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We compare and contrast two types of deformations inspired by mixing applications – one from the mixing of fluids
(stretching and folding), the other from the mixing of granular matter (cutting and shuffling). The connection between
mechanics and dynamical systems is discussed in the contextof the kinematics of deformation, emphasizing the equiv-
alence between stretches and Lyapunov exponents. The stretching and folding motion exemplified by the baker’s map
is shown to give rise to a dynamical system with a positive Lyapunov exponent, the hallmark of chaotic mixing. On
the other hand, cutting and shuffling does not stretch. When an interval exchange transformation is used as the basis
for cutting and shuffling, we establish that all of the map’s Lyapunov exponents are zero. Mixing, as quantified by the
interfacial area per unit volume, is shown to be exponentially fast when there is stretching and folding, but linear when
there is only cutting and shuffling. We also discuss how a simple computational approach candiscern stretching in
discrete data.

I. INTRODUCTION

The essence of mixing of a fluid with itself can be under-
stood in terms of an array of striations of, say, two different
colors of the same fluid (or two different fluids such as cof-
fee and cream) undergoing stretching and folding. On top of
stretching and folding we may superimpose diffusion, reac-
tion, and, in special circumstances, breakup processes lead-
ing to droplet formation.1,2 This approach is the backbone of
lamellar models of mixing. A fundamental measure of the
quality of mixing isaV, the interfacial area per unit volume of
the striations (lamella or layers). LetS be the interfacial area
between fluid layers within a volumeV enclosing the pointx
at timet, then the interfacial area per unit volume is given by2

aV(x, t) = lim
V→0

S
V
. (1)

A largeraV corresponds to better mixing.
We can imagine many repetitive mixing protocols that gen-

erate large values ofaV and create striations of the material of
continually decreasing thickness in time. For fluids, a mul-
titude of clever mixing designs can lead to the thinning of
lamella, many inspired by a direct correspondence between
the kinematics of mixing and chaotic dynamical systems.3

The simplest representation of mixing in terms of stretching
and folding is the Smale horseshoe map, which stretches out
a piece of material and folds it onto itself to form the shape
of a horseshoe. A limiting case of this procedure is a map
that stretches, cuts and re-stacks to generate interfacialarea,
the baker’s transformation, named after the process by which
a baker kneads dough.

Granular mixing has been studied as well, but less exten-
sively than fluid mixing. In many respects, the ideas applied
to fluids carry over to granular matter.4 A key difference be-
tween the two is that granular flows may present surfaces of
discontinuity, such as the interface between a flowing surface

layer and the underlying static bed of granular material in an
avalanche.5 This new aspect of the flow leads to different mod-
els for the kinematics. In particular, mixing in granular flows
in rotating containers6 (“tumblers”) can be thought of as “cut-
ting and shuffling,”7 a process different from stretching and
folding.8 More on the fascinating behavior of granular matter
can be found in Ref. 9.

Stretching is a fundamental concept in mechanics and is
covered in every continuum mechanics textbook in the con-
text of kinematics (see, for example, the classic volumes of
Truesdell10 and Gurtin11), where it is identified with shear or
extensional strain. Cutting and shuffling, in contrast, has been
explored only recently. To illustrate the fundamental differ-
ence between the mixing mechanisms of stretching and fold-
ing versus cutting and shuffling, we compare two types of sim-
ple idealized mixing protocols: the well-known baker’s map
and cutting and shuffling maps based on interval exchange
transformations. Along the way we discuss the elegant con-
nection between continuum mechanics and dynamical sys-
tems and show how some of the calculations of the relevant
kinematic quantities, such as the deformation gradient andthe
principal stretches, are performed. Pertinent concepts from
the theory of mixing are also reviewed within this context.
We then discuss how to discern and measure stretching (or
lack thereof) in practice.

II. KINEMATICS OF DEFORMATION

We restrict our discussiuon to two spatial dimensions for
simplicity.12 Consider a motionΦ from the undeformed (ref-
erence or initial) configuration of the continuum (body)B0 to
the deformed (current or final) configurationBt at timet, both
of which are regions in the Euclidean plane. Keeping with the
mathematics notation, in this paper, we denote sets by capi-
tal calligraphic letters. Typically, we concern ourselveswith
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motions that map the body back into itself, that is,Bt = B0,
but this restriction is not important for what follows. We are
interested in discrete-time motions such as a repetitive mixing
protocol, that is, we allow onlyt = nT, whereT is the dura-
tion (period) of the motion andn is a positive integer. Then,
we may write the motion as a map

Φ: B0→ Bt (2)

such that after one iteration everyX in B0 is mapped to an
x = Φ(X) inBt, where byx ≡ (x, y)⊤ we shall denote the po-
sition vector in the deformed configuration andX ≡ (X,Y)⊤

represents the coordinates in the undeformed configuration.
The⊤ superscript denotes the transpose, meaning that (x, y)
is a row vector and (x, y)⊤ is a column vector. Unless other-
wise noted, all vectors not written out in component form are
considered to be column vectors.

