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Abstract

We use the Gould-Hopper (GH) polynomials to investigate the Novikov-

Veselov (NV) equation. The root dynamics of the σ-flow in the NV equation

is studied using the GH polynomials and then the Lax pair is found. In

particulr, when N = 3, 4, 5,, one can get the Gold-fish model. The singular

rational solutions of the NV equation are also constructed via the Pfaffian of

the GH polynomials. The asymptotic behavior is discussed.
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1 Introduction

The Novikov-Veselov equation [3, 11, 25, 32] is defined by (U and t is real)

Ut = ∂3zU + ∂̄zU + 3∂z(V U) + 3∂̄z(V̄ U), (1)

∂̄zV = ∂zU.

When z = z̄ = x, we get the famous KdV equation (U = V = V̄ )

Ut = 2Uxxx + 12UUx.

The equation (1) can be represented as the form of Manakov’s triad [21]

Ht = [A,H ] +BH,

where H is the two-dimension Schrodinger operator

H = ∂z∂̄z + U

and

A = ∂3z + V ∂z + ∂̄3z + V̄ ∂̄z, B = Vz + V̄z̄.

It is equivalent to the linear representation

Hψ = 0, ∂tψ = Aψ. (2)

We see that the Novikov-Veselov equation (1) preserves a class of the purely potential

self-adjoint operators H . Here the pure potential means H has no external electric

and magnetic fields. The periodic inverse spectral problem for the two-dimensional

Schrodinger operatorH was investigated in terms of the Riemann surfaces with some

group of involutions and the corresponding Prym Θ-functions [6, 13, 17, 14, 24, 29].

On the other hand, it is known that the Novikov-Veselov hierarchy is a special

reduction of the two-component BKP hierarchy [26, 31](and references therein). In

[26], the authors showed that the Drinfeld-Sokolov hierarchy of D-type is a reduction

of the two-component BKP hierarchy using two different types of pseudo-differential

operators, which is different from Shiota’s point of view [29]. Finally, it is worthwhile

to notice that the Novikov-Veselov equation (1) is a special reduction of the Davey-

Stewartson equation [18, 19].

Let Hψ = Hω = 0. Then via the Moutard transformation [1, 22, 23]

U(z, z̄) −→ Û(z, z̄) = U(z, z̄) + 2∂∂̄ ln[i

∫
(ψ∂ω − ω∂ψ)dz − (ψ∂̄ω − ω∂̄ψ)dz̄]

ψ −→ θ =
i

ω

∫
(ψ∂ω − ω∂ψ)dz − (ψ∂̄ω − ω∂̄ψ)dz̄,
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one can construct a new Schrodinger operator Ĥ = ∂z∂̄z + Û and Ĥ 1
θ
= 0. The

extended Moutard transformation was established such that Û(t, z, z̄) and V̂ (t, z, z̄)

defined by [15, 27]

Û(t, z, z̄) = U(t, z, z̄) + 2∂∂̄ ln iW (ψ, ω),

V̂ (t, z, z̄) = V (t, z, z̄) + 2∂∂ ln iW,

where the skew product W is defined by

W (ψ, ω) =

∫
(ψ∂ω − ω∂ψ)dz − (ψ∂̄ω − ω∂̄ψ)dz̄ + [ψ∂3ω − ω∂3ψ + ω∂̄3 − ψ∂̄3ω

+ 2(∂2ψ∂ω − ∂ψ∂2ω)− 2(∂̄2ψ∂̄ω − ∂̄ψ∂̄2ω) + 3V (ψ∂ω − ω∂ψ)

− 3V̄ (ψ∂̄ω − ω∂̄ψ)]dt, (3)

will also satisfy the Novikov-Veselov equation. In particular, we can use U = V = 0

as the seed solution. Then H = ∂∂̄. Let us consider the holomorphic function

P (z, t) and satisfy
∂P

∂t
=
∂3P

∂z3
. (4)

Then we have

Theorem 1.1 [30]

Let P1(t, z) and P2(t, z) be holomorphic functions of z and satisfy (4). One defines

ω1 = P1 + P̄1 and ω2 = P2 + P̄2. Then

U(t, z, z̄) = 2∂∂̄ ln iW (P1,P2), (5)

