Password-Protected Secret Sharing

Ali Bagherzandi', Stanislaw Jarecki®, Yanbin Lu®, Nitesh Saxena?

!University of California, Irvine
{zandi,stasio,yanbinl } @ics.uci.edu
ZPolytechnic Institute of New York University
nsaxena@poly.edu

Abstract. We revisit the problem of protecting user’s private data against adversarial compromise of user’s de-
vice(s) which would normally store this data. We formalize an attractive solution to this problem as Password-
Protected Secret-Sharing (PPSS), which is a protocol that allows a user to secret-share her data among n trustees
in such a way that (1) the user can retrieve the shared secret upon entering a correct password into a reconstruction
protocol which succeeds as long as at least ¢t + 1 honest trustees participate, and (2) the shared data remains secret
even against the adversary which corrupts at most ¢ servers, with the level of protection expected of password-
authentication, i.e. the probability that the adversary learns anything useful about the secret is at most negligibly
greater than ¢/|D| where g is the number of reconstruction protocol instances in which adversary engages and | D|
is the size of the dictionary from which the password was randomly chosen.

We propose an efficient PPSS protocol in the public key model, i.e. where the device can remember a trusted
public key, provably secure under the DDH assumption, using non-interactive zero-knowledge proofs which are
efficiently instantiatable in the Random Oracle Model (ROM). The resulting protocol is robust and practical, with
fewer than 4¢ + 12 exponentiations per party, and with only three messages exchanged between the user and each
server, implying a single round of interaction in the on-line phase. As a side benefit our PPSS protocol yields a new
Threshold Password Authenticated Key Exchange (T-PAKE) protocol in the public key model which is significantly
faster than existing T-PAKE’s provably secure in the public key model in ROM.

Keywords: Secret Sharing; Intrusion Tolerance; Password Authentication; Distributed Protocols

1 Introduction

A user of computing technology, let’s call her Alice, needs to store her valuable and private data, including
texts, images, passwords, or cryptographic keys, on her personal device. Alice’s device, however, can fall
prey to viruses, spyware, Trojan horses, and other type of malware, exposing Alice’s data and breaching
her privacy. Moreover, Alice might want to store her private data on a portable device (e.g. a notebook or
a cell-phone) which can easily get temporarily or permanently in control of someone whom Alice does not
trust. Finally, Alice’s device is susceptible to hardware failures (e.g. a hard disk crash or water damage of a
cell phone) in which case her data could be lost.

In this paper, we consider the general problem of protecting Alice’s data, let’s call it M, in the event
of the compromise or failure of the device on which this data is stored. A commonly used approach aimed
at addressing this problem is to store an encryption of M using a key derived from a password. This ap-
proach, however, is vulnerable to an offline password dictionary attack once the device is corrupted (see,
e.g. [FK90,K1e90,MT79,Wu99]), and is also not robust to device failure. Another possible approach is to
outsource M to a trusted remote server, and let Alice authenticate to this remote server whenever she needs
to retrieve M. Since we want Alice’s data to be secure against a compromise of Alice’s device, no authenti-
cation information can be stored on her device, or otherwise the adversary would learn it after a corruption,
and can use it to retrieve M from the trusted server. Thus Alice has to use password authentication, e.g. a
password authenticated key exchange (PAKE) protocol, e.g. [BPR0O0,BMPO00]), to retrieve M using a pass-
word shared with the server. This approach, however, places all Alice’s trust in a single server. Moreover, it

exposes Alice’s data to an on-line dictionary attack which a network adversary can stage against this server.
Both concerns can be assuaged if Alice secret-shares M, keeps one share for herself, and outsources the
other share to the server. Instead of doing this with a generic combination of PAKE and secret-sharing,
MacKenzie and Reiter [MR03] show that this can be done in a way which gives the server no useful infor-
mation about either the data or the password, and after corruption of the device the adversary can recover
any information about either the data or the password only via an on-line dictionary attack against the server.
This solution, however, suffers from several bottlenecks: Alice would be cut off from her data whenever the
server is down or overloaded, and she could loose her data completely if the adversary compromises either
the server or her device.