We can now define the deformation gradient (or Jacobian
matrix of the map) as

F = (∇x)⊤ ≡ ∂(x, y)
∂(X,Y)

≡



∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y


. (3)

It is typically assumed that the map is invertible and differ-
entiable a sufficient number of times so thatF exists and
0 < detF < ∞.10,11 In this paper we relax the differentiability
assumption to consider a wider (and, arguably, more interest-
ing) class of motion.

The polar decomposition theorem2,10,11,13allows us to write

F = RU, (4)

where U is a symmetric positive definite matrix14 (due to
the assumption that detF > 0) andR is a proper-orthogonal
matrix.15 That is, we can locally decompose the deformation
into a rotationR and a stretchU. Because the matrixU is sym-
metric positive definite, it has an orthonormal basis of eigen-
vectors{e1, e2} and strictly positive real eigenvalues{σ1, σ2}
satisfying

Uei = σiei . (5)

The eigenvaluesσi and eigenvectorsei are called, respec-
tively, the principal stretches and the principal directions be-
cause an infinitesimal line segment of lengthdℓ oriented in the
directionei has lengthσidℓ after undergoing the motion (that
is, after the mapΦ is applied). Hence,σi > 1 for stretching
and 0< σi < 1 for compression along the directionei .

Problem 1. Considerdx = Φ(X +dX)−Φ(X), and show
thatdx = FdX+ higher order terms when‖dX‖ ≪ 1. (Hint:
use Taylor’s theorem for a vector function.) Here,‖dX‖ ≡√

dX · dX is the norm induced by the usual Euclidean dot
(inner) product. Then letdX = (dℓ)ei and show that‖dX‖ =
dℓ and‖dx‖ = σidℓ.

The stretches may depend on the coordinateX in the un-
deformed configuration and also on time (or, in the present
context, the number of timesn that the mixing protocol is re-
peated). Typically, we are concerned with the largest principal

stretchσ̂ = max{σ1, σ2}, which is a scalar field ˆσ = σ̂(X; n)
that describes the stretching experienced by the body due toits
motion. In practice, it is convenient to calculate the eigenval-
ues{κ1, κ2} of the (right) Cauchy–Green strain tensorC ≡ F⊤F
instead. These are just the squares of the principal stretches.
In this wayσ̂ can be computed without explicitly finding the
polar decomposition ofF.

Problem 2. Show thatκi = σ2
i using the definition ofC, the

polar decomposition theorem, and the properties of eigenval-
ues.

III. DYNAMICAL SYSTEMS FRAMEWORK OF KINEMATICS

Equation (2) also defines a dynamical system, which in
the most general sense is defined as a rule of evolution on
a state space (the body).16 This connection between the kine-
matics of continua and dynamical systems has been success-
fully exploited in the study of both fluid mixing2 and granular
mixing.4

There is a direct correspondence between the languages of
dynamical systems and continuum mechanics, the most im-
portant of which, for the present purposes, is the correspon-
dence between stretches andLyapunov (characteristic) expo-
nents. For a discrete-time map, these exponents are defined
(see, for example, Ref. 17, Sec. 5.3.1) as

λ(X , v) = lim
n→∞

1
n

ln ‖(∇Φn)⊤v‖, (6)

whereΦn ≡ Φ ◦ · · · ◦ Φ (n compositions of the map). The
Lyapunov exponents depend on the positionX and on the
directionv (‖v‖ = 1). The quantity∇Φn can be calculated
by the chain rule along a trajectory starting at a givenX in
B0. If F ≡ (∇Φ)⊤ happens to be independent ofX, we have
(∇Φn)⊤ = Fn. Lyapunov exponents are important in the con-
text of the asymptotic stability of infinitesimal perturbations
and, provided certain conditions are satisfied, can be inter-
preted as the growth (or decay) rates of these perturbations
along a trajectory.