V (t, z, z̄) = 2∂∂ ln iW (P1,P2), (6)

where the skew product W is

W (P1,P2) = P1P̄2 − P2P̄1 +

∫
[(P ′

1P2 − P1P ′
2)dz + (P̄1P̄2

′ − P̄1
′P̄2)dz̄]

+

∫
[P ′′′

1 P2 − P1P
′′′

2 + 2(P ′
1P

′′

2 − P ′′

1P ′
2) + P̄1P̄2

′′′

− P̄1

′′′

P̄2

+ 2(P̄1

′′

P̄2
′ − P̄1

′P̄2

′′

)]dt, (7)

is a solution of Novikov-Veselov equation. In particular, if P1(t, z) and P2(t, z) are

polynomials, then the solution is rational in z, z̄, t.

In [2, 7, 8, 12], the rational solutions and line solitons of the Novikov-Veselov

equation (1) are constructed by the d-bar dressing method. To get these kinds

of solutions, the scattering datum have to be delta-type and the reality of U also

puts some extra constraints on them. In these cases, the W -function of (7) can be
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expressed as a determinant of some matrix.

To study the dispersion relation (4), Taimanov and Tsarev introduced the σ-flows

for polynimial-type solutions [30]

PN(t, z) = zN + σ1z
N−1 + σ2z

N−2 + · · ·+ σN−1z + σN .

Then the flow (4) generates a linear flow

σ̇k = (N −K + 3)(N − k + 2)(N − k + 1)σk−3, k = 1, 2, 3 · · ·N. (8)

it can be seen that σ1, σ2 are conserved quantities. Indeed, σ1, σ2, · · · , σN are the

elementary symmetric polynomials in the roots q1, q2, · · · , qN of PN(z):

σ1(~q) = −
N∑

i=1

qi, σ2(~q) =
∑

i<j

qiqj,

σ3(~q) = −
∑

i<j<k

qiqjqk, · · · , σN(~q) = (−1)Nq1q2 · · · qN . (9)

The integrable (even linear) evolution of ~σ = (σ1, σ2, · · · , σN ) induces a dynamical

system on the symmetric product SNC of the complex roots . We call such a dy-

namical system on SNC a σ-system.

From (7), we see that given two solutions P1(t, z) and P2(t, z), by a substitution

of eiλ1P1(t, z) and e
iλ2P2(t, z), where λ1 and λ2 are real-valued constants, into (7),

one obtains a solution of the Novikov-Veselov solution. Therefore, to each pair of

holomorphic solutions of (4), we can get an (S1 × S1)-family of solutions to the

Novikiv-Veselov equation [30].

The paper is organized as follows. In section 2, we describe the Gould-Hopper

polynomials using the generating function and establish the recursive relation. In

section 3, one studies the root dynamics of σ-flow and the Lax pair is constructed.

Also, the asymptotic behavior is discussed. In section 4, the singular rational solu-

tions are found using the Gould-Hopper polynomials and their asymptotic behavior

is investigated. Section 5 is devoted to the concluding remarks.

2 Gould-Hopper Polynomials

In this section, we introduce the Gould-Hopper polynomials and use them to get

the solutions of (4). To investigate the polynomial-type solutions of (4), inspired

by the work in [10], one utilizes the Gould-Hopper polynomials [9]. The generating

function of the Gould-Hopper polynomials PN(t, z) is

eλz+λ3t =

∞∑

N=0

PN (t, z)λ
N .
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Indeed, the Gould-Hopper polynomials PN(t, z) has the operator representation

PN(t, z) = et∂
3
z zN = [1 + t∂3z +

t2∂6z
2!

+
t3∂9z
3!

+
t4∂12z
4!

+ · · ·]zN .

We remark that in general the Gould-Hopper polynomials are defined by P
(m)
N (t, z) =

et∂
m
z zN . Here we take m = 3.

