
On CCA-Secure Fully Homomorphic Encryption

J. Loftus1, A. May2, N.P. Smart1, and F. Vercauteren3

1 Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

{loftus,nigel}@cs.bris.ac.uk
2 Horst Görtz Institut für IT-Sicheiheit,

Ruhr-Universität Bochum.
Universtitätsstraße 150,

D-44780 Bochum,
Germany.

alex.may@rub.be
3 COSIC - Electrical Engineering,
Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10,
B-3001 Heverlee,

Belgium.
fvercaut@esat.kuleuven.ac.be

Abstract. It is well known that any encryption scheme which supports
any form of homomorphic operation cannot be secure against adaptive
chosen ciphertext attack. The question then arises as to what is the most
stringent security definition which is achievable by homomorphic encryp-
tion schemes. Prior work has shown that various schemes which support
a single homomorphic encryption scheme can be shown to be IND-CCA1,
i.e. secure against lunchtime attacks. In this paper we extend this analysis
to the recent fully homomorphic encryption scheme proposed by Gen-
try, as refined by Gentry, Halevi, Smart and Vercauteren. We show that
the basic Gentry scheme is not IND-CCA1; indeed a trivial lunchtime
attack allows one to recover the secret key. We then show that a mi-
nor modification to the variant of Smart and Vercauteren will allow one
to achieve IND-CCA1, indeed PA-1, in the standard model assuming a
lattice based knowledge assumption. We end by examining the security
of the scheme against another security notion, namely security in the
presence of ciphertext validity checking oracles.

1 Introduction

That some encryption schemes allow homomorphic operations, or exhibit so
called privacy homomorphisms in the language of Rivest et. al [20], has often been
considered a weakness. This is because any scheme which supports homomorphic

operations is malleable, and hence is unable to achieve the de-facto security
definition for encryption namely IND-CCA2. However, homomorphic encryption
schemes do present a number of functional benefits. For example schemes which
support a single additive homomorphic operation have been used to construct
secure electronic voting schemes, e.g. [7, 10].

The usefulness of schemes supporting a single homomorphic operation has
led some authors to consider what security definition existing homomorphic en-
cryption schemes meet. A natural notion to try to achieve is that of IND-CCA1,
i.e. security in the presence of a lunch-time attack. Lipmaa [18] shows that the
ElGamal encryption scheme is IND-CCA1 secure with respect to a hard problem
which is essentially the same as the IND-CCA1 security of the ElGamal scheme;
a path of work recently extended in [2] to other schemes.

A different line of work has been to examine security in the context of Plain-
text Awareness, introduced by Bellare and Rogaway [5] in the random oracle
model and later refined into a hierarchy of security notions (PA-0, -1 and -2) by
Bellare and Palacio [4]. Intuitively a scheme is said to be PA if the only way an
adversary can create a valid ciphertext is by applying encryption to a public key
and a valid message. Bellare and Palacio prove that a scheme which possesses
both PA-1 (resp. PA-2) and is IND-CPA, is in fact secure against CCA1 (resp.
CCA2) attacks.

The advantage of Bellare and Palacio’s work is that one works in the standard
model to prove security of a scheme; the disadvantage appears to be that one
needs to make a strong assumption to prove a scheme is PA-1 or PA-2. The
assumption required is a so-called knowledge assumption. That such a strong
assumption is needed should not be surprising as the PA security notions are
themselves very strong. In the context of encryption schemes supporting a single
homomorphic operation Bellare and Pallacio show that the Cramer-Shoup Lite
scheme [8] and an ElGamal variant introduced by Damg̊ard [9] are both PA-
1, and hence IND-CCA1, assuming the standard DDH (to obtain IND-CPA
security) and a Diffie–Hellman knowledge assumption (to obtain PA-1 security).
Informally, the Diffie–Hellman knowledge assumption is the assumption that an
algorithm can only output a Diffie–Hellman tuple if the algorithm “knows” the
discrete logarithm of one-tuple member with respect to another.

Rivest et. al originally proposed homomorphic encryption schemes so as to
enable arbitrary computation on encrypted data. To perform such operations
one would require an encryption scheme which supports two homomorphic op-
erations, which are “complete” in the sense of allowing arbitrary computations.
Such schemes are called fully homomorphic encryption (FHE) schemes, and
it was not until Gentry’s breakthrough construction in 2009 [13, 14] that such
schemes could be constructed. Since Gentry’s construction appeared a number
of variants have been proposed, such as [12], as well as various simplifications
[23] and improvements thereof [15]. All such schemes have been proved to be
IND-CPA, i.e. secure under chosen plaintext attack.

At a high level all these constructions work in three stages: an initial some-
what homomorphic scheme which supports homomorphic evaluation of low de-

gree polynomials, a process of squashing the decryption circuit and finally a
bootstrapping procedure which will give fully homomorphic encryption and the
evaluation of arbitrary functions on ciphertexts. In this paper we focus solely on
the basic somewhat homomorphic scheme, but our attacks and analysis apply
also to the extension using the bootstrapping process.