A related concept is thefinite-timeLyapunov exponents de-
fined as

γ(X , v; n) =
1
n

ln ‖(∇Φn)⊤v‖. (7)

Note that if (∇Φn)⊤ = Fn, we have

max
v,0, ‖v‖=1

γ(X , v; n) =
1
n

ln
√
ρ
(
(Fn)⊤Fn

)
, (8)

whereρ(A) denotes thespectral radiusof the matrixA, that
is, its largest eigenvalue in absolute value. As we discussed
at the end of Sec. II, the square root of the largest eigenvalue
of (Fn)⊤Fn is the largest principal stretch (for the deformation
resulting from applying the mapn times). Therefore, there is a
one-to-one relation between the largest finite-time Lyapunov
exponent and the largest principal stretch:

γmax(X; n) ≡ max
v,0, ‖v‖=1

γ(X , v; n) =
1
n

ln σ̂(X; n). (9)



3

If the limit in Eq. (6) exists, then this relation carries over to
the largest (infinite-time) Lyapunov exponent as well.18

Problem 3. Derive Eq. (8) using the Rayleigh–Ritz theorem
from linear algebra.13 Hint: write out the norm in the defini-
tion of γ as an inner product and re-arrange terms. Also, you
are allowed to bring the max inside any logarithm or square
root because these functions are monotonically increasing.

We will call a dynamical system with a positive Lyapunov
exponentchaotic (although there are variety of sometimes
equivalent ways to define chaos19). If a motion in the sense
of continuum mechanics stretches the continuum ( ˆσ > 1),
the corresponding dynamical system has a positive Lyapunov
exponent by virtue of Eq. (9). Note that, in this context,
the chaotic dynamics occur in physical space, not in phase
space as is the case for the dynamical systems of classical
mechanics.20

There is a temptation to equate stretching and folding mo-
tions (equivalently, ones that give rise to chaotic dynamical
systems) with efficient generation ofaV. However, as we will
show in the following examples, there are other possibilities
for generatingaV without stretching and folding.

IV. EXAMPLE MIXING PROTOCOLS

One of the best known stretching and folding operations is
the baker’s map,2,17which can be found as early as 1951 in the
mixing literature21 and 1937 in the mathematics literature.22

In contrast, cutting and shuffling, two examples of which we
construct using interval exchange transformations, is a type of
mixing protocol that has been proposed only recently.7,23–25

Suppose we begin with a square region, half of which is filled
with a while material while the other half is filled with a gray
material (see Fig. 1). Then, from an inspection of the initial
(undeformed) and final (deformed) configurations of the con-
tinuum undergoing deformation described by these protocols,
it is clear that two of them—the baker’s map (BM) and the
second cutting and shuffling map (CS2)—lead to mixing of
the gray and white materials. However, the following simple
analytic calculations, which are confirmed by numerical cal-
culations in Sec. VI, show that only the baker’s map stretches
the material continuum and gives rise to a chaotic dynamical
system in the usual sense.

A. The baker’s map

We letBt = B0 = [0, 1]2, and write the baker’s mapΦBM:
[0, 1]2→ [0, 1]2 as

ΦBM(X) =



(
2X,

1
2

Y

)⊤
,

(
0 ≤ X <

1
2

)
;

(
2X − 1,

1
2

Y+
1
2

)⊤
,

(
1
2
≤ X ≤ 1

)
.

(10)

Simply put, this map involves compressing the unit square to
half its height, stretching it to twice its width, cutting verti-
cally the resulting rectangle in half alongX = 1/2 and stack-
ing the pieces [see Fig. 1 (BM)] – much like how a baker

kneads dough or a taffy pull machine makes candy.26 Other
applications include the Kenics mixer27 and the related par-
titioned pipe mixer (see, for example, Ref. 2, Sec. 8.2). The
baker’s map has even been used to explain the movement of
bubbles in a foam network.28 In fluid mixing, the cut and re-
stack step cannot be accomplished exactly, but cutting and re-
stacking is precisely what happens in the extrusion of multi-
layer plastics.29

Even though the baker’s map constitutes stretching, cutting
and re-stacking, it possesses (as we will show) the essential
property of a stretching and folding motion – stretching in
the continuum mechanics sense ( ˆσ > 1) or, equivalently, a
positive Lyapunov exponent. The Smale horseshoe map2,30,31

is classical example of stretching and folding. However, the
horseshoe map does not preserve area, which has significant
implications for the types of chaos exhibited by the dynamical
system because it allows for the existence ofattractors.32 We
avoid such complications by idealizing the Smale horseshoe
map as the baker’s map.