Password-Protected Secret Sharing: In order to improve both security and robustness of the above solu-
tion, i.e. both data privacy and its accessibility in case of server or device failures, we can secret-share M
among a set of n players so that only a compromise of more than some threshold of players would let disable
the system. However, secret sharing by itself is not enough because Alice still needs some way to authen-
ticate to the secret-sharing servers to trigger a secret reconstruction protocol, and the only authentication
information she can use must be a human-memorable password. It can be easily seen that the generic com-
bination of PAKE and secret-sharing would either require Alice to keep n independently chosen passwords,
or it would expose Alice’s single password to the adversary who corrupts just one server via an off-line
dictionary attack. Since the corrupt server could use this password to authenticate to the others and recover
the secret-shared secret, all benefits of secret-sharing would be lost. This motivates the question of how to
distribute Alice’s data among n players so that: (1) Alice can retrieve her data by triggering a reconstruction
protocol using only her password, and the reconstruction is guaranteed to succeed as long as at least ¢ 4 1
players are honest and available; and (2) Alice’s data remains secret even when ¢ players are corrupted,
and the level of this protection is as expected of password-authenticated protocol, i.e. the probability that
adversary learns any information about Alice’s data is at most negligibly greater than gg/|D|, where gg
is roughly the number of reconstruction protocols which the adversary triggers and | D| is the size of the
dictionary from which Alice chose her password.

We refer to a protocol that satisfies the above properties as (t,n) Password-Protected Secret Sharing
(PPSS). We say that a PPSS protocol is in a Public Key Model if Alice needs to trust some public key(s) to
run the protocol, as is the case for the protocol we propose in this paper. The exact probability threshold we
want to achieve in the security property in item (2) above is (no more than negligible amount greater than)
Lt_%ﬁj * ﬁ, where ' < t is the number of corrupted players and gg counts the number of individual
sessions run by any player where the adversary injects himself as a man in the middle. Note that this implies
that an adversary which corrupts ¢’ < ¢ players must stage an active attack on at least (¢ — ¢’ + 1)k other
player’s sessions in order to make k password guesses. This is indeed the optimum guessing-attack resistance
such scheme can provide.

Two Application Settings: Private Storage There are two settings in which such PPSS protocol can be
implemented, implying different security properties: In the (default) “no private storage” setting which was
implicitly assumed in the above description, Alice’s device does not have any private storage, and the n
players participating in the PPSS scheme are n separate trustees, implemented by servers or any networked
devices. This setting is highly robust, because the adversary can destroy Alice’s data only by corrupting
the memory of n — ¢ out of n trustees. Moreover, the loss of Alice’s device(s) gives no information to the
adversary at all since they hold no secret information at all, and Alice’s data (and password) are secure even
if the adversary corrupts ¢ out of n trustees. However, Alice’s data (and password) are vulnerable to network
attacker via an online dictionary attack, and the adversary corrupting ¢ + 1 trustees recovers both Alice’s
data and her password (possibly after an off-line dictionary attack).

Alternatively, a PPSS scheme can be used in a “private storage” setting, in case Alice does not fully trust
any external servers: Alice’s device and n trustees can run an instance of (¢, n’)-PPSS scheme for ¢’ = n
and n’ = 2n — t, keep d = n — t shares on Alice’s device and distribute the remaining n’ — d = n shares
among the n trustees. The PPSS reconstruction protocol proceeds in the same way as in the default setting
above, except that Alice’s device locally implements the protocol on behalf of d “virtual” players using the
d stored shares. Moreover, unlike the default setting, these virtual players do not respond to outside requests
to start the protocol. The resulting protocol is less robust because the adversary can now destroy Alice’s data
by either corrupting the memory of n — ¢ trustees or by corrupting the memory of Alice’s device. However,
it is more secure. As in the default setting, an adversary gains no information about Alice’s data or password
even after corrupting Alice’s device together with ¢ trustees, but now the adversary that does not corrupt
Alice’s device gains no useful information even after corrupting all n trustees. Moreover, a network attacker
can no longer stage an on-line dictionary attack against Alice’s data (and password) even after corrupting all
the trustees.