In this paper we consider the Smart–Vercauteren variant [23] of Gentry’s
scheme. In this variant there are two possible message spaces; one can either use
the scheme to encrypt bits, and hence perform homomorphic operations in F2;
or one can encrypt polynomials of degree N over F2. When one encrypts bits
one achieves a scheme that is a specialisation of the original Gentry scheme, and
it is this variant that has recently been realised by Gentry and Halevi [15]. We
call this the Gentry–Halevi variant, to avoid confusion with other variants of
Gentry’s scheme, and we show that this scheme is not IND-CCA1 secure.

In particular we present a trivial complete break of the Gentry–Halevi variant
scheme, in which the secret key can be recovered via a polynomial number of
queries to a decryption oracle. The attack we propose works in a similar fashion
to the attack of Bleichenbacher on RSA [6], in that on each successive oracle call
we reduce the possible interval containing the secret key, based on the output of
the oracle. Eventually the interval contains a single element, namely the secret
key. Interesting all the Bleichenbacher style attacks on RSA, [6, 19, 22], recover a
target message, and are hence strictly CCA2 attacks, whereas our attack takes
no target ciphertext and recovers the key itself.

We then go on to show that a modification of the Smart–Vercauteren variant
which encrypts polynomials can be shown to be PA-1, and hence is IND-CCA1.
Informally we use the full Smart–Vercauteren variant to recover the random
polynomial used to encrypt the plaintext polynomial in the decryption phase,
and then we re-encrypt the result to check against the ciphertext. This forms a
ciphertext validity check which then allows us to show PA-1 security based on a
new lattice knowledge assumption. Our lattice knowledge assumption is a natural
lattice based variant of the Diffie–Hellman knowledge assumption mentioned
previously. In particular we assume that if an algorithm is able to output a non-
lattice vector which is sufficiently close to a lattice vector then it must “know”
the corresponding close lattice vector. We hope that this problem may be of
independent interest in analysing other lattice based cryptographic schemes.

Finally, we end by examining possible extensions of the security notion for
homomorphic encryption. We have remarked that a homomorphic encryption
scheme (either one which supports single homomorphic operations or a FHE
scheme) cannot be IND-CCA2, but we have examples of IND-CCA1 schemes.
The question then arises as to whether IND-CCA1 is the “correct” security
definition, i.e. whether this is the strongest definition one can obtain. In other
contexts authors have considered attacks involving partial information oracles.
In [11] Dent introduces the notion of a CPA+ attack, where the adversary is
given access to an oracle which on input of a ciphertext outputs a single bit
indicating whether the ciphertext is valid or not. Such a notion was originally
introduced by Joye, Quisquater and Yung [17] in the context of attacking a

variant of the EPOC-2 cipher which had been “proved” IND-CCA2. And was
recently re-introduced under the name of a CVA (ciphertext verification) attack
by Hu et al [16], in the context of symmetric encryption schemes. We use the
term CVA rather than CPA+ as it conveys more easily the meaning of the
security notion.

Such ciphertext validity oracles are actually the key component behind the
traditional application of Bleichenbacher style attacks against RSA, in that one
uses the oracle to recover information about the target plaintext. We show that
our FHE scheme which is IND-CCA1 is not IND-CVA, by presenting an IND-
CVA attack. The attack is not of the Bleichenbacher type, but is now more akin
to the security reduction between search and decision LWE [21]. This attack
opens up the possibility of a new FHE scheme which is also IND-CVA, a topic
which we leave as an open problem.

Paper Summary: In Section 2 we recall standard definitions and notation. In
Section 3 we discuss three variants of Gentry’s scheme, all based on the simpli-
fication of Smart and Vercauteren. In Section 4 we describe our attack on the
Gentry–Halevi variant. Then in Section 5 we introduce our lattice knowledge
assumption and prove our third variant to be plaintext aware. Then in Section 6
we turn to discussing the security in the presence of ciphertext validity oracles.

2 Notation and Standard Definitions

For integers z, d reduction of z modulo d in the interval [−d/2, d/2) will be
denoted by [z]d. For a rational number q, bqe will denote the rounding of q to
the nearest integer, and [q] denotes the (signed) distance between q and the
nearest integer, i.e. bqe = q − [q]. The notation a← b means assign the object b
to a, whereas a← B for a set B means assign a uniformly at random from the
set B. If B is an algorithm this means assign a with the output of B where the
probability distribution is over the random coins of B.

For a polynomial F (X) ∈ Z[X] we let ‖F (X)‖∞ denote the ∞-norm of the
coefficient vector, i.e. the maximum coefficient in absolute value. If F (X) ∈ Q[X]
then we let bF (X)e denote the polynomial in Z[X] obtained by rounding the
coefficients of F (X) to the nearest integer.

Fully Homomorphic Encryption: A fully homomorphic encryption scheme
is a tuple of five algorithms E = (KeyGen,Encrypt,Decrypt,Add,Mult) in which
the message space is a ring (R,+, ·) and the ciphertext space is also a ring
(R,⊕,⊗) such that for all messages m1,m2 ∈ R, and all outputs (pk, sk) ←
KeyGen(1λ), we have

m1 + m2 = Decrypt(Encrypt(m1, pk)⊕ Encrypt(m2, pk), sk)
m1 ·m2 = Decrypt(Encrypt(m1, pk)⊗ Encrypt(m2, pk), sk).