From Eqs. (3) and (10) it follows that

FBM =


2 0

0
1
2


(
X ,

1
2

)
, (11)

andFBM is undefined at the cutX = 1/2. The polar decom-
position of this matrix is simple:RBM = I andUBM = FBM.
The eigenvalues ofUBM areσ1 = 2 andσ2 = 1/2. Therefore,
the largest principal stretch is ˆσ = 2 > 1 everywhere after
one iteration of the protocol (n = 1). Clearly, the baker’s map
stretches the underlying material continuum.

BecauseFBM is independent ofX, iterating the baker’s
map results in

(
∇Φn

BM

)⊤
= Fn

BM =


2 0

0
1
2



n

=


2n 0

0
1
2n


(
X < Cn

BM
)
,

(12)
andFBM is undefined along the cuts, that is, the set of points

Cn
BM = {X in [0, 1]2 |X = i/2n, i = 1, 2, . . . , 2n−1; 0≤ Y ≤ 1}.

(13)
Once again,Rn

BM = I andUn
BM = Fn

BM. Consequently, the
largest principal stretch of the deformation is

σ̂BM(X; n) = 2n (X < Cn
BM). (14)

Turning to the Lyapunov exponents, the two directions of
interest are the principal directionsei (the eigenvectors of
UBM), which aree1 = (1, 0)⊤ ande2 = (0, 1)⊤. Therefore,
upon multiplying the vectorse1, e2 by the matrix in Eq. (12)
and taking the norm of the resulting vector, ln‖Fn

BMe1,2‖ =
±n ln 2. We substitute this expression into Eq. (7) and obtain
the finite-time Lyapunov exponents (along the principal direc-
tions) of the baker’s map

γBM(X , e1,2; n) = ± ln 2 (X < Cn
BM), (15)

and they do not exist forX in Cn
BM.

Problem 4. Show that the larger finite-time Lyapunov ex-
ponent in Eq. (15) can also be calculated using Eqs. (9) and
(14).
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The Lyapunov exponents defined in Eq. (6) can be obtained
by taking the limitn→ ∞ in Eq. (15):

λBM(X , e1,2) = ± ln 2
(
X < C∞BM

)
. (16)

A subtle but important point33 is that the set of cutsCn
BM does

not become dense in the domainB0 asn → ∞31 because it
is a set of measure zero. Thus the quantities in Eqs. (15) and
(16) exist almost everywhere.

SinceλBM(X , e1) > 0, it follows that the baker’s map gives
rise to a chaotic dynamical system; that is, if we were to track
an infinitesimal ball of material points of the continuum, they
will spread exponentially fast from each other with repeated
applications of the map because it possesses a positive Lya-
punov exponent. The simplicity of the baker’s map and its
ability to render many analytical calculations tractable have
made it one of the classic examples of a chaotic dynamical
system.34 We refer the reader to, for example, Ref. 35, Sec. 5.1
for a thorough overview, including the non-area-preserving
(dissipative) version of the map.

B. Cutting and shuffling maps

Cutting and shuffling is an operation well-known to card
players and mathematicians. One of the simplest dynamical
systems that can be successfully studied analytically is the
interval exchange transformation; see, for example, Ref. 36,
Sec. 14.5. An interval exchange transformation, which we
write asMS,Π: I → I, replaces a deck of cards with a con-
tinuous intervalI of the real line (we takeI = [0, 1] with-
out loss of generality) and subdivides it into a collection of
k disjoint subintervalsS = {I1, . . . ,Ik}. These subintervals
are translated (“shuffled”) according to a rule given by some
permutationΠ of the integers between 1 andk. Finally, the
intervalI is put back together asI = IΠ(1) ∪ · · · ∪ IΠ(k). The
unusual type of continuum motions encountered in tumbled
granular flows7,23–25 that we noted in Sec. I are specific two-
dimensional generalizations, calledpiecewise isometries,37,38

of these simple maps.
To mix the domainB0 = [0, 1]2, we can apply an inter-

val exchange transformation in theY-direction and extend it
in the X-direction by making each subintervalIi into a rect-
angle of unit horizontal length. This construction is a spe-
cial case of the more general class ofrectangle exchange
transformations.39 Consider the simple special case ofk =
8 equal subintervals shuffled according to the permutation
Π([12345678]) = [15263748], numbering the subintervals
from bottom to top so that intervals 1 through 4 are gray and
intervals 5 through 8 are white. This interval exchange trans-
formation is equivalent to cutting a deck of 8 cards exactly
in half and shuffling them perfectly so that the bottom card
from the first half (gray) is just below the bottom hard from
the second half (white), and so on. As shown in the middle
path of Fig. 1 (CS1), one iteration of this map results in lay-
ers of gray and white that appear identical to those produced
by two iterations of the baker’s map. It is not difficult to see
how one iteration of the same cutting and shuffling map with,

say,k = 64 subintervals results in the same number and place-
ment of layers of gray and white asn = 5 iterations of the
baker’s map. However, repeated application of the map CS1
does not result in mixing for any choice ofk. At n = 2 (for
k = 8), demixing40 occurs: the number of distinct stripes de-
creases from 8 to 4. Fortunately, there is a well-developed
theory to guide us in constructing interval exchange transfor-
mations that mix well.