Applications: A PPSS scheme can be implemented by a dedicated service provider as service to individual
users, but it can also be administered by users themselves, exploiting users’ real-world trust relationships,
e.g. from online social networks such as Facebook. For example using the PPSS scheme in a private storage
setting, Alice can improve the availability of her data without any exposure to its security (compared to
storing the data locally) if no more than ¢ out of her n chosen friends are dishonest and/or their computers
are corrupted. The role of the trustees can also be played by different devices belonging to Alice herself,
perhaps connected by any combination of cellular, Bluetooth, or internet networks. For example, Alice could
use PPSS so that the adversary can gain possession of the secret data Alice needs to retrieve to her mobile
phone only by getting control not only of her phone but also of ¢ out of n of devices, e.g. her Bluetooth-
connected watch, her (always connected) home computer, her work computer. Note that these various types
of players could be mixed, so a dedicated service provider and the home computers of Alice’s Facebook
friends can join the pool of the n “devices” in the last example.

Note that the sensitive data which Alice can protect using a PPSS scheme can be her secret key, which
can then be used for any cryptographic computation such as decryption, signing, or authentication. Thus in
particular a PPSS scheme generalizes the notion of capture-resilient cryptographic devices, introduced by
MacKenzie and Reiter [MRO3], whose key is recoverable only by an online dictionary attack after device
corruption, by making such system more robust to trustees’ failures. One instance of such application is
a password management scheme, where Alice’s data to be protected are her passwords to various on-line
services. Recovering such passwords via a PPSS scheme using a “master password” avoids the need for
recalling and typing in an appropriate password every time Alice needs it to authenticate to various services.
Moreover, such password management scheme could improve the security of passwords, because now Alice
can use an independently random string as password for each of her services. Currently various entities offer
remote password management service on the web, e.g. LastPass [LLas09] and Mozilla Weave Sync [Lab09],
but these are effectively centralized solutions. A PPSS scheme could enable alternatives to such services
with better robustness and security properties.

Related Work: The idea of password-authenticated recovery of secret-shared data was to the best of our
knowledge proposed by Ford and Kaliski [FJOO0]. As pointed out by a subsequent paper by Jablon [Jab01],
the Ford-Kaliski protocol implicitly assumes a public key model, while the improvement given by [Jab01]
removed the need for trusted public keys, but both protocol handles only the ¢ = n case of secret-sharing,
and neither paper clearly specified the security properties of such scheme nor did they formally argue the
security of the protocols they proposed.

The notion of PPSS is closely related to Threshold Password Authenticated Key Exchange (T-PAKE) of
MacKenzie et al. [MSJ02], which followed up on the work of [FJ00,Jab01] by formalizing the functionality

which these works were after in a general-purpose way, namely as password-authenticated key exchange
between Alice’s device and each of the n trustees. This is a more general functionality than password-
authenticated secret recovery. Indeed, a T-PAKE scheme can be used to implement a PPSS scheme at negli-
gible extra costs: The client authenticates to the servers by running a T-PAKE instance, and the servers use
the keys established in this instance to encrypt (and authenticate) their secret-shares of Alice’s secret. As we
show in this paper, it turns out that in the public key model the implication works in the opposite direction
as well, i.e. a PPSS implies a T-PAKE with little extra costs: Alice picks a (private,public) key pair in a
CCA-secure encryption scheme, and uses a PPSS scheme to share the private decryption key. A T-PAKE
protocol consists of a PPSS reconstruction protocol followed by each server encrypting a freshly chosen
session key under Alice’s public key. Alice can recover these keys if she recovered her private decryption
key in this PPSS instance. To authenticate the servers to Alice each Server supplies also its signature on this
encrypted key, which Alice verifies using its knowledge of Servers’ public keys. (We supply the details of
this simple compilation in Section 4 below.) Note that this construction relies on a public key model, and it
is not immediately obvious whether a PPSS protocol can be converted into a T-PAKE protocol in a similarly
simple way without relying on Alice’s knowledge of Servers’ public keys.'