Security Notions for Public Key Encryption: For a public key encryp-
tion scheme E = (KeyGen,Encrypt, Decrypt) (whether standard, homomorphic,

or fully homomorphic) semantic security is captured by the following game be-
tween a challenger and an adversary A;

– (pk, sk)← KeyGen(1λ).
– (m0,m1,St)← A(.)

1 (pk). /* Stage 1 */
– b← {0, 1}.
– c∗ ← Encrypt(mb, pk; r).
– b′ ← A(.)

2 (c∗,St). /* Stage 2 */

The adversary is said to win the game if b = b′, with the advantage of the
adversary winning the game being defined by

AdvIND−xxx
A,E,λ = |Pr(b = b′)− 1/2| .

A scheme is said to be IND-xxx secure if no polynomial time adversary A can
win the above game with non-negligible advantage in the security parameter λ.
The precise security notion one obtains depends on the oracle access one gives
the adversary in its different stages.

– If A has access to no oracles in either stage then xxx=CPA.
– If A has access to a decryption oracle in stage one then xxx=CCA1.
– If A has access to a decryption oracle in both stages then xxx=CCA2, often

now denoted simply CCA.
– If A has access to a ciphertext validity oracle in both stages, which on input

of a ciphertext determines whether it would output ⊥ or not on decryption,
then xxx=CVA.

Looking ahead to the end of the paper, one open problem is whether there exists
an FHE scheme that is both IND-CCA1 and IND-CVA.

Lattices: A (full-rank) lattice is simply a discrete subgroup of Rn generated
by n linear independent vectors, B = {b1, . . . ,bn}, called a basis. Every lattice
has an infinite number of bases, with each set of basis vectors being related by
a unimodular transformation matrix. If B is such a set of vectors, we write

L = L(B) = {v ·B|v ∈ Zn}

to be the resulting lattice. An integer lattice is a lattice in which all the bases
vectors have integer coordinates.

For any basis there is an associated fundamental parallelepiped which can be
taken as P(B) = {

∑n
i=1 xi ·bi|xi ∈ [−1/2, 1/2)}. The volume of this fundamental

parallelepiped is given by the absolute value of the determinant of the basis
matrix ∆ = |det(B)|. We denote by λ∞(L) the∞-norm of a shortest vector (for
the ∞-norm) in L.

3 The Smart-Vercauteren Variant of Gentry’s Scheme

We will be examining variants of Gentry’s FHE scheme [13], in particular three
variants based on the simplification of Smart and Vercauteren [23], as optimized

by Gentry and Halevi [15]. All variants make use of the same key generation
procedure, parametrized by a tuple of integers (N, t, µ); we assume there is a
function mapping security parameters λ into tuples (N, t, µ). In practice N will
be a power of two, t will be greater than 2

√
N and µ will be a small integer,

perhaps one.

KeyGen(1λ)
– Pick an irreducible polynomial F ∈ Z[X] of degree N .
– Pick a polynomial G(X) ∈ Z[X] of degree at most N − 1, with coefficients

bounded by t.
– d← resultant(F,G).
– G is chosen such that G(X) has a single unique root in common with F (X)

modulo d. Let α denote this root.
– Z(X)← d/G(X) (mod F (X)).
– pk← (α, d, µ, F (X)), sk← (Z(X), G(X), d, F (X)).

In [15] Gentry and Halevi show how to compute, for the polynomial F (X) =
X2n

+1, the root α and the polynomial Z(X) using a method based on the Fast
Fourier Transform. In particular they show how this can be done for non-prime
values of d (removing one of the main restrictions in the key generation method
proposed in [23]).

By construction, the principal ideal g generated by G(X) in the number field
K = Z[X]/(F (X)) is equal to the ideal with OK basis (d, X −α). In particular,
the ideal g precisely consists of all elements in Z[X]/(F (X)) that are zero when
evaluated at α modulo d. The Hermite-Normal-Form of a basis matrix of the
lattice defined by the coefficient vectors of g is simply given by

B =


d 0
−α 1
−α2 1

...
. . .

−αN−1 0 1

 , (1)

where the elements in the first column are reduced modulo d.
To aid what follows we write Z(X) = z0 + z1 ·X + . . . + zN−1 ·XN−1 and

define

δ∞ = sup
{
‖g(X) · h(X) (mod F (X))‖∞

‖g(X)‖∞ · ‖h(X)‖∞
: g, h ∈ Z[X],deg(g),deg(h) < N

}
.

For the choice f = xN + 1, we have δ∞ = N . The key result to understand
how the simplification of Smart and Vercauteren to Gentry’s scheme works is
the following lemma adapted from [23].

Lemma 1. Let Z(X), G(X), α and d be as defined in the above key generation
procedure. If C(X) ∈ Z[X]/(F (X)) is a polynomial with ‖C(X)‖∞ < U and set
c = C(α) (mod d), then

C(X) = c−
⌊

c · Z(X)
d

⌉
·G(X) (mod F (X))

for

U =
d

2 · δ∞ · ‖Z(X)‖∞
.

Proof. By definition of c, we have that c − C(X) is contained in the principal
ideal generated by G(X) and thus there exists a q(X) ∈ Z[X]/(F (X)) such that
c− C(X) = q(X)G(X). Using Z(X) = d/G(X) (mod F (X)), we can write

q(X) =
cZ(X)

d
− C(X)Z(X)

d
.