One notices that the Gould-Hopper polynomials PN(t, z) are characterized by

(4) and PN(0, z) = zN . For example,

P0 = 1, P1 = z, P2 = z2, P3 = z3 + 6t, P4 = z4 + 24tz,

P5 = z5 + 60tz, P6 = z6 + 120tz3 + 360t2

P7 = z7 + 210tz4 + 2520z, P8 = z8 + 336tz5 + 10080t2z2

P9 = z9 + 504tz6 + 30240t2z3 + 60480t3

P10 = z10 + 720tz7 + 75600t2z4 + 604800t3z

Actually, we have

PN(t, z) = N !

[N/3]∑

k=0

tkzN−3k

k!(N − 3k)!

dPN(t, z)

dz
= NPN−1(t, z) (10)

From the operation calculus, one has

(z + 3t∂2z )PN−1(t, z) = PN(t, z), N ≥ 1.

Hence we yield the recursive relation

PN(t, z) = zPN−1(t, z) + 3t(N − 1)(N − 2)PN−3(t, z). (11)

We can see that if we consider the equation (4) with the initial data of analytical

function

P (0, z) =
∞∑

N=0

αNz
N ,

then the formal solution is

P (t, z) = et∂
3
z

∞∑

N=0

αNz
N =

∞∑

N=0

αNPN(t, z). (12)

The successive operations of the operator (z + 3t∂2z ) on the solution (12) can help

us construct more solutions of (4). For example, if P (0, z) = sin z, then we have,

et∂
3
z sin z = et∂

3
z

∞∑

N=0

(−1)N

(2N + 1)!
z2N+1 =

∞∑

N=0

(−1)N

(2N + 1)!
P2N+1(t, z)

= sin(z − t).
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The last equation uses the fact et∂
3
z ez = ez+t. Hence

(z + 3t∂2z )
N sin(z − t), N = 0, 1, 2, 3, 4, · · ·

are also solutions of (4).

Remark: Let’s define

ϕ(λ) = eλz+λ3t − e−λz−λ3t = 2sinh(λz + λ3t).

Then ϕ(λ) satisfies

ϕ(λ)zz = λ2ϕ(λ), ϕ(λ)t = ϕ(λ)zzz.

On expanding

ϕ(λ) =

∞∑

i=0

φiλ
2i+1,

one has

φ0,zz = 0, φi+1,zz = φi, φi,t = φi,zzz, i ≥ 0.

Actually,

φi =

[ 2i+1

3
]∑

k=0

1

k!(2i+ 1− 3k)!
z2i+1−3ktk, i ≥ 0.

It is known that φi can be used to construct the Wronskian solutions of the KdV

equation. The details can be found in [20].

3 Root Dynamics of σ-flows

In this section, one uses the Gould-Hopper polynomials to study the root dynamics

of the σ-flows (8).

Let’s write PN(t, z) as

PN(t, z) = (z − q1(t))(z − q2(t)) · · · (z − qN (t)).

Then from the equation (4), one gets the root dynamics

q̇j = −6
N∑

m<n, j 6=m,n

1

(qj − qm)(qj − qn).
(13)

For example, when N=3, we have

q̇1 = −6
1

(q1 − q2)(q1 − q3)

q̇2 = −6
1

(q2 − q1)(q2 − q3)

q̇3 = −6
1

(q3 − q1)(q3 − q2)
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For N=4, we get

q̇1 = −6[
1

(q1 − q2)(q1 − q3)
+

1

(q1 − q3)(q1 − q4)
+

1

(q1 − q2)(q1 − q4)
]

q̇2 = −6[
1

(q2 − q1)(q2 − q3)
+

1

(q2 − q3)(q2 − q4)
+

1

(q2 − q1)(q2 − q4)
]

q̇3 = −6[
1

(q3 − q1)(q3 − q2)
+

1

(q3 − q1)(q3 − q4)
+

1

(q3 − q2)(q3 − q4)
]

q̇4 = −6[
1

(q4 − q2)(q4 − q3)
+

1

(q4 − q1)(q4 − q2)
+

1

(q4 − q1)(q1 − q3)
]

We notice that since σ1 and σ2 are conserved quantities, one knows that

N∑

i=1

qi,
N∑

i=1

q2i

are conserved densities of (13).