The work of MacKenzie et al. [MSJ02], in addition to defining the notion of T-PAKE, showed a T-
PAKE protocol in the public key model which was provably secure under the Decisional Diffie-Hellman
(DDH) assumption in the Random Oracle Model (ROM), but the protocol required three rounds of server-to-
server communication. This was followed by Raimondo-Gennaro [RG03] who showed a T-PAKE scheme
based on the PAKE protocol of Katz et al. [KOYO01] which removed both the reliance on ROM and the
need for trusted public keys, but their protocol was even more communication-heavy, requiring several
rounds of verifiable secret sharing among the servers, each of which requires a few communication rounds
over a reliable broadcast channel. Such trustee-to-trustee communication might be feasible for T-PAKE
applications discussed in [MSJ02,RG03], where all n secret-sharing servers belong to the same organization
and can foreseeably be connected by a LAN. However, for many PPSS applications we discussed above such
communication requirements would be difficult to bear in practice, e.g. when trustees are highly distributed,
connected over internet, phone, and/or Bluetooth networks. In such applications one should assume all
protocol communication is between the user and a trustee, and there is no direct communication between
trustees. In such model the PPSS protocol implied by T-PAKE of [MSJ02] requires 9 messages exchanged
between the user and each trustee, while the T-PAKE of [RGO03] requires even more.

The general (t, n)-threshold T-PAKE protocol of [MSJ02] was improved in efficiency for the special
case of 2 servers, i.e. (t,n) = (1,2), by Brainard [BJKS03], but the resulting protocol assumes direct
(and secure) connection between the two servers, and would imply a 7 messages protocol in our all-
communication-via-the-client model. In the setting without public keys the protocol of [RG03] was extended
to the same special case by Katz et al. [KMTGO05], but while significantly faster than [RGO03], the result-
ing protocol still needs 5 message exchanges in our communication model, assuming the zero-knowledge
proofs are implemented non-interactively in ROM. (Otherwise the message complexity of [KMTGO05] would
be even higher).

In another related work, Xu and Sandhu [XS03] consider a different variant of T-PAKE functionality,
namely password-authenticated threshold signature generation which they call TPAKE-TSig. However, the

! In spite of this near-equivalence between PPSS and T-PAKE, we believe that the primary reason for introducing PPSS as a
separate notion is that it is a natural functionality — a protocol that reconstructs a (long) secret if and only if supplied with a
correct (short) password. It is also easier to define than T-PAKE, which requires a somewhat elaborate formalism developed
to model Password-Authenticated Key Exchange protocols, i.e. [BPR00,BMPO0O0]. The PPSS functionality is simpler because
it recovers one secret at one party (the user), instead of creating keys for each party, possibly at multiple sessions, which
the adversary can then adaptively reveal, with somewhat complicated rules governing which key should remain secret given
that another key was revealed. Such functionality simplification can be productive, and indeed, in this paper we show a PPSS
protocol which is faster and simpler than existing provably secure T-PAKE protocols.

security notion they formalize for such TPAKE-TSig’s continues the same complicated model of T-PAKE’s,
and their construction is a straightforward composition of T-PAKE with threshold signatures, along the lines
of the simple T-PAKE—PSSS complier sketched above, thus in particular the resulting protocol can only be
as fast as existing T-PAKE’s.

The PPSS protocol cast into the private storage setting is a generalization of the aforementioned work
on “capture-resilient devices” by MacKenzie and Reiter [MRO3], from the case of just one external trustee
to the case of any n trustees, with resilience to the corruptions of the device and ¢ trustees. [MRO03] consider
not only password-authenticated recovery of a shared secret but also password-protected generation of RSA
signatures and ElGamal decryption. However, note that any T-PAKE protocol, and a PPSS protocol implies
T-PAKE, can be used very simply to implement such password-protected signature or decryption given a
non-interactive threshold computation protocol for the respective signature/decryption function: The servers
simply encrypt the messages of the non-interactive threshold function-computation protocol under the ses-
sion keys output by a T-PAKE instance, and the user can reconstruct the function value if she established the
same session keys in the T-PAKE instance. Thus the 2-party password-protected signature/decryption com-
putation protocols of [MR03] can be generalized using to any (¢, n) case using our PPSS and non-interactive
threshold RSA signature of [Sho0O0] and non-interactive threshold ElGamal decryption of [DF90].

PPSS is more remotely related to the so-called “key-insulated” and “intrusion-tolerant” cryptosystems,
e.g. [DKXY02,DKXY03,DFK+04,DFK 03], which are similarly concerned with protecting user’s sensitive
data against device intrusions or corruptions by secret-sharing user’s private key among more trusted com-
ponents, e.g. smartcards or co-processors. However, unlike PPSS, these cryptosystems assume semi-trusted
components which are embedded in user’s computational device so the user does not need to remotely
authenticate herself to them, e.g. via password authentication.