To this end, consider the more general case in which the
intervals are not equal and are not shuffled in such an or-
derly fashion. It is well known that for an interval exchange
transformation to exhibit interesting behavior (specifically, to
have no periodic orbits and to be ergodic41), it must satisfy the
Keane condition.42 This condition requires that the ratio of the
lengths of adjacent intervals|Ii |/|Ii−1| be an irrational number
and that the permutationΠ be irreducible; that is, applyingΠ
to any of the subsets{1}, {1, 2}, {1, 2, 3} up to {1, 2, . . . , k − 1}
does not yield a permutation of just the elements of the sub-
set. For example, the permutationΠ([12345]) = [31254] is
reducible (that is, not irreducible) because the first threeele-
ments are a permutation of only themselves (neither 1, 2, nor
3 maps to 4 or 5). In contrast,Π([12345])= [31524] is irre-
ducible because 3 maps to 5. To satisfy the Keane condition,
we considerk = 4 subintervals, and suppose their lengths
are chosen so that the first is|I1| = η and each consecutive
subinterval has lengthr times the length of the previous one:
|Ii | = r |Ii−1|. Because the length ofI = [0, 1] must be pre-
served,η+ rη+ r2η+ r3η = 1. Givenr we can solve forη from
this relation. We taker =

√
1.3 and, numbering from bottom

to top,Π([1234]) = [2431] to satisfy the Keane condition.
In terms of the continuum mechanics language introduced in
Sec. II, the map takes the form

ΦCS2(X) =


(
X,Y+ (r + r2 + r3)η

)⊤
, (0 ≤ Y < η)(

X,Y− η)⊤, (η ≤ Y < [1 + r]η)(
X,Y+ (r3 − 1)η

)⊤
, ([1 + r]η ≤ Y < [1 + r + r2]η)(

X,Y− (1+ r2)η
)⊤
, ([1 + r + r2]η ≤ Y ≤ 1).

(17)

The action of this cutting and shuffling map, constructed from
an interval exchange transformation, is illustrated by theright
path in Fig. 1 (CS2).

Problem 5. Derive Eq. (17) by considering where the rect-
angles go in Fig. 1 (CS2). (Hint: rectangle 1 moves up by the
height of rectangles 2, 3, and 4, that is, (r + r2 + r3)η, etc.)

Because we are simply translating the strips in the vertical
direction, calculating the deformation gradient from Eq. (3) is
trivial:

FCS2=

(
1 0
0 1

) (
X < C1

CS2
)
, (18)

and it is undefined along the cuts, that is, the set of points
C1

CS2 = {X in [0, 1]2 | 0 ≤ X ≤ 1; Y = r iη, i = 0, 1, 2}.
Unlike for the baker’s map, finding the set of cutsCn

CS2 for
any n for the above cutting and shuffling map is not trivial
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FIG. 1. Illustration of mixing by three different protocols. The left path (BM) shows two applications of the baker’s map, which stretches the
underlying continuum. The middle path (CS1) is one iteration of a cutting and shuffling map withk = 8 intervals and length ratior = 1, which
does not stretch and leads to the same macroscopic picture. The right path (CS2) is two applications of a cutting shuffling map based on an
interval exchange transformation withk = 4 andr =

√
1.3, which also does not stretch but results in a different macroscopic picture. Only the

maps BM and CS2 produce an increasing number of finer striations of each color upon repeated application.

and, in general, an open problem.43 Still, it is a countable set,
and thereforeC∞CS2 is not dense inB0.

Problem 6. Write a computer program that finds the number
and location of the distinct cuts aftern applications ofΦCS2.
What happens if you changer orΠ?