Now, we can investigate the properties of the root dynamics (13) by the Gould-

Hopper polynomials:

• Initial Value Problem : The root dynamics of σ-flow can be solved by

PN(t, z) = (z − q1(t))(z − q2(t)) · · · (z − qN (t))

= PN(t, z) + C1PN−1(t, z) + · · ·+ CNP0(t, z), (14)

where the constants C1, C2, · · · , CN−1, CN are determined by the initial values

of q1(0), q2(0), · · · , qN(0), that is,

C1 = −
N∑

i=1

qi(0), C2 =
∑

i<j

qi(0)qj(0),

C3 = −
∑

i<j<k

qi(0)qj(0)qk(0), · · · ,

CN = (−1)Nq1(0)q2(0) · · · qN (0).

Therefore, it is seen that the solutions q1(t), q2(t), · · · , qN(t) can be obtained

algebraically.

• Lax pair:

Firstly, we study the root dynamics of the Gould-Hopper polynomials, which

correspond to the initial values q1(0) = q2(0) = · · · = qN (0) = 0.

Let’s define the N ×N matrix by

X(t) =





ai,i+1 = 1, if i = 1, 2, 3, · · · , N ;

ai,i−2 = −3t(i− 1)(i− 2), if i = 3, 4 · · · , N − 1;

0, otherwise.

(15)
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Then from the recursive relation (11), one knows that

PN(t, z) = det(X(t)− zIN ).

For example, when N = 3,

X(t) =




0 1 0

0 0 1

−6t 0 0


 ;

N=4,

X(t) =




0 1 0 0

0 0 1 0

−6t 0 0 1

0 −18t 0 0


 ;

N=5,

X(t) =




0 1 0 0 0

0 0 1 0 0

−6t 0 0 1 0

0 −18t 0 0 1

0 0 −36t 0 0



.

We can write X(t) as

X(t) = R(t)QR−1(t),

where Q = diag(q1(t), q2(t), · · · , qN (t) and

R(t) =




P0(q1, t) P0(q2, t) P0(q3, t) · · · P0(qN , t)

P1(q1, t) P1(q2, t) P1(q3, t) · · · P1(qN , t)

P2(q1, t) P2(q2, t) P2(q3, t) · · · P2(qN , t)
...

PN(q1, t) PN(q2, t) PN(q3, t) · · · PN(qN , t)



.

For instance, when N = 3,

R(t) =




1 1 1

q1 q2 q3
q21 q22 q23


 ;

N=4,

R(t) =




1 1 1 1

q1 q2 q3 q4
q21 q22 q23 q24

q31 + 6t q32 + 6t q33 + 6t q34 + 6t


 ;
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N=5,

R(t) =




1 1 1 1 1

q1 q2 q3 q4 q5
q21 q22 q23 q24 q25

q31 + 6t q32 + 6t q33 + 6t q34 + 6t q35 + 6t

q41 + 24t q42 + 24t q43 + 24t q44 + 24t q45 + 24t



.

From the initial value problem, we notice that the polynomials tn can be

replaced by the elementary symmetric polynomials of the roots q1, q2, · · · , qN .
Hence one has R(~q). It can be seen that

Ẋ(t) = RLR−1,

where

L = Q̇ + [M,Q], M = R−1Ṙ.

For example, when N=3,

L(t) =




q̇1 q̇2
q2−q3
q3−q1

q̇3
q3−q2
q2−q1

q̇1
q1−q3
q3−q2

q̇2 q̇3
q3−q1
q1−q2

q̇1
q1−q2
q2−q3

q̇2
q2−q1
q1−q3

q̇3


 ;

N=4,

L(t) =




q̇1 − q̇2(q2−q3)(q2−q4)+6
(q1−q3)(q1−q4)

− q̇3(q3−q2)(q3−q4)+6
(q1−q2)(q1−q4)

− q̇4(q4−q2)(q4−q3)+6
(q1−q2)(q1−q3)

− q̇1(q1−q3)(q1−q4)+6
(q2−q3)(q2−q4)

q̇2 − q̇3(q3−q1)(q3−q4)+6
(q2−q4)(q2−q1)

− q̇4(q4−q1)(q4−q3)+6
(q2−q3)(q2−q1)

− q̇1(q1−q2)(q1−q4)+6
(q2−q3)(q4−q3)

− q̇2(q2−q4)(q2−q1)+6
(q4−q3)(q1−q3)

q̇3 − q̇4(q4−q1)(q4−q2)+6
(q2−q3)(q1−q3)

− q̇1(q1−q2)(q1−q3)+6
(q4−q3)(q4−q2)

− q̇2(q2−q3)(q2−q1)+6
(q4−q3)(q4−q1)

− q̇3(q3−q1)(q3−q2)+6
(q4−q1)(q4−q2)

q̇4



.