Our Contributions: We develop an efficient PPSS scheme in the public key model provably secure under
the DDH assumption, using non-malleable non-interactive zero-knowledge proofs which can be efficiently
instantiated in ROM. Our protocol is robust against active failures and, unlike PPSS based on any existing
provably secure T-PAKE, it is much more efficient: In particular, in the absence of active attacks each party
makes fewer than 4¢ + 15 exponentiations and the protocol involves only three messages exchanged between
the user and each server. (In particular, this implies a single round of interaction during the on-line phase.)
We also show that a PPSS scheme implies a T-PAKE protocol at a very little computation overhead and no
additional communication cost. Thus, as a side benefit, our PPSS implies a T-PAKE protocol in the public
key model in ROM, with three message exchanges and less than 4¢ 4 18 exponentiations per party, which
is significantly faster than the most efficient existing T-PAKE protocol of [MSJ02]. For the special case of
n = 2, the resulting T-PAKE reduces message complexity but not the computation of the 2-party T-PAKE
of [BJKSO03]. (However, cast in the private storage setting with one external trustee, our protocol does not
improve on the one of [MRO03], which requires only a few exponentiations and two messages.)

Organization: The rest of this paper is organized as follows. In Section 2 we present our definition and
security model for PPSS. In Section 3 we present our PPSS protocol, first the intuition behind it, then the
full protocol, and finally the proof of its security. In Section 4 we sketch the compiler from PPSS to T-PAKE.
In Appendix A we provide the background on simulation-sound zero-knowledge labeled proof systems used
in our PPSS protocol, and Appendix B contains the proofs of technical claims used in Section 3.

2 Password-Protected Secret Sharing: Definitions

A Password-Protected Secret Sharing (PPSS) scheme operates in environment involving a user U and n
servers Py, ..., P,. A PPSS scheme for secret space S and dictionary D is a tuple (Init, User, Server), where
Init(p, s) is an initialization algorithm which on inputs a secret s € S and password p € D generates

st = (sto, sti,, Sty) where sty are public parameters and st; is the private state of server P;; User(p*, sty)
is an interactive algorithm followed by U on its password p* (presumably equal to p) and parameters stg;
and Server(st;) is an interactive algorithm followed by P; on input st;. The user must reconstruct the secret
s when she inputs the correct password p, while inputting an incorrect password p* # p should lead to
rejection. Formally, if PPSS(p, st) is a random variable defined as the local output of algorithm User(p, st)
after an interaction with oracles Server(st), ..., Server(st,,) then we must have that PPSS(p, Init(p, s)) = s
for any (s,p) € S x D, and we call a PPSS scheme e-sound if for any s € S and any p, p* € D s.t. p # p*,
we have Pr[PPSS(p*, Init(p, s)) #1] <e.

To model concurrent execution of several PPSS protocol instances we denote by User®(p, st) an oracle
which allows the caller to interact with any number of User(p, sto) instances. Importantly, the caller sees
only protocol messages output by each User instance it interacts with, and not the local output of any of these
instances. Similarly, for any set B we denote by Server®(stg) an oracle which allows the caller to interact
with any number of Server(st;) instances for any i in B = {1,...,n} \ B. We say that probabilistic algorithm
A interacts with at most gy user sessions if in any of its executions A initializes at most gy instances of
User(p, sto) algorithm when interacting with oracle User®(p, stg), and we say that .4 interacts with at most
qs server sessions if in any execution of A we have), g ¢; < gs where ¢; is the number of Server(st;)
instances A initializes when interacting with oracle Server®(stg).

We define security of a PPSS scheme in terms of adversary’s advantage in distinguishing between two
PPSS instances initialized with two different secrets, where the adversary sees the public parameters stg,
the private states stg £ {st; }iep of the set of servers { P; };cp it corrupts, and has concurrent oracle access
to instances of the user and server algorithms executing on inputs defined by the initialization procedure.

We call an (¢, n)-threshold PPSS scheme secure if this advantage is bounded by ﬁ, the probability of

guessing the password, times Lt_‘iﬁ where ¢’ < t is the number of servers an adversary corrupts, plus at

most a negligible amount. The last factor is a threshold equivalent of the probability of success of an on-line
dictionary attack: An adversary who learns the shares of ¢’ servers can test any password p in D by executing
User(p, stp) and interacting with any subset of ¢ — ¢’ + 1 uncorrupted servers.