Since q(X) has integer coefficients, we can recover it by rounding the coefficients
of the first term if the coefficients of the second term are strictly bounded by 1/2.
This shows that C(X) can be recovered from c for ‖C(X)‖∞ < d/(2δ∞‖Z(X)‖∞).

Note that the above lemma essentially states that if ‖C(X)‖∞ < U , then
C(X) is determined uniquely by its evaluation in α modulo d. Recall that any
polynomial H(X) of degree less than N − 1, whose coefficient vector is in the
lattice defined in equation (1), satisfies H(α) = 0 (mod d). Therefore, if H(X) 6=
0, the lemma implies, for such an H, that ‖H(X)‖∞ ≥ T , and thus we conclude
that U ≤ λ∞(L). Since G(X) clearly has a coefficient vector in the lattice L, we
conclude that

U ≤ λ∞(L) ≤ ‖G(X)‖∞ .

Although Lemma 1 provides the maximum value of U for which ciphertexts are
decryptable, we will only allow half of this maximum value, i.e. T = U/4. As
such we are guaranteed that T ≤ λ∞(L)/4. We note that T defines the size of
the circuit that the somewhat homomorphic encryption scheme can deal with.

Using the above key generation method we can define three variants of the
Smart–Vercauteren variant of Gentry’s scheme. The first variant is the one used
in the Gentry/Halevi implementation of [15], the second is the general variant
proposed by Smart and Vercauteren, whereas the third divides the decryption
procedure into two steps and provides a ciphertext validity check. In later sec-
tions we shall show that the first variant is not IND-CCA1 secure, and by exten-
sion neither is the second variant. However, we will show that the third variant
is indeed IND-CCA1. We will then show that the third variant is not IND-CVA
secure.

Each of the following variants is only a somewhat homomorphic scheme,
extending it to a fully homomorphic scheme can be performed using methods of
[13–15] without affecting any of the results in this paper.

Gentry–Halevi Variant: The plaintext space is the field F2. The above
KeyGen algorithm is modified to only output keys for which d ≡ 1 (mod 2).
This implies that at least one coefficient of Z(X), say zi0 will be odd. We re-
place Z(X) in the private key with zi0 , and can drop the values G(X) and F (X)
entirely from the private key. Encryption and decryption can now be defined via
the functions:

Encrypt(m, pk; r)
– R(X)← Z[X] s.t. ‖R(X)‖∞ ≤ µ.
– C(X)← m + 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)
– m← [c · zi0]d (mod 2)
– Return m.

Full-Space Smart–Vercauteren: In this variant the plaintext space is the
algebra F2[X]/(F (X)), where messages are given by binary polynomials of degree
less than N . As such we call this the Full-Space Smart–Vercauteren system as
the plaintext space is the full set of binary polynomials. We modify the above
key generation algorithm so that it only outputs keys for which the polynomial
G(X) satisifies G(X) ≡ 1 (mod 2). This results in algorithms defined by:

Encrypt(M(X), pk; r)
– R(X)← Z[X] s.t. ‖R(X)‖∞ ≤ µ.
– C(X)←M(X) + 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)
– C(X)← c− bc · Z(X)/de.
– M(X)← C(X) (mod 2).
– Return M(X).

That decryption works, assuming the input ciphertext corresponds to the eval-
uation of a polynomial with coefficients bounded by T , follows from Lemma 1
and the fact that G(X) ≡ 1 (mod 2).

ccFHE: This is our ciphertext-checking FHE scheme (or ccFHE scheme for
short). This is exactly like the above Full-Space Smart–Vercauteren variant in
terms of key generation, but we now check the ciphertext before we output the
message. Thus encryption/decryption become;

Encrypt(M(X), pk; r)
– R(X)← Z[X] s.t. ‖R(X)‖∞ ≤ µ.
– C(X)←M(X) + 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)
– C(X)← c− bc · Z(X)/de ·G(X).
– C(X)← C(X) (mod F (X))
– c′ ← [C(α)]d.
– If c′ 6= c or ‖C(X)‖∞ ≥ T return ⊥.
– M(X)← C(X) (mod 2).
– Return M(X).

4 CCA1 attack on the Gentry–Halevi Variant

We construct a CCA1 attacker against the above Gentry–Halevi variant. Let z be
the secret key, i.e. the specific odd coefficient of Z(X) chosen by the decryptor.
Note that we can assume z ∈ [0, d), since decryption in the Gentry–Halevi variant
works for any secret key z + k · d with k ∈ Z. We assume the attacker has access
to a decryption oracle to which it can make polynomially many queries, OD(c).
On each query the oracle returns the value of [c · z]d (mod 2).

In Algorithm 1 we present pseudo-code to describe how the attack proceeds.
We start with an interval [L, . . . , U] which is known to contain the secret key z
and in each iteration we split the interval into two halves determined by a specific

ciphertext c. The choice of which sub-interval to take next depends on whether
k multiples of d are sufficient to reduce c · z into the range [−d/2, . . . , d/2) or
whether k + 1 multiples are required.