Since

dX(t)

dt
=

{
ai,i−2 = −3(i− 1)(i− 2), if i = 3, 4 · · · , N − 1;

0, otherwise,

we know dX(t)
dt

is a nilpotent matrix and hence L is a nilpotent one, too. So

tr(Lr) = tr[
dX(t)

dt
]r = 0, r = 1, 2, 3, . . . , ..

Actually, a simple calculation yields

L[N
2
]+1 = 0, N ≥ 3.

Now,
d2X(t)

dt2
= 0

9



will imply the Lax equation

dL(t)

dt
= [L,M ]. (16)

For N = 3, 4, 5, we see that, by Maple software, qi satisfies the following

Goldfish model [5], a limiting case of the Ruijesenaars-Schneider system:

q̈i = 2
∑

j 6=i

qiqj
qi − qj

. (17)

The reason is that Pi, i = 3, 4, 5 are linear in t-variable(see the appendix). For

N = 6, we have from the diagonal terms of the Lax equation (16)

q̈i = 2
6∑

j 6=i

qiqj
qi − qj

+

∑6
j=1 (some quadratic terms of ~q)qj + 720

∏6
i 6=j(qi − qj)

.

Secondly, we consider the general case. Let’s define the 2D Appell polyno-

mials Rn(z, t) by means of the generating function [4]:

GA(z, t, λ) = A(λ)eλz+λ3t =
∞∑

n=0

Rn(z, t)
λn

n!
,

where

A(λ) =

N∑

0

Rk

k!
λk,

R′
ks being constants and R0 = 1. Then one has the following representation

formulas

RN =

N∑

h=0

(
N

h

)
RN−hPh(z, t)

= N !

N∑

h=0

RN−h

(N − h)!

[h
3
]∑

r=0

zh−3rtr

(h− 3r)!r!
. (18)

It’s easy to see that the polynomials Rn(z, t) also satisfy the linear equation

(4). When comparing (14) with (18), we have

RN−h =
CN−h(

N
h

) .

Now, it’s suitable to introduce the coefficients of the Taylor expansion

A′(λ)

A(λ)
=

∞∑

n=0

αn
λn

n!
.
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It can be seen that the coefficients αn can be expressed by R0,R1, · · · ,Rn+1

(or the initial datum). The recurrence relation for the 2D Appell polynomial

RN(z, t) can be written as follows [4]:

R0(z, t) = 1

RN (z, t) = (z + α0)RN−1(z, t) + 3t(N − 1)(N − 2)RN−3(z, t)

+
N−2∑

k=0

(
N − 1

k

)
αN−k−1Rk(z, t). (19)

When A(λ) = 1, this recursive relation becomes (11). Hence the relation (19) is

a generalization of (11) for arbitrary initial data. From the recurrence relation

(19), one can also similarly construct the matrix corresponding to (15). Then

we follow the previous procedures and finally can get the Lax equation (16)

for general case. Therefore the root dynamics (13) is Lax-integrable. But the

computations are more involved and one doesn’t pursuit them here.

We notice here that for N = 3, 4, 5 the root dynamics of RN also satisfies

the Gold-fish model (17).

• Asymptotic behavior

It is known that the Gould-Hopper polynomial PN(t.z) has the scaling prop-

erty:

PN(t, z) = t
N
3 P̂N(

z

t1/3
), (20)

where P̂N(η) is the so-called Appell polynomials [4] (and references therein)

in η = z
t1/3

. For example,

P8(t, z) = z8 + 336tz5 + 10080t2z2 = t
8

3 [η8 + 336η5 + 10080η2]

= t
8

3 P̂8(η).

Then the k-th zero λ
(k)
N of P̂N(η) determines the dynamics of the root qk, i.e.,

qk(t) = λ
(k)
N t1/3.

Since P̂N(ξλ
(k)
N ) = 0, ξ3 = 1, one knows that the roots qk are located on the

circles in the plane with time dependent radius. Finally, from the Initial value

Problem (14) and (20), we know that when t → ∞ and z → ∞ such that

|z|3/t→ constant, PN(t, z) plays the dominant role; hence one yields

qk(t) → λ
(k)
N t1/3.

Consequently, the roots asymptotically will follow diagonal lines.
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4 Singular Rational Solutions of Novikov-Vaselov

equation

In this section, we construct singular rational solutions using the Pfaffian and the

extended Moutard transformation via the Gould -Hopper polynomials.

In the extended Moutard transformation (7), we see that P1 and P2 can be

replaced by linear combinations of Gould-Hopper polynomials to construct rational

solutions of Novikov-Vaselov equation. In particular, let

P1(t, z) =

N∑

m=0

amPm(t, z), P2 = 1,

where am are constants. Then a simple calculation can get, using (4) and (7),

W = 3(P1 − P̄1)− (

N∑

m=0

amz
m −

N∑

m=0

āmz̄
m) + iC,

U(z, z̄, t) = 2∂∂̄ ln iW = 2
∂(3P1 −

∑N
m=0 amz

m)∂̄(3P̄1 −
∑N

m=0 āmz̄
m)

[3(P1 − P̄1)− (
∑N

m=0 amz
m −

∑N
m=0 āmz̄

m) + iC]2
,

V (z, z̄, t) = 2∂∂iW = 2
W∂∂W − (∂W )2

W 2
(21)

= 2
[3(P1 − P̄1)− (

∑N
m=0 amzm −∑N

m=0 āmz̄m) + iC]∂∂[3P1 −
∑N

m=0 amzm]− [∂(3P1 −
∑N

m=0 amzm)]2

[3(P1 − P̄1)− (
∑N

m=0 amzm −∑N
m=0 āmz̄m) + iC]2

,

where C is real constant. From (21), we see that the solution is singular at the

imaginary part of W when it is zero. Also, there are infinite wave functions corre-

sponding to them (see the equation (27) below ).

As before, let t → ∞ and z → ∞ such that |z|3/t → constant. Then from (20),

noting that η = z
t1/3

,

P1(t, z) → aNPN (t, z) = aN t
N
3 P̂N(

z

t1/3
).

Hence

U(z, z̄, t) → 2t−2/3N2aN āN (3P̂N−1(η)− ηN−1)(3
¯̂
PN−1(η̄)− η̄N−1)

[aN(3P̂N (η)− ηN)− āN(3
¯̂PN(η̄)− η̄N)]2

. (22)

Eventually, the solution is singular when the imaginary part of aN(3P̂N(η)− ηN) is

equal to zero. If we let |z|3/t = |η| → ∞, then one can get from (22)

|U(z, z̄, t)| ∈ O(
1

|z|2 ).
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In particular, letting

P1(t, z) = aPN(t, z) + b, a, b constants,

we have

W = a(3PN(t, z)− zN )− ā(3P̄N(t, z̄)− z̄N ) + iC

and using (10), one can reduce the equation (21) to

U(z, z̄, t) = 2
aā(3NPN−1 − zN−1)(3NP̄N−1 − z̄N−1)

[a(3PN(t, z)− zN )− ā(3P̄N(t, z̄)− z̄N ) + iC]2

V =

2
aN(N − 1)[a(3PN − zN )− ā(3P̄N − z̄N ) + iC](PN−2 − zN−2)− a2N2(3PN−1 − zN−1)2

[a(3PN(t, z)− zN )− ā(3P̄N(t, z̄)− z̄N ) + iC]2
.

For instance, if we choose P1(t, z) = aP3(t, z) + b = a(z3 + 6t) + b, then we obtain

by (21)

U =
32aāz2z̄2

[az3 + 9at− āz̄3 − 9āt+ iC/2]2

= −8
(α2 + β2)(x2 + y2)2

(3αx2y − αy3 + βx3 − 3βxy2 + 9βt+ C/4)2

V = −18
a2z4

[az3 + 9at− āz̄3 − 9āt+ iC/2]2
,

where a = α + βi. Also, by (22), we have as t→ ∞

U → 9

2
t−2/3 aāη2η̄2

[a(η3 + 9)− ā(η̄3 + 9)]2
,

which is singular when the imaginary part of aη3 + 9a is zero.

One sees that if P1(t, z) is any holomorphic solution of (4), then the formula (21)

is still correct.

Next, we use the Gould-Hopper polynomials to construct Pfaffian-type solutions.

Given any N Gould-Hopper polynomials ψ1, ψ2, ψ3, · · · , ψN , (or their linear combina-

tions), the N-step extended Moutard transformation can be obtained in the Pfaffian

[1, 23] ( also see [16, 28])

P (ψ1, ψ2, ψ3, · · · , ψN ) =

{
Pf(ψ1, ψ2, ψ3, · · · , ψN ), N even,

P̃ f(ψ1, ψ2, ψ3, · · · , ψN ), N odd,

P f(ψ1, ψ2, ψ3, · · · , ψN ) =
∑

σ

ǫ(σ)Wσ1σ2
Wσ3σ4

· · ·WσN−1σN
(23)

P̃ f(ψ1, ψ2, ψ3, · · · , ψN ) =
∑

σ

ǫ(σ)Wσ1σ2
Wσ3σ4

· · ·WσN−2σN−1
ψσN

, (24)

13



where Wσiσj
= W (ψσ(i), ψσ(j)) is defined by the skew product (7), i.e.,

W (ψσ(i), ψσ(j)) =
√
−1cij + ψσ(i)ψ̄σ(j) − ψσ(j)ψ̄σ(i) +

∫ z

0

[ψ′
σ(i)ψσ(j) − ψσ(i)ψ

′
σ(j)]dz

+

∫ z̄

0

[ψ̄σ(i)ψ̄
′
σ(j) − ψ̄′

σ(i)ψ̄σ(j)]dz̄

+

∫ t

0

[ψ
′′′

σ(i)ψσ(j) − ψσ(i)ψ
′′′

σ(j) + 2(ψ′
σ(i)ψ

′′

σ(j) − ψ
′′

σ(i)ψ
′
σ(j)) + ψ̄σ(i)ψ̄

′′′

σ(j)

− ψ̄
′′′

σ(i)ψ̄σ(j) + 2(ψ̄
′′

σ(i)ψ̄
′
σ(j) − ψ̄′

σ(i)ψ̄
′′

σ(i))]dt, (25)

where cij is real constant and cij = −cij . The summations σ in (23) and (24) run

from over the permutations of {1, 2, 3, · · · , N} such that σ1 < σ2, σ3 < σ4, σ5 <

σ6, · · · and
σ1 < σ3 < σ5 < σ7 · · · ,

with ǫ(σ) = 1 for the even permutations and ǫ(σ) = −1 for the odd permutations.

Then the solution U and V can be expressed as [1]

U = 2∂∂̄[lnP (ψ1, ψ2, ψ3, · · · , ψN)]

V = 2∂∂[lnP (ψ1, ψ2, ψ3, · · · , ψN)], (26)

and the corresponding wave function is

ϕ =
P (ψ1, ψ2, ψ3, · · · , ψN , ϑ)

P (ψ1, ψ2, ψ3, · · · , ψN)
, (27)

where ϑ is an arbitrary Gould-Hopper polynomial different from ψ1, ψ2, ψ3, · · · , ψN .

We notice here that since the skew productW (ψi, ψj) in (25) is purely imaginary

number, we sometimes use iP (ψ1, ψ2, ψ3, · · · , ψN) in (26) to replace P (ψ1, ψ2, ψ3, · · · , ψN),

depending on N
2
( N even ) or N−1

2
( N odd ). For example, when N = 3, one has

U = 2∂∂̄[ln iP (ψ1, ψ2, ψ3)] = 2∂∂̄{ln i[ψ1W (ψ2, ψ3)− ψ2W (ψ1, ψ3) + ψ3W (ψ1, ψ2)]}
V = 2∂∂[ln iP (ψ1, ψ2, ψ3)] = 2∂∂{ln i[ψ1W (ψ2, ψ3)− ψ2W (ψ1, ψ3) + ψ3W (ψ1, ψ2)]},

and the corresponding wave function is

ϕ =
P (ψ1, ψ2, ψ3, ϑ)

iP (ψ1, ψ2, ψ3)
=
W (ψ1, ψ2)W (ψ3, ϑ)−W (ψ1, ψ3)W (ψ2, ϑ) +W (ψ1, ϑ)W (ψ2, ψ3)

i[ψ1W (ψ2, ψ3)− ψ2W (ψ1, ψ3) + ψ3W (ψ1, ψ2)]
.

We remark here that in [7, 8], the rational solutions are also obtained using the

d-bar dressing method; however, the corresponding wave functions are of different

types, i.e., there is a product with the exponential function. A comparison between

these rational solutions could be interesting.

14



5 Concluding Remarks

In this paper we have studied the Novikov-Veselov equation using the Gould-Hopper

polynomials. Firstly, one investigates the root dynamics of the so-called σ-flows and

gets the Lax pair; moreover, one finds that when N = 3, 4, 5, the root dynamics

satisfies the Gold-Fish model. Although the Lax pair is established, only two con-

served densities are found. The reason is that the Lax operator is nilpotent. Also,

the asymptotic behavior is studied. Secondly, we construct singular rational solu-

tions using the Gould-Hopper polynomials and the skew product (25); besides, the

Pfaffian-type solutions and the corresponding wave functions are obtained via these

polynomials.
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Appendix

Gold-Fish Model

For the Goldfish Model

q̈i = 2
∑

j 6=i

q̇iq̇j
q̇i − qj

,

its initial value problem can be solved by the statement: z = qi(t), i = 1, 2, · · · , N
are the N roots of the equation [5]

N∑

i=1

q̇i(0)

z − qi(0)
=

1

t
.

It can be seen that it is a polynomial in z with coefficients linear in t. Then the

special choices of initial datum can get the solutions of the root dynamics (13) for

the cases N = 3, 4, 5. To illustrate it, we take N = 3 as an example. When N = 3,

we have
q̇1(0)

z − q1(0)
+

q̇2(0)

z − q2(0)
+

q̇3(0)

z − q3(0)
=

1

t
.

After some calculations, one yields

z3 − z2[(q1(0) + q2(0) + q3(0)] + z[q1(0)q2(0) + q2(0)q3(0) + q1(0)q3(0)]− q1(0)q2(0)q3(0)

= tz2[q̇1(0) + q̇2(0) + q̇3(0)]− tz[q̇1(0)(q2(0) + q3(0)) + q̇2(0)(q1(0) + q3(0))

+q̇3(0)(q1(0) + q2(0))] + t[q̇1(0)q2(0)q3(0) + q̇2(0)q1(0)q3(0) + q̇3(0)q1(0)q2(0)]. (A.1)

On the other hand, from (14), one knows q1(t), q2(t), q3(t) are the roots of the poly-

nomial

P3(z, t) = z3 + 6t+ C1z
2 + C2z + C3

or

z3 + C1z
2 + C2z + C3 = −6t. (A.2)

Comparing (A.1) with (A.2), we are able to get the following linear equations for

q̇1(0), q̇2(0), q̇3(0) :

q̇1(0) + q̇2(0) + q̇3(0) = 0

q̇1(0)(q2(0) + q3(0)) + q̇2(0)(q1(0) + q3(0)) + q̇3(0)(q1(0) + q2(0)) = 0

q̇1(0)q2(0)q3(0) + q̇2(0)q1(0)q3(0) + q̇3(0)q1(0)q2(0) = −6. (A.3)

So if the determinant of the matrix



1 1 1

q2(0) + q3(0) q1(0) + q3(0) q1(0) + q2(0)

q2(0)q3(0) q1(0)q3(0) q1(0)q2(0)


 (A.4)
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is not equal to zero, then the initial velocities q̇1(0), q̇2(0), q̇3(0) can be uniquely

expressed by the initial positions q1(0), q2(0), q3(0). For the cases N = 4, 5, the

linear equations (A.3) and the matrix (A.4) can be obtained similarly.
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