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Abstract. In this paper, we present a new algorithm, such that, for the
learning with errors (LWE) problems, if the errors are bounded — the
errors do not span the whole prime finite field F,; but a fixed known
subset of size D (D < q), which we call the learning with bounded errors
(LWBE) problems, we can solve it with complexity O(n”).
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1 Introduction

Recently, the Learning with Errors (LWE) problem, introduced by Regev in 2005
[4], has attracted a lot of attentions in theory and applications due to its usage
in cryptographic constructions with some good provable secure properties. The
main claim is that it is hard as worst-case lattice problems and hence the related
cryptographic constructions.

LWE problem can be described as follows.

First, we have a parameter n, a prime modulus q , and an ”error” probability
distribution ~ on the finite field Fj with q elements.

Let IIg, on F, be the probability distribution obtained by selecting an el-
ement A in F}' randomly and uniformly, choosing e € F;, according to x, and
outputting (A4, < A, S > +e), where + is the addition that is performed in F,.

An algorithm that solves LWE with modulus ¢ and error distribution s, if,
for any S in Fj' , with an arbitrary number of independent samples from I1g .,
it outputs S (with high probability).

In the case q = 2, this problem corresponds to the learning parity with noise
(LPN) problem.

There are several ways to solve this family of problems. One naive way to
solve LWE is through a maximum likelihood algorithm by directly solving about
O(n) equations. This leads to an algorithm that uses only O(n) samples, and
runs in time 29 (nlogn). There are other similar naive algorithms with similar
complexity. A more sophisticated algorithm is developed by Blum, Kalai, and



Wasserman [2] , and it requires 20(7) samples and time. This algorithm is based
on the method to find a special small set of equations among 2°(") equations to
solve the problem.

According to the recent survey of Regev[5], the Blum et al. algorithm is the
best known algorithm for the LWE problem, which is related to the fact that
the best known algorithms for lattice problems require 2°(" time.

On the theory side, there are many arguments that the LWE problem is very
hard due to the complexity of current algorithms and due to the connection of
LWE problems with various known hard problems such as the LPN problem, and
the worst-case lattice problems including GAPSVP (the decision version of the
shortest vector problem) and SIVP (the shortest independent vectors problem).
It is even considered to be a hard problem for quantum computers.

In this paper, we present a new algorithm to solve a subclass of the LWE
problems, which, we call, the learning with bounded errors (LWBE) problems,
namely the errors from the queries do not span the whole finite field but a fixed
known subset of size D (D < ¢). We show that we can solved this problem with
complexity O(n”) and O(n?) queries.

This paper is organized as follows. Section 2 presents the algorithm and
explains how it works with an example. Section 3 presents the basic analysis of
the algorithm and the complexity. The last section is devoted to conclusion and
discussions.

2 The new algorithm

Let us first define LWBE problem.

2.1 The LWBE

LWBE problem is given as follows.

There are a parameter n, a prime modulus ¢, and a bounded ”error” prob-
ability distribution & on the finite field F;, with q elements such that there are
only D (and D < q) elements whose distribution probability from & is not zero
while the rest are all zero.

Let ES = {e1,..,ep} be the set of elements whose probability in the distri-
bution « is not zero and we call this set the error set. This set could include the
zero element in F,; and not necessarily.

Let IIs, on Fj be the probability distribution obtained by selecting an el-
ement A in F}' randomly and uniformly, choosing e € F; according to x, and
outputting (A4, < A, S > +e), where additions are performed in Fy,.

An algorithm that solves LWBE with modulus ¢ and error distribution &, if,
for any S in F' , with an arbitrary number of independent samples from I7g ,,
it outputs S (with high probability).



Surely we first conclude this problem excludes the case that ¢ = 2, since the
error can only be 1.

The main motivation to consider this problem comes from the consideration
that often in the lattice related problems, the short vector ( or the ’error’) are
often select mainly from the small set {1,—1}. Another motivation come from
the consideration that some of the distribution x in LWE can be approximated
well by bounded distributions.

2.2 The new algorithm

Let
z1
T2
S:
L
Let

Q= D\ (n+D)
~\n+D/) Dl(n-1)V

which is the number of monomial ( including 1) in the polynomial ring Fi[z1, ..., 25,]
when D is less than ¢g. Therefore the number of monomials (excluding 1) is ex-
actly Q — 1.

For a fixed D, clearly @ is of the class O(n”).

1. Step 1. Queries
We will make Q' = Q + O(n) queries.
For the i-th query, we shall derive a linear equation that

E ai;x; = b,

where b; carries the errors. Therefore it is only probabilistically true.
For each such linear equation, we will produce the degree D equation:

D

H(Z Qi T5 — bz + Bk) =0.

k=1

We collect those degree D equations to form a new set we call C.

Note here that D needs to be less than ¢, otherwise the equation
above will be totally trivial, namely the so-called field equations:

q _



2. Step 2. Linearization
We linearize the set of equations C' such that we assign each monomial of
Z1,..,Zy ( not including 1) a new variable y; and the number of monomial
is exactly @ — 1 and we assign x; to be yg—n1i—1.
Then this linearization will produce a new set of linear equations in the form
of

LxY =B,
where
Y1
Y2
Y = ’
Yo-1

and L is a Q' x (Q — 1) matrix and B a constant vector
3. Step 3. Solving the linear equation

LY =B

and the output (Yg—n—1,-..,¥o—1) gives the solution S and we end the algo-
rithm.