Definition 1. (security) A PPSS scheme on dictionary D and space S is (n,t,T, qu, qs, €)-secure if for any
50,51 € S, any set B s.t. t' £ |B| satisfies t' < t, and any probabilistic algorithm A with running time T
which interacts with at most qy user and qs server sessions, we have

1
— 4 €

as
— < *

-t +1

where
I A PI‘[1 AUserO(p,sto),Servero(stg)(807Sl’StO’stB)]

where st < Init(p, sp) for p < D, and the probability goes over the randomness of all algorithms.

To make PPSS scheme easy to use as a building block in further applications, e.g. in a construction of a
T-PAKE protocol shown in Section 4, we need to strengthen the above security definition so that the shared
secret remains hidden even if the adversary learns whether each user session output some reconstructed
secret or it rejected in that protocol instance:

Definition 2. (strong security) A PPSS scheme on dictionary D and space S is (n,t,T, qu, qs, €)-strongly
secure if it satisfies definition 1 even when the user oracle User®(p, sto) is modified so that for every instance
of User(p, sto) the adversary learns a bit which indicates whether this instance locally outputted some secret
s or it locally outputted a rejection sign 1.

We define two more useful notions for a PSSS scheme, of soundness and robustness. Soundness says
that even corrupt servers cannot make the user recover a secret which is different from the one which was
initially shared. Robustness says that recovery of the shared secret is assured as long the user communicates
with at least ¢ + 1 honest servers.

Definition 3. (soundness) A PPSS scheme on dictionary D and space S is (T, €)-sound if for any s € S,
any p € D, and any probabilistic algorithm A with running time T, we have

Pr[s & {s, L} | s — User®®Pst)(p stg)] < e
where st «— Init(p, s), and the probability goes over the randomness of all algorithms.

Definition 4. (robustness) A PPSS scheme on dictionary D and space S is (T, €)-robust if for any s € S,
any p € D, any set B s.t. n — |B| > t + 1, and any probabilistic algorithm A with running time T, we have

Pr[s/ 7& s ‘ s User.A(s,p,stB),ServerO(Stg) (p7 St())] <e

where st < Init(p, s), and the probability goes over the randomness of all algorithms.
3 Password-Protected Secret Sharing Secure under DDH

Notation: Before we describe our protocol we first introduce some notation: Let g be a generator of group
G of prime order g. Let y = g” for[some x € Z,. We denote the “shifted” EIGamal encryption under public
key y as Ey, i.e. if m € Z, then Ey(m) = (¢",y"g™) for r < Z,, and we denote the textbook ElGamal
encryption as E',, i.e. if m € G then E'y(m) outputs ¢ = (¢",y"m) for r — Z,. We write E,(m;r) or
E’y(m;r) when we want 7 to refer to the randomness in these encryptions. By convention we use ¢, to
denote a ciphertext that encrypts variable m, and we use 7, to denote the randomness in this ciphertext, e.g.
¢p = Ey(p;1p), ¢5 = Ey(p; 15), ete. Since ElGamal ciphertexts are (ordered) pairs of elements in G, we use
¢m,r, and ¢, r to denote respectively the first and the second element of ¢,.

Protocol PPSS is a modification of a simple protocol based on threshold ElGamal encryption presented
below. We note that while this basic protocol can be adopted to other homomorphic encryption schemes
with threshold decryption, e.g. Paillier, its modification PPSS relies on special properties of ElGamal to
make this protocol one round on-line.

Basic Protocol: Take dictionary D = Z, and message space S = G. (Any other dictionary can be hashed
into Z, using a collision-resistant hash, and message space G can also be easily extended to standard mes-
sage spaces consisting of bitstrings.) For (p, s) € Z, x G, procedure Init(p, s) picks an ElGamal private-
public key-pair (z,y), secret-shares x among servers using a (¢,n) Shamir secret sharing [Sha79] (i.e.
st; = x; = f(j) where f is a random ¢-degree polynomial over Z, s.t. f(0) = z), and as the public pa-
rameter st it outputs the public key y, a shifted encryption ¢, = E,(p) = (¢"*,y"?g") of password p, and a
textbook encryption ¢; = E';(s) = (¢",y"*s) of secret s. The PPSS protocol proceeds as follows:

1. User sends c; = E,(p) to each Server;, where p = p for a legitimate user.

2. Each Server; randomizes c5 = ¢,/c; as ¢g, = (c5)" where t; & Z,, and sends cp; to User.

3. User computes cg = [[; cg, and sends cg to each Server;. Note that cg is a shifted EIGamal encryption
of =5 .0=0->,t; where § = p — p.