Algorithm 1: CCA1 attack on the Gentry–Halevi Variant
L← 0, U ← d− 1
while U − L > 1 do

c← bd/(U − L)c
b← OD(c)
q ← (c + b) mod 2
k ← bLc/d + 1/2c
B ← (k + 1/2)d/c
if (k mod 2 = q) then

U ← bBc
else

L← dBe
return L

Analysis: The core idea of the algorithm is simple: in each step we choose a
“ciphertext” c such that the length of the interval for the quantity c·z is bounded
by d. Since in each step, z ∈ [L,U], we need to take c = bd/(U −L)c. As such it
is easy to see that c(U − L) ≤ d.

To reduce cL, we need to subtract kd such that −d/2 ≤ cL−kd < d/2, which
shows that k = bLc/d + 1/2c. Furthermore, since the length of the interval for
c · z is bounded by d, there will be exactly one boundary of the form d/2 + id
in [cL, cU], namely d/2 + kd. This means that there is exactly one boundary
B = (k + 1/2)d/c in the interval for z.

Define q as the unique integer such that −d/2 ≤ cz − qd < d/2, then since
the length of the interval for c · z is bounded by d, we either have q = k or
q = k + 1. To distinguish between the two cases, we simply look at the output
of the decryption oracle: recall that the oracle outputs [c · z]d (mod 2), i.e. the
bit output by the oracle is

b = c · z − q · d (mod 2) = (c + q) (mod 2) .

Therefore, q = (b + c) (mod 2) which allows us to choose between the cases k
and k + 1. If q = k (mod 2), then z lies in the first part [L, bBc], whereas in the
other case, z lies in the second part [dBe, U].

Having proved correctness we now estimate the running time. The behaviour
of the algorithm is easily seen to be as follows: in each step, we obtain a boundary
B in the interval [L,U] and the next interval becomes either [L, bBc] or [dBe, U].
Since B can be considered random in [L,U] as well as the choice of the interval,
this shows that in each step, the size of the interval decreases by a factor 2
on average. In conclusion we deduce that recovering the secret key will require
O(log d) calls to the oracle.

5 ccFHE is PA-1

In this section we prove that the ccFHE encryption scheme given earlier is PA-1,
assuming a lattice knowledge assumption holds. We first recap on the definition
of PA-1 in the standard model, and then we introduce our lattice knowledge
assumption. Once this is done we present the proof.

Plaintext Awareness – PA-1: The original intuition for introducing plain-
text awareness was as follows - if an adversary knowns the plaintext correspond-
ing to every ciphertext it produces, then the adversary has no need for a decryp-
tion oracle and hence, PA+IND-CPA must imply IND-CCA. However, there are
subtleties in the definition for plaintext awareness, leading to three definitions,
PA-0, PA-1 and PA-2. However, after suitably formalizing the definitions, PA-x
plus IND-CPA implies IND-CCAx, for x = 1 and 2. In our context we are only
interested in CCA1 security, so we will only discuss the notion of PA-1 in this
paper.

Before formalising this it is worth outlining some of the terminology. We
have a polynomial time adversary A called a ciphertext creator, that takes as
input a public key and can query ciphertexts to an oracle. An algorithm A∗ is
called a successful extractor for A if it can provide responses to A which are
computationally indistinguishable from those provided by a decryption oracle.
In particular a scheme is said to be PA-1 if there exists a successful extractor for
any ciphertext creator that makes a polynomial number of queries. The extractor
gets the same public key as A and also has access to the random coins used by
algorithm A. Following [4] we define PA-1 formally as follows:

Definition 1 (PA1). Let E be a public key encryption scheme and A be an
algorithm with access to an oracle O taking input pk and returning a string. Let
D be an algorithm that takes as input a string and returns a single bit and let A∗
be an algorithm which takes as input a string and some state information and
returns either a string or the symbol ⊥, plus a new state. We call A a ciphertext
creator, A∗ a PA-1-extractor, and D a distinguisher. For security parameter λ
we define the experiments in Figure 1, defining the PA-1 advantage to be

AdvPA-1
E,A,D,A∗(λ) =

∣∣∣Pr(ExpPA-1-d
E,A,D (λ) = 1)− Pr(ExpPA-1-x

E,A,D,A∗(λ) = 1)
∣∣∣ .

We say A∗ is a successful PA-1-extractor for A, if for every polynomial time
distinguisher the above advantage is negligible.

Note, in experiment ExpPA-1-d
E,A,D (λ) the algorithm A’s oracle queries are re-

sponded to by the genuine decryption algorithm, whereas in ExpPA-1-x
E,A,A∗(λ) the

queries are responded to by the PA-1-extractor. If A∗ did not receive the coins
cc[A] from A then it would be functionally equivalent to the real decryption
oracle, thus the fact that A∗ gets access to the coins in the second experiment is
crucial. Also note that the distinguisher acts independently of A∗, and thus this
is strictly stronger than having A decide as to whether it is interacting with an
extractor or a real decryption oracle.

ExpPA-1-d
E,A,D (λ):

– (pk, sk)← KeyGen(1λ).
– x← ADecrypt(·,sk)(pk).
– d← D(x).
– Return d.

ExpPA-1-x
E,A,D,A∗(λ):

– (pk, sk)← KeyGen(1λ).
– Choose coins cc[A] (resp. cc[A∗]) for A (resp.
A∗).

– St← (pk, cc[A]).
– x ← AO(pk; cc[A]), replying to the oracle

queries O(c) as follows:
• (m, St)← A∗(c, St; cc[A∗]).
• Return m to A

– d← D(x).
– Return d.