Note here that we have more rows than columns in L.

If we can not find the solution ( there are too many depend equations), we
make another R ( of size O(n) ) queries to derive a new set of linear equations

Z a;’,jzj = b;,
and produce another R degree D equation:

D
H(Z a; jxj —b; —ep) = 0.
k=1

Then we amend these equation to C' and then go to Step 2 again.

The reason that Step 2 works is very obvious since we know that
one of the linear factors of the polynomial Hszl(ain]‘ — b; + e,) must
be zero since it covers all possible errors.

The key point is that the degree D equations in C' are precise
equations and therefore 100 percent correct unlike the linear equa-
tions. This fundamental idea behind this method is the same as that
is used in [1], namely to use interpolation formula to even out the
noise to derive a set of precise equations



3 A toy example

We will do a example over GF(5).

Let n=2.
Let us assume that our error set is ES = (0, 1) and in this case D = 2. This

means the error e can only be 1 ( or 0 — no error).

‘We also have
Q=c<(Dg”)> =0<<2i2)) 6.

In this case, let us assume that we make 6 queries and the query vectors are

randomly selected as

(1,1)
(3,2)
(_L 3)
(L _1)
(2-1)
(37 71)
Then query results are given as
1
2
2
W= 0
1
3

The corresponding probabilistic linear equations can be written as the set:

($1+$2—1):O
(31‘14—21‘2—2):0
(—x1+329—2)=0

(‘Tl*IQ)ZO

(21’1—1’2—1):0

(3x1 —x9 — 3) =0,

which are the probabilistically true.
From this, because the error set is {0,1}, we can derive the corresponding

quadratic (d=2) equations as:

(1’1 + T9 — 1)(1’1 + 1‘2) =0
(3.’E1 + 21’2 - 2)(31’1 + 21’2 - ].) =0
(—x1+ 322 —2)(—21+ 222 —1)=0
(.%‘1 — xg)(xl — X9 + 1) =0
(2]}1 — T2 — 1)(2331 — l‘g) =0
(le — X9 — 3)(3I1 — X9 — 2) = 07



which are 100 percent true.
Now we assign the linearization variables as:

Ty
2
Y T * T2
_ : _ 2
Y = = x5
x
T2
Ys

Then we derive the linear equation:

LxY =B

12144 i
42414 Y
10133 :
13114

41131 :
44100 Ys

— O O N NNO

This gives us the solution that:

Y1
Y2

Il
W N =

From this we derive that

6)-()-6)
)

Therefore the correct query result should be

Therefore



The error vector then is given as

[es]]
I
OO, OO -

namely only the first and the third queries carry errors and the rest are correct.

4 Analysis of the Algorithm and Complexity

One can see easily that the success of the algorithm depends on if we can solve
the linear equation:

LxY =B.

Since the query vectors A; are randomly and uniformly chosen, it is not
unreasonable to assume that coefficients of the matrix L are somewhat randomly
and uniformly chosen, in this case, it is not at all difficult to deduce that the
random matrix L has a very good probability (roughly 1 —1/q) ) to be of rank
@ — 1 and therefore we can derive a solution. In all the extensive experiments (
thousands and ¢ > 3 ), we have never failed in the first round of our algorithm.
Therefore the conclusion is that algorithm works nearly 100 percent.

In the case of toy example in section above, if we select from the 6 queries we
have 5 queries, which is minimum we need, we can see that among all 6 choices,
all but one also are sufficient to solve the problem. The only one that does not
work is the case we choose the queries 1,2,4,5,6. This confirms our argument
above.

Now let us look at the complexity. It is clear that the matrix size of L if
roughly

(NP /D)2

and therefore the complexity of solving LY = B is roughly
N3P /(6 x D).

Therefore, we conclude that for any fixed D, we have polynomial time solver in
terms of n.

On the other hand, surely the biggest memory requirement is to store the
matrix L, which is of the size

(NP/DY?,

and could be a serious problem if D and n is large. However in this case, we can
use some of the polynomial solving algorithms such as MXL algorithms [3] to
make fewer queries but using more time to solve it, which we are now working
on.



Another remark we have is that our algorithm does not really depend on
the distribution of the errors on the error set. Similarly we can see easily if we
have a distribution x that is not bounded but some of the subset’s errors has
extremely small probability, then we surely can assume those guys to have
zero probability and apply our algorithm. This, in some way, is to approximate
a distribution with a bounded distribution. This will definitely open ways for
applying our algorithm for new attacks and LWE related cryptosystems.

5 Conclusion

We present a new algorithm to solve the learning with bounded errors (LWBE)
problems, whose errors are bounded — the errors do not span the whose finite
field but a fixed know subset of size D, with complexity O(n?).

This algorithm, we believe, present a new direction to look at the security of
the cryptographic algorithms that are related to the LWE problem. If in terms
of their design, we can reduce them to a LWBE type of problem, it is clear that
we can break them in polynomial time. We are now looking at various LWE
related problems and cryptosystems and we believe that our algorithm can be
used to really enhance exiting attacks.
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