For any given trajectory that does not start at someX in
Cn

CS2, it is clear that the deformation gradient aftern iterations
is the product of identity matrices like the one in Eq. (18).
HenceFn

CS2 = I. Therefore, the principal stretches areσ1 =

σ2 = 1, and

σ̂CS2(X; n) = 1 (X < Cn
CS2). (19)

From Eq. (7) andFn
CS2= I, we can calculate the finite-time

Lyapunov exponents along the principal directions:

γCS2(X , e1; n) = γCS2(X , e2; n) = 0 (X < Cn
CS2), (20)

and they do not exist along the cuts. If we take the limitn→
∞ in Eq. (20), we arrive at the Lyapunov exponents [Eq. (6)]:

λCS2(X , e1) = λCS2(X , e2) = 0
(
X < C∞CS2

)
. (21)

Equations (20) and (21) are in stark contrast with Eqs. (15)
and (16). In addition, this type of argument can be formalized

into a proof showing that all Lyapunov exponents are zero
for the more general class of piecewise isometry maps on the
plane.44

Problem 7. Show that the finite-time Lyapunov exponents
in Eq. (20) can also be obtained from Eqs. (9) and (19).

Therefore, the mapΦCS2 (and, by the same logic, the map
ΦCS1) does not give rise to chaotic dynamics. Specifically,
an infinitesimal ball of material points in the continuum does
not spread apart undern iterations of this map (for any choice
of n), unless the ball happens to overlay a cut. Hence, the
distance between any two points inB0 can grow only if they
become separated by a cut.

We have assumed that the same specific shuffle (defined by
the given permutationΠ) is performed once at each iteration
of the map. In doing so, we did not consider the possibility
that a white piece of material may be moved next to another
white one, meaning that the shuffle is not necessarily optimal
in terms of mixing. Thus, an improvement would be to allow
multiple shuffles to be performed at each step of the proto-
col. There is an elegant theory45,46 (in the context of shuffling
decks of cards) that gives an estimate of how many such shuf-
fles are required for the stack to be “sufficiently random.”
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V. DEFINING AND QUANTIFYING MIXING

The goal of the protocols we have considered is to mix the
gray with the white in Fig. 1, but what do we mean by “mix”?
If we go by the earlier intuitive definition, that is, to mix isto
generate interfacial areaaV, then one thing is clear about the
baker’s map protocol from Sec. IV A: the number of stripes
(of unit length) in the final configuration is 2n+1. Thus, the
bulk interfacial area between the gray and white materials is

aV = 2n+1 − 1 = 2ehn− 1. (22)

By expressingaV as an exponential function ofn with growth
rateh = ln 2 = γmax

BM ,47 we are able to illustrate the well-known
result that chaotic advection, through stretching and folding,
generatesaV at an exponential rate.

For the cutting and shuffling maps from Sec. IV B, the most
interfacial area that can be generated in one iteration is equal
to the number of cuts, which isk−1 for k subintervals. Hence,
assuming that the interface atY = 1/2 in the initial configura-
tion does not coincide with a cut, the upper bound is

aV ≤ 1+ (k− 1)n. (23)

Equation (23) is only an upper bound because not every cut
gives rise to an intermaterial interface after shuffling. For ex-
ample, while on the first iteration of the map CS1 in Fig. 1 the
seven cuts produce seven interfaces, on the second iteration
only three interfaces remain though we have made seven fresh
cuts. The nature of the upper bound in Eq. (23) illustrates
a general principle about interval exchange transformations
and a conjecture about their cousins piecewise isometries:the
growth of aV is sub-exponential (specifically, algebraic) be-
cause of the lack of stretching by the map.

Another way to define mixing is by using ideas from the
ergodic theory of dynamical systems. There, (strong) mixing
is succinctly defined (see, for example, Ref. 17, Sec. 3.7 or
Ref. 48) as

lim
n→∞

Area
(
Φ

n(A1) ∩A2
)
= Area(A1) Area(A2), (24)

whereA1 andA2 are any two subsets ofB0 and∩ denotes the
intersection of two sets (that is, the material they have in com-
mon). Put simply, under iteration of the mapΦ, the setA1

eventually becomes spread out evenly throughout the domain
B0 so that no matter what other setA2 we choose, the amount
of material in it that came fromA1 is the same. In a more for-
mal definition, Area( ) is replaced by the appropriate invariant
measure. The maps we consider here are area-preserving, and
therefore area is the proper measure of “size” for the defini-
tion.

Following the argument of Ref. 17 (Theorem 3.7.2), sup-
poseA1 is the gray region of the initial configurationB0 (re-
call Fig. 1), that is,A1 = [0, 1]×

[
0, 1

2

]
. Then, no matter what

set we pick forA2, the number of stripes of each material
within this volume grows exponentially, eventually resulting
in half of each. Therefore, asn→ ∞, Area

(
Φ

n(A1)∩A2
)→

1
2 Area(A2). Because Area(A1) = 1

2, it follows that the left-

and right-hand sides in Eq. (24) are equal, and the baker’s map
represents strong mixing.