4. Each Server; using its share x; of EIGamal decryption key = computes a partial decryption of ¢, = ¢,-cg
(where c,, is treated as a textbook ElGamal ciphertext), and sends it back to User. Note that in threshold
ElGamal decryption [DF89] each Server; simply returns z; = (cg)", which User interpolates to
compute (cg,7,)* and hence to decrypt cg.

Note thata = s- g% = s- gzi Bi=s. g(p_ﬁ) 2iti and therefore o = s if p = p but v is random in G if
p # pand) t; is random in Z,.

This protocol is secure in the honest-but-curious setting under the DDH assumption on G, however in the
presence of malicious parties a whole range of issues needs to be addressed: For example, since the protocol
relies on the homomorphic property of encryption E, a malicious user can recover the secret by setting cj as
a randomization of c,, thus ensuring that p = p without the knowledge of p. Also, a malicious server can
cancel out honest servers’ contributions cg, to cg so that the sum ¢ = _; #; hits some known constant ¢, and
thus there is effectively no randomization of the § = p — p value, and the information the adversary receives
as o = s - g"P~P) allows the adversary to recover s in an off-line dictionary attack against p.

Init(p, s) (on public parameters g, q,n,t and I D1, ..., 1 D,)
v & Ly — g7 fwiin CYSS(@), h L G () < (Zg)?,
(ep,Lycp,r) = (g™, y"™hP), (cs,L,cs,r) < (97, Y7 s),

sto < (9, ¥, by ep cs), {sti — @iy

User(sto, p) = (Server(sto,st1),- - , Server(sto, stn))

S1 (Server;): Pickt; < Z,, compute aj < ¢',b; < (cp.1.)". Send (ID;, a;,b;) to User.

Ul (User) : Pick a set V of ¢ 4 1 servers. Pick r5 < Z,. .
Compute {e; — (a;)"?};cy and ¢; — (¢"7,y"?h")
Send ({IDj,a;,bj,e;};cv,cp) to Server;, foreach j € V.

S2 (Server;): Compute: A; «— [I;icv,/;y(=1Dy)/(ID; — ID;s) (mod gq)

Ai- .
da,rj— (es,r - bi/es - Tlyevy sy (bir /€))7
carj — (cpr/csR)Y and zj — cor;y - (daypj) ™"

Send z; to User.

U2 (User) : Output s « [,y 25 - ¢s,R-

Fig. 1. PPSS Simplified: Protocol for Honest-but-Curious Adversaries

Reducing Communication Rounds: On-Line Non-Interactive PPSS Protocol. We sketch how to take
care of all active threats in the above basic protocol, and at the same time to reduce the round complexity
of this protocol, by combining the distributed cs-randomization step, cg < (05)2“, and the threshold
decryption step, & «— TDec(c; - ¢g). The basic outline of the resulting protocol PPSS is described in Figure
1, followed by the full protocol presented in Figure 2.

To see how ciphertext randomization and threshold decryption can be combined in one step, note that
in the threshold decryption step each P; outputs value z; = (cs,1, - ¢3.1)" = (g"S*‘;’“ 2 t)i where §, =
rp — 75. The user interpolates any ¢ + 1 of z;’s to compute z = ("0 2it)¥ = yrsyd 2iti. The user
also computes the ¢ r = [[;cs,.r = ¥y’ 2itigd 2t and the decryption works because if §, = 0 then
CB,R = y‘ST‘ 2t and thus s = Cs,R " CBR " (z)_l. Note that if the protocol was executed not by all n
servers but by a subset V' of ¢ + 1 servers, i.e. in particular if cg = [[,y cs;, and if each P; in V' computed
zi = cg R (CsL - cp.) % where); is a coefficient s.t. z = >_jev Ajz;j, