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Universal fractal scaling of self-organized networks
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There is an abundance of literature on complex networks describing a variety of relationships
among units in social, biological, and technological systems. Such networks, consisting of inter-
connected nodes, are often self-organized, naturally emerging without any overarching designs on
topological structure yet enabling efficient interactions among nodes. Here we show that the num-
ber of nodes and the density of connections in such self-organized networks exhibit a power law
relationship. We examined the size and connection density of 47 self-organizing networks of various
biological, social, and technological origins, and found that the size-density relationship follows a
fractal relationship spanning over 6 orders of magnitude. This finding indicates that there is an
optimal connection density in self-organized networks following fractal scaling regardless of their
sizes.

PACS numbers: 89.75.Da, 89.75.Hc, 89.75.Fb

There has been considerable interest in the organiza-
tion of complex networks since the descriptions of small-
world [1] and scale-free [2] networks at the end of the
1990s. Of particular interest are naturally occurring
complex networks based on self-organizing principles [2].
In particular, self-organized processes have been shown
to exhibit some scale-free and fractal behaviors [2, 3].
Barabási and colleagues demonstrated that scale-free de-
gree distributions in many self-organized networks [2, 4–
6], which has sparked a great debate [7–9] on the actual
existence of scale-free behavior in naturally occurring
networks. Although the degree distributions of many net-
works were initially considered to follow power law distri-
butions [9–13], severe truncation has often been observed
[14]. Nevertheless, it is intriguing that self-organized net-
works can exhibit scale-free degree distributions, and this
has led scientists to the search for universality within self-
organized systems.

The literature on network organization encompasses
a broad range of disciplines and disparate types of net-
works. The literature boasts networks that range from
email communications to protein interactions to word fre-
quencies in texts. The number of nodes and the density
of connections in these networks span multiple orders
of magnitude, complicating comparisons of metrics ex-
tracted from various studies. One common characteristic,
however, is that the majority of them are self-organized–
from social to technological to biological networks, the
interactions between the nodes were not predetermined
by a top-down blueprint design.

The work reported here describes a universal relation-
ship between network size (the number of nodes, N) and
connection density (the ratio of the number of existing
edges to the number of all possible connections, d) across
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various types of systems. Network parameters from 47
unique networks were collected from the literature or
publicly available databases. TABLE I lists N and d, as
well as the average node degree K and the total number
of edges m from these networks. Although d and/or K
have been reported in some of these networks, these met-
rics are recalculated based on N and m for consistency.
Namely, we use the formulae d = 2m/N(N − 1) and
K = 2m/N . Although some of the networks are directed
networks, we use the formulae for undirected networks
in order to focus on the density of connections regard-
less of their directions. Note that, from these formulae,
the relationship between K and d can be expressed as
d = K/(N − 1). If N is sufficiently large, d ≃ K/N .
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FIG. 1: Log-log plot of the relationship between the number
of nodes in a network (network size, N) and the density of
connections (d). Each point represents a different network
based on the previous literature. The fit shows a power-law
relationship that spans more than 6 orders of magnitude with
an exponent of -0.986 consistent with a scale-free fractal be-
havior.
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TABLE I: Networks considered in the size-density relationship analysis. Parameters culled from the literature are network
size (N) and the number of edges (m). The network density (d) and the mean degree (K) are calculated based on N and
m. Networks marked with ‡ contain directed connections. All other networks contain undirected connections. Note that the
functional cortical connectivity network was generated by applying a threshold to a correlation matrix, yielding a network that
had the edge density of approximately 10%.

Network classes Networks N m d K References

Biological C. Elegans metabolic 453 2033 1.986×10−2 9.0 [15]
C. Elegans neural 277 1918 5.018×10−2 13.8 [16, 17]
E. Coli reaction 315 8915 0.180 56.6 [16, 18]
E. Coli substrate 282 1036 2.615×10−2 7.3 [16, 18]
Freshwater food web ‡ 92 997 0.238 21.7 [19, 20]
Functional cortical connectivity 90 405 0.101 9.0 [16, 21]
Macaque cortex 95 1522 0.341 32.0 [16, 17]
Marine food web ‡ 135 598 6.611×10−2 8.9 [19, 22]
Metabolic network 765 3686 1.261×10−2 9.6 [4, 19]
Neural network ‡ 307 2359 5.022×10−2 15.4 [19]
Yeast protein interactions 2115 2240 1.002×10−3 2.1 [19, 23]

Information Altavista ‡ 2.035×108 2.130×109 1.028×10−7 20.9 [19]
Book purchases 105 441 8.077×10−2 8.4 [16]
Citation ‡ 783339 6.716×106 2.189×10−5 17.1 [19]
Rogets thesaurus ‡ 1022 5103 9.781×10−3 10.0 [24]
Word adjacency 112 425 6.837×10−2 7.6 [16, 25]
Word co-occurrence 460902 1.70×107 1.601×10−4 73.8 [19]
WWW nd.edu ‡ 325729 1.470×106 2.770×10−5 9.0 [26]

Social Biology co-authorship 1.520×106 1.180×107 1.021×10−5 15.5 [19, 27]
Company directors 7673 55392 1.882×10−3 14.4 [19, 28]
Dolphins 62 159 8.408×10−2 5.1 [16, 29]
Email URV 1133 5452 8.502×10−3 9.6 [30]
Email messages ‡ 59912 86300 4.809×10−5 2.9 [19, 31]
Email address book ‡ 16881 57029 4.003×10−4 6.8 [19, 32]
Film actors 449913 2.552×107 2.521×10−4 113.4 [19]
Football 115 613 9.352×10−2 10.7 [33]
German directors 4185 30438 3.477×10−3 14.5 [16, 34]
Jazz 198 2742 0.141 27.7 [35]
Karate 34 78 0.139 4.6 [36]
Math co-authorship 253339 496489 1.547×10−5 3.9 [19, 37]
Newspaper article co-occurrence 459 1422 1.353×10−2 6.2 [16, 38]
Physics co-authorship 52909 245300 1.753×10−4 9.3 [19, 27]
Student relationships 573 477 2.911×10−3 1.7 [19, 39]
Telephone calls ‡ 4.7×107 8.0×107 7.243×10−8 3.4 [19]
UK directors 8850 39741 1.015×10−3 9.0 [16, 34]
US directors 11057 74414 1.217×10−3 13.5 [16, 34]

Technological Electronic circuits 24097 53248 1.834×10−4 4.4 [19, 40]
Internet (1998) 10697 31992 5.592×10−4 6.0 [11, 19]
Internet (2006) 22963 48436 1.837×10−4 4.2 [41]
Peer-to-peer network 880 1296 3.351×10−3 2.9 [19, 42]
Power grid (EU) 2783 3762 9.718×10−4 2.7 [43]
Power grid (US) 4941 6594 5.403×10−4 2.7 [1, 19]
Software classes ‡ 1377 2213 2.336×10−3 3.2 [19, 44]
Software packages ‡ 1439 1723 1.665×10−3 2.4 [19, 45]
Train routes 587 19603 0.114 66.8 [19, 46]
Trans-European gas network 24010 25554 8.866×10−5 2.1 [47]
US airlines 332 2126 3.869×10−2 12.8 [48]

When the network size N and the connection density d
are plotted on a log-log plot (FIG 1), there is an obvious
linear relationship between the variables. The fit to the
data (d = 7.890N−0.986) reveals a power law relationship
between the size and density of the networks. The scal-

ing exponent approaches negative one (−1), indicating
that the relationship is fractal in nature with 1/f prop-
erties. Despite the wide variety of networks, there is a
pronounced power law relationship between the size and
the density covering more than 6 orders of magnitude.
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The fit to the data is very strong (R2 = 0.928 on log10
transformed data), and there is no indication of trunca-
tion at the very large network sizes. It can be seen from
FIG 1 that there are two extraordinarily large networks
included in the analysis. These networks demonstrate
that there is no truncation of the relationship at the ex-
treme values. Even when these networks are removed,
the correlation remains very strong (R2 = 0.893) and
the exponent is −0.978. Thus, these two points are not
unduly influencing the analysis.
When N is sufficiently large, a consequence of a power-