For the cutting and shuffling maps it should be clear that
this argument breaks down. The second cutting and shuffling
map (CS2) in Fig. 1 illustrates how the gray and white stripes
under this map have non-uniform thickness and a pair of pre-
viously cut gray pieces may be “glued back together” at a later
iteration. Thus, a cutting and shuffling map based on an inter-
val exchange transformation can only be shown to beweakly
mixing49:

lim
n→∞

1
n

n−1∑

i=0

∣∣∣ Area
(
Φ

i(A1) ∩A2
) − Area(A1) Area(A2)

∣∣∣ = 0.

(25)
This proof is far too involved to present here. Put simply,
Eq. (25) relaxes the requirement that the same amount of ma-
terial from the subsetA1 be found in any other subsetA2.
Instead, it is only required that this be true on average, over
many iterations. Still, weak mixing is a stronger result than
the ergodicity property mentioned previously that an inter-
val exchange transformation acquires by satisfying the Keane
condition.50

To summarize, according to both the practical measure of
mixing defined in Eq. (1) and the measures of mixing defined
in Eqs. (24) and (25), both of these protocols mix, albeit at
different rates and with different “strengths.” In this respect,
the cutting and shuffling map defies conventional wisdom –
there is no stretching, all Lyapunov exponents are zero, and
the trajectories of material points in the continuum under this
map are not chaotic.51

VI. INFERRING STRETCHING FROM DISCRETE DATA

Suppose we did an experiment with white and gray putty
and recorded the initial and final configurations. We would
like to find out how the putty was stretched due to the mix-
ing protocols depicted in Fig. 1. In a typical experiment
only a finite number of material points in a continuum can be
tracked. In other words, some collection ofM2 material points
{Xi, j}i, j=1...M in B0 in the undeformed configuration are iden-
tified, and their locations{xi, j}i, j=1...M in Bt=nT in various de-
formed configurations (for example, for differentn) recorded,
as shown schematically in Fig. 2. From these values the mo-
tion and deformation of the continuum can be reconstructed.

A particularly simple and effective numerical approach to
achieving this reconstruction is the standard central difference
approximation to the deformation gradient [recall Eq. (3)]:

F̃(Xi, j; n) =



xi+1, j − xi−1, j

Xi+1, j − Xi−1, j

xi, j+1 − xi, j−1

Yi, j+1 − Yi, j−1
yi+1, j − yi−1, j

Xi+1, j − Xi−1, j

yi, j+1 − yi, j−1

Yi, j+1 − Yi, j−1


≈ (∇Φn)⊤

∣∣∣∣
X=Xi, j

.

(26)
This approximation is used, for example, in extractingLa-
grangian coherent structures(barriers to mixing and trans-
port) from experimental and simulated data,53 in determining
the type (hyperbolic, elliptic, or parabolic) of periodic points
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(that is,X such thatΦp(X) = X, p = 1, 2, . . .) of mixing
protocols,54,55 and in calculating the largest principal stretch
in fluid mixing experiments with laminar56,57 or turbulent58,59

velocity fields. Understanding stretch fields is of immense
practical importance in both the industrial and laboratoryset-
ting from the micro to the planetary scale. Their use in finding
barriers to transport and mixing in the ocean was discussed in
Ref. 60.

Φn

X
i, j

X
i, j+1

X
i+1, j

X
i, j−1

X
i−1, j

x
i, j

x
i−1, j

x
i, j+1

x
i+1, jx

i, j−1

undeformed

cofiguration B
0

deformed

cofiguration B
t = nT

FIG. 2. Cumulative movement of material points of the undeformed
continuumB0 aftern iterations ofΦ, resulting in the deformed con-
figurationBt=nT.

Tracking the motion of a collection of material points, as
illustrated schematically in Fig. 2, is the objective of this nu-
merical approach. It may seem that many rearrangements of
the continuum can result in a non-trivial deformation gradient,
at least somewhere in the domain. Therefore, it would appear
that stretching occurs under most maps. However, such intu-
ition can often be wrong.