Fig. 1. Experiments ExpPA-1-d
E,A,D and ExpPA-1-x

E,A,A∗

The intuition is that A∗ acts as the unknowing subconscious of A, and is
able to extract knowledge about A’s queries to its oracle. That A∗ can obtain
the underlying message captures the notion that A needs to know the message
before it can output a valid ciphertext.

The following lemma is taken from [4] and will be used in the proof of the
main theorem.

Lemma 2. Let E be a public key encryption scheme. Let A be a polynomial-
time ciphertext creator attacking E, D a polynomial-time distinguisher, and A∗
a polynomial-time PA-1-extractor. Let DecOK denote the event that all A∗’s
answers to A’s queries are correct in experiment ExpPA-1-x

E,A,D,A∗(λ). Then,

Pr(ExpPA-1-x
E,A,D,A∗(λ) = 1) ≥ Pr(ExpPA-1-d

E,A,D (λ) = 1)− Pr(DecOK)

Lattice Knowledge Assumption: Our knowledge assumption can be stated
informally as follows: suppose there is a (probabilistic) algorithm C which takes
as input a lattice basis of a lattice L and outputs a vector c suitably close to a
lattice point p, i.e. closer than ε · λ∞(L) in the ∞-norm for a fixed ε ∈ (0, 1/2).
Then there is an algorithm C∗ which on input of c and the random coins of C
outputs a close lattice vector p, i.e. one for which ‖c − p‖∞ < ε · λ∞(L). Note
that the algorithm C∗ can therefore act as a ε-CVP-solver for c in the ∞-norm,
given the coins cc[C]. Again as in the PA-1 definition it is perhaps useful to
think of C∗ as the “subconscious” of C, since C is capable of outputting a vector
close to the lattice it must have known the close lattice vector in the first place.
Formally we have:

Definition 2 (LK-ε). Let ε be a fixed constant in the interval (0, 1/2). Let G
denote an algorithm which on input of a security parameter 1λ outputs a lattice
L given by a basis B of dimension n = n(λ) and volume ∆ = ∆(λ). Let C be an
algorithm that takes a lattice basis B as input, and has access to an oracle O,
and returns nothing. Let C∗ denote an algorithm which takes as input a vector

c ∈ Rn and some state information, and returns another vector p ∈ Rn plus
a new state. Consider the experiment in Figure 2. The LK-ε advantage of C
relative to C∗ is defined by

AdvLK-ε
G,C,C∗(λ) = Pr[ExpLK-ε

G,C,C∗(λ) = 1].

We say G satisfies the LK-ε assumption, for a fixed ε, if for every polynomial
time C there exists a polynomial time C∗ such that AdvLK-ε

G,C,C∗(λ) is a negligible
function of λ.

ExpLK-ε
G,C,C∗(λ):

– B ← G(1λ).
– Choose coins cc[C] (resp. cc[C∗]) for C (resp. C∗).
– St← (B, cc[C]).
– Run CO(B; cc[C]) until it halts, replying to the oracle queries O(c) as follows:
• (p, St)← C∗(c, St; cc[C∗]).
• If c is not within distance ε · λ∞(L) (w.r.t. the ∞-norm) of the lattice, then

return p to C.
• If p 6∈ L(B), return 1.
• If ‖p− c‖∞ > ε · λ∞(L), return 1.
• Return p to C.

– Return 0.

Fig. 2. Experiment ExpLK-ε
G,C,C∗(λ)

The algorithm C is called an LK-ε adversary and C∗ a LK-ε extractor. We now
discuss this assumption in more detail. Notice, that for all lattices that if ε < 1/4
then the probability of a random vector being with ε · λ∞(L) of the lattice is
bounded from above by 1−1/2n, and for lattices which are not highly orthogonal
this is likely to hold for all ε up to 1/2. Our choice of T in the ccFHE scheme
as U/4 is to guarantee that our lattice knowledge assumption is applied with
ε = 1/4, and hence is more likely to hold.

If the query c which C asks of its oracle is within ε · λ∞(L) of a lattice point
then we require that C∗ finds such a close lattice point. If it does not then the
experiment will output 1; and the assumption is that this happens with negligible
probability.

Notice that if C asks its oracle a query of a vector which is not within ε·λ∞(L)
of a lattice point then the algorithm C∗ may do whatever it wants. However, to
determine this condition within the experiment we require that the environment
running the experiment is all powerful, in particular, that it can compute λ∞(L)
and decide whether a vector is close enough to the lattice. Thus our experiment,
but not algorithms C and C∗, is assumed to be information theoretic. This might
seem strange at first sight but is akin to a similarly powerful game experiment
in the strong security model for certificateless encryption [1], or the definition of
insider unforgeable signcryption in [3].

For certain input bases, e.g. reduced ones or ones of small dimension, an algo-
rithm C∗ can be constructed by standard algorithms to solve the CVP problem.
This does not contradict our assumption, since C would also be able to apply
such an algorithm and hence “know” the close lattice point. Our assumption is
that when this is not true, the only way C could generate a close lattice point
(for small enough values of ε) is by computing x ∈ Zn and perturbing the vector
x ·B.

Main Theorem:

Theorem 1. Let G denote the lattice basis generator induced from the KeyGen
algorithm of the ccFHE scheme, i.e. for a given security parameter 1λ, run
KeyGen(1λ) to obtain pk = (α, d, µ, F (X)) and sk = (Z(X), G(X), d, F (X)),
and generate the lattice basis B as in equation (1). Then, if G satisfies the LK-ε
assumption for ε = 1/4 then the ccFHE scheme is PA-1.

Proof. Let A be a polynomial-time ciphertext creator attacking the ccFHE
scheme, then we show how to construct a polynomial time PA1-extractor A∗.
The creator A takes as input the public key pk = (α, d, µ, F (X)) and random
coins cc[A] and returns an integer as the candidate ciphertext. To define A∗, we
will exploit A to build a polynomial-time LK-ε adversary C attacking the gener-
ator G. By the LK-ε assumption there exists a polynomial-time LK-ε extractor
C∗, that will serve as the main building block for the PA1-extractor A∗. The
description of the LK-ε adversary C is given in Figure 3 and the description of
the PA-1-extractor A∗ is given in Figure 4.

LK-ε adversary CO(B; cc[C])
– Let d = B[0][0] and α = −B[1][0]
– Parse cc[C] as µ||F (X)||cc[A]
– Run A on input (α, d, µ, F (X)) and coins cc[A] until it halts, replying to its oracle

queries as follows:
• If A makes a query with input c, then
• Submit (c, 0, 0, . . . , 0) to O and let p denote the response
• Let c = (c, 0, . . . , 0)− p, and C(X) =

PN−1
i=0 ciX

i

• Let c′ = [C(α)]d
• If c′ 6= c or ‖C(X)‖∞ ≥ T , then M(X)←⊥, else M(X)← C(X) (mod 2)
• Return M(X) to A as the oracle response.

– Halt

Fig. 3. LK-ε adversary

We first show that A∗ is a successful PA-1-extractor for A. In particular,
let DecOK denote the event that all A∗’s answers to A’s queries are correct in
experiment ExpPA-1-x

ccFHE,A,D,A∗(λ), then we have that Pr(DecOK) ≤ AdvLK-ε
G,C,C∗(λ).

We first consider the case that c is a valid ciphertext, i.e. a ciphertext such
that Decrypt(c, sk) 6=⊥, then by definition of Decrypt in the ccFHE scheme there

PA-1-extractor A∗(c, St[A∗]; cc[A∗])
– If St[A∗] is initial state then
• parse cc[A∗] as (α, d, µ, F (X))||cc[A]
• St[C∗]← (α, d, µ, F (X))||cc[A]
• else parse cc[A∗] as (α, d, µ, F (X))||St[C∗]

– (p, St[C∗])← C∗((c, 0, . . . , 0), St[C∗]; cc[A∗])
– Let c = (c, 0, . . . , 0)− p, and C(X) =

PN−1
i=0 ciX

i

– Let c′ = [C(α)]d
– If c′ 6= c or ‖C(X)‖∞ ≥ T , then M(X)←⊥, else M(X)← C(X) (mod 2)
– St[A∗]← (α, d, µ, F (X))||St[C∗]
– Return (M(X), St[A∗]).

Fig. 4. PA-1-extractor

exists a C(x) such that c = [C(α)]d and ‖C(X)‖∞ ≤ T . Let p′ be the coefficient
vector of c−C(X), then by definition of c, we have that p′ is a lattice vector that
is within distance T of the vector (c, 0, . . . , 0). Furthermore, since T ≤ λ∞(L)/4,
the vector p′ is the unique vector with this property. Let p be the vector returned
by C∗ and assume that p passes the test ‖(c, 0, . . . , 0) − p‖∞ ≤ T , then we
conclude that p = p′. This shows that if c is a valid ciphertext, it will be
decrypted correctly by A∗.

When c is an invalid ciphertext then the real decryption oracle will always
output ⊥, and it can be easily seen that our PA-1 extractor A∗ will also output
⊥. Thus in the case of an invalid ciphertext the adversary A cannot tell the two
oracles apart.

The theorem now follows from combining Pr(DecOK) ≤ AdvLK-ε
G,C,C∗(λ) with

Lemma 2 as follows:

AdvPA-1
E,A,D,A∗(λ) = Pr(ExpPA-1-d

E,A,D (λ) = 1)− Pr(ExpPA-1-x
E,A,D,A∗(λ) = 1)

≤ Pr(ExpPA-1-d
E,A,D (λ) = 1)− Pr(ExpPA-1-d

E,A,D (λ) = 1) + Pr(DecOK)

≤ AdvLK-ε
G,C,C∗(λ) .

6 ccFHE is not secure in the presence of a CVA attack

We now show that our ccFHE scheme is not secure when the attacker, after
being given the target ciphertext c∗, is given access to an oracle OCV A(c) which
returns 1 if c is a valid ciphertext (i.e. the decryption algorithm would output
a message), and which returns 0 if it is invalid (i.e. the decryption algorithm
would output ⊥). Such an “oracle” can often be obtained in the real world by
the attacker observing the behaviour of a party who is fed ciphertexts of the
attackers choosing. Since a CVA attack is strictly weaker than a CCA2 attack
and strictly stronger that a CCA1 attack it is an interesting open (and practical)
question as to whether an FHE scheme can be CVA secure.