law relationship d ∝ N−1 is that K does not depend on
N . This stems from the relationship d ≃ K/N , which
can be rewritten as K ≃ dN = cN−1N = c where c
is a constant. Since our observation above indicates a
power-law relationship between d and N with the expo-
nent approximately −1, the scatter plot ofK and N does
not indicate any association between them (see FIG 2).
In other words, a large network size in terms of N is
not necessarily associated with large K. It is interesting
to note, in FIG 2, that there seems to be a small num-
ber of networks with unusually large K compared to the
other networks. This is likely a consequence of the mean
degree K having a long-tail distribution, as seen in its
cumulative distribution plot in FIG 3. In this type of
distributions, outliers such as K > 50 are likely to oc-
cur while the vast majority of K is reasonably small and
similar. These outliers seem to occur over the range of
N , indicating that such outliers occur randomly without
any systematic dependance on N .
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FIG. 2: A scatter plot of the mean degree K of various net-
works plotted against their network size N . Surprisingly, K
does not change systematically over 6 orders of magnitude of
N .

The findings reported here demonstrate a universal re-
lationship in self-organized networks such that the net-
work size dictates the density. The fractal behavior ob-
served is of particular interest because it indicates that
self-organized networks are critically organized. The
number of connections within each network is scaled to
the size of the network, and this universal behavior likely
represents an optimal organization that ensures maximal
capacity at a minimal cost. Furthermore, the critical or-
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FIG. 3: The complementary cumulative distribution (1 −

F (K)) of the mean degree K. The distribution exhibits a
profile of a long-tail distribution despite the limited number
of observations (47 networks).

ganization would indicate that a density reduction would
decrease the communication capabilities of the system.
Interestingly, this relationship maintains the mean degree
K approximately constant across different network sizes.
A similar finding has been reported on the mean degree
of the gas and power networks from European countries
despite the large disparity in the network size [43, 47].
Our findings further generalizes the constant mean de-
gree K in a variety of network types. It should be noted
that the relationship d ∝ N−1 is not expected from the
relationship d ≃ K/N alone, as K could also depend on
N rather than being constant. To the best of our knowl-
edge, this work is the first to demonstrate the power-law
relationship between d and N , and consequently K being
almost constant over 6 orders of magnitude of N .
It is true that one could artificially generate networks

that do not exhibit the size-density relationship found
above. In fact, the literature contains such artificially
generated networks that do not lie near our plotted line.
However, such artificially created networks probably do
not have real world relevance. We show here the scale-
free relationship between network size and connection
density in real networks from such diverse origins, sup-
porting the notion of a universal law for network organi-
zation.
While replication of these findings from additional net-

works will be important, there are a number of practi-
cal implications of these findings. First, the construc-
tion of networks is inherently limited by the sampling
procedure used to identify nodes and links. If a self-
organized network is found to disobey this relationship,
one should seriously consider that there was a bias in the
sampling of the network structure. Second, when build-
ing artificial networks to be compared to naturally occur-
ring systems, the size-density relationship should roughly
follow the 1/f relationship. For example, in studies of
functional brain networks, cross-correlation matrices of
nodal time series are often thresholded to identify links
between nodes [49]. The optimal threshold to be ap-



4

plied is not known, and the typical solution is to utilize
multiple thresholds [50] producing networks with various
densities. Based on the findings presented here, an op-
timal threshold can be easily determined, resulting in a
network following the 1/f size-density relationship. Fi-
nally, engineered networks for practical applications may
realize an optimal cost-benefit trade-off by ensuring that
the density of connections is appropriate for the network
size.
We show an important, apparently universal feature of

self-organized networks: fractal scaling of size and den-

sity of connections. This fractal scaling is independent
of network types, as the analysis spanned a wide gamut
of networks, including biological, information, social, and
technological. Thus, it appears that there is an underly-
ing principle to organizing these self-emergent networks,
a principle that probably ensures optimal network func-
tioning.
This work was supported in part by the National In-

stitute of Neurological Disorders and Stroke (NS070917,
NS056272, and NS039426-09S1) and the Translational
Science Institute of Wake Forest University (TSI-K12).
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