Figure 3 shows the numerical results for ˆσ based on track-
ing the movement ofM2 = 2512 uniformly-distributed mate-
rial points under each of the maps in Fig. 1 for the number
of iterations of each map depicted there. Note that the three
narrow vertical lines of high ˆσ values for the baker’s map and
similar horizontal lines for the cutting and shuffling maps are
due to the cuts in these protocols causing the stretch to be in-
finite there (that is,Fn is undefined). The lines are vertical
for the baker’s map, because the cuts are vertical. The middle
line in Fig. 3(a) corresponds to the cut that is made in the first
application of the map, and the other two lines correspond to
the cut made in the second application of the map, which il-
lustrates the setC2

BM defined in Eq. (13). For the cutting and
shuffling maps, the lines are horizontal because the cuts are
horizontal. Specifically, the dark horizontal lines in Fig.3(b)
depicts the set of cutsC1

CS1 = {X in [0, 1]2 | 0 ≤ X ≤ 1; Y =
i/8, i = 1, . . . , 7}, while those in Fig. 3(c) depict the set of
cutsCn

CS2 (n = 2) noted after Eq. (18).
The apparent thickness of these lines is due to the coarse-

grained view of the deformation that we obtain from the nu-
merical data. Taking more points (largerM) makes these lines

arbitrarily thin. (Their thickness is≈ 2/M, that is, twice the
spacing between points because we used a central difference
approximation toF.) If we had applied the map more times
(largern) and/or had fewer material points, then the resulting
thicker cuts would completely obscure the picture.

In Fig. 3 the expected results are found. We applied the
baker’s map twice [recall Fig. 1 (BM)], so thatn = 2. From
Eq. (14), the largest principal stretch is ˆσ = 22 = 4. We can
also calculate ˆσ from the numerical data by taking the square
root of the largest eigenvalue of [F̃BM(X; 2)]⊤F̃BM(X; 2) (re-
call the discussion at the end of Sec. II), whereF̃ is defined
in Eq. (26). In complete agreement with the theoretical result,
the numerical calculation produces a “background” value (that
is, the value of ˆσ away from the cuts discussed above) of 4,
as shown in Fig. 3(a). This result can also be anticipated by
realizing that the baker’s map stretches the continuum in the
X-direction by a factor of 2. Applying the map twice gives a
stretch ratio of 4. Similarly, for both of the cutting and shuf-
fling maps, the largest principal stretch is equal to 1 for alln
from Eq. (19). The numerical calculation shown in Figs. 3(b)
and (c) confirms that ˆσ = 1 because the “background” value
in the plots is 1. In both cases, ˆσ is different from the “back-
ground” value only along the cuts, where it is infinite.

VII. CONCLUSION

The mixing of continua can be accomplished by a great
variety of maps of different complexities. In mechanics, the
central theme is stretching. Stretching leads to a positiveLya-
punov exponent and chaos when the problem is translated into
the language of dynamical systems. For mixing, the central
theme is generation of interfacial area per unit volumeaV.
Stretching and folding (equivalently, chaotic dynamics) is an
efficient way to do this.

Surprisingly, cutting and shuffling can also “rearrange” ma-
terial points in a continuum quite well. The cutting and shuf-
fling maps, which would be considered pathological in “clas-
sical” continuum mechanics,10,11 do not stretch, possess no
positive Lyapunov exponents, and exhibit no chaotic behavior
in the usual sense, yet they mix. Even though interfacial area
is produced at an asymptotically slower rate than for a chaotic
motion that stretches, for short times it appears possible for
cutting and shuffling to dominate stretching and folding, de-
pending on the number of cutsk in Eq. (23) and the growth
rateh in Eq. (22). Although we may be misled to conclude
that a cutting and shuffling map stretches the underlying con-
tinuum based on the complicated pattern of non-uniform stri-
ations produced by it, analytical and sufficiently-refined nu-
merical calculations show otherwise.

Recent work7,23–25 takes the idea of cutting and shuffling
even further, arguing that it provides the “skeleton” of certain
regimes of granular flow in tumblers. In the present work, we
illustrated how cutting and shuffling can lead to mixing with-
out chaos. And, in more complicated maps, cutting and shuf-
fling can lead to complex dynamics without chaos in any usual
sense of the word.7,23–25Thus, cutting and shuffling maps and
their generalizations are more than just a mathematical exer-
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(a) left path in Fig. 1 (BM)
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(b) middle path in Fig. 1 (CS1)
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(c) right path in Fig. 1 (CS2)
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FIG. 3. Largest principal stretch field ˆσ(X ; n) for the protocols depicted in Fig. 1. The background value is 4 in (a) but equals 1 in (b) and (c).

cise, and have the potential to accurately describe the under-
lying framework of mixing in certain physical systems.
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