL(18). out chaos. And, in more complicated maps, cutting and shuf-

The apparent thickness of these lines is due to the coarséling can lead to complex dynamics without chaos in any usual
grained view of the deformation that we obtain from the nu-sense of the woré2*-2°Thus, cutting and shfling maps and
merical data. Taking more points (largd) makes these lines their generalizations are more than just a mathematicat exe
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