We now show that the ccFHE scheme is not CVA secure, by presenting a
relatively trivial attack: Suppose the adversary is given a target ciphertext c∗

associated with a hidden message m∗. Using the method in Algorithm 2 it is
easy to determine the message using access to OCV A(c). Basically, we add on
multiples of αi to the ciphertext until it does not decrypt; this allows us to
perform a binary search on the coefficient of C(X) at i, since we know the
bound T on the coefficients of C(X).

Algorithm 2: CVA attack on ccFHE
C(X)← 0
for i from 0 upto N − 1 do

L← −T + 1, U ← T − 1
while U 6= L do

M ← d(U + L)/2e.
c← [−c∗ + (M + T − 1) · αi]d.
if OCV A(c) = 1 then

L←M .
else

U ←M − 1.
C(X)← C(X) + U ·Xi.

m∗ ← C(X) (mod 2)
return m∗

If ci is the ith coefficient of the actual C(X) underlying the target ciphertext
c∗, then the ith coefficient of the polynomial underlying ciphertext c being passed
to the OCV A oracle is given by M + T − 1 + ci. When M ≤ ci this coefficient is
less than T and so the oracle will return 1, however when M > ci the coefficient
is greater than or equal T and hence the oracle will return 0. Thus we can divide
the interval for ci in two depending on the outcome of the test.

It is obvious that the complexity of the attack is O(N · log2 T). Since, for
the recommended parameters in the key generation method, N and log2 T are
a polynomial functions of the security parameter, we obtain a polynomial time
attack.

7 Acknowledgements

All authors wish to acknowledge the support of the eCrypt-2 Network of Excel-
lence funded by the Framework 7 programme of the European Union. The first
author was partially funded by EPSRC and Trend Micro. The third author was
also supported by a Royal Society Wolfson Merit Award.

References

1. S.S. Al-Riyami and K.G. Patterson. Certificateless public key cryptography. In
Advances in Cryptology – ASIACRYPT 2003, Springer LNCS 2894, 452–473, 2003.

2. F. Armknecht, A. Peter and S. Katzenbeisser. A cleaner view on IND-CCA1 secure
homomorphic encryption using SOAP. IACR e-print 2010/501, http://eprint.
iacr.org/2010/501, 2010.

3. J. Baek, R. Steinfeld and Y. Zheng. Formal proofs for the security of signcryption.
Journal of Cryptology, 20(2), 203–235, 2007.

4. M. Bellare and A. Palacio. Towards Plaintext-Aware Public-Key Encryption with-
out Random Oracles. In Advances in Cryptology – ASIACRYPT 2004, Springer
LNCS 3329, 37-52, 2004.

5. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. In Advances in
Cryptology – EUROCRYPT’94, Springer LNCS 950, 92-111, 1994.

6. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1 In Advances in Cryptology – CRYPTO ’98,
Springer LNCS 1462, 1–12,1998.

7. R. Cramer, R. Gennaro and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In Advances in Cryptology – EUROCRYPT ’97,
Springer LNCS 1233, 103–118, 1997.

8. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Advances in Cryptology – CRYPTO
’98, Springer LNCS 1462, 13–25, 1998.

9. I. Damg̊ard Towards practical public-key schemes secure against chosen ciphertext
attacks. InAdvances in Cryptology – CRYPTO ’91, Springer LNCS 576, 1991.

10. I. Damg̊ard, J. Groth and G. Salomonsen. The theory and implementation of an
electronic voting system. In Secure Electronic Voting, Kluwer Academic Publishers,
77–99, 2002.

11. A. Dent. A designer’s guide to KEMs. In Coding and Cryptography 2003, Springer
LNCS 2898, 133–151, 2003.

12. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology – EUROCRYPT 2010,
Springer LNCS 6110, 24–43, 2010.

13. C. Gentry. Fully homomorphic encryption using ideal lattices. In Symposium on
Theory of Computing – STOC 2009, ACM, 169–178, 2009.

14. C. Gentry. A fully homomorphic encryption scheme. Manuscript, 2009.
15. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption

scheme. Manuscript, 2010
16. Z.-Y. Hu, F.-C. Sun and J.-C. Jiang. Ciphertext verification security of symmetric

encryption schemes. Science in China Series F, 52(9), 1617–1631, 2009.
17. M. Joye, J. Quisquater, and M. Yung. On the power of misbehaving adversaries

and security analysis of the original EPOC. In Topics in Cryptography – CT-RSA
2001, Springer LNCS 2020, 208–222, 2001.

18. H. Lipmaa. On the CCA1-security of ElGamal and Damg̊ard’s ElGamal. To appear
Information Security and Cryptology – INSCRYPT 2010, 2010.

19. J. Manger. A chosen ciphertext attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as standardized in PKCS # 1 v2.0 In Advances in Cryptology –
CRYPTO ’01, Springer LNCS 2139, 230–238, 2001.

20. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, 169–177, 1978.

21. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal ACM, 56(6), 1–40, 2009.

22. N.P. Smart. Breaking RSA-based PIN encryption with thirty ciphertext validity
queries. In Topics in Cryptology – CT-RSA 2010, Springer LNCS 5985, 15-25,
2010.

23. N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography – PKC 2010, Springer
LNCS 6056, 420–443, 2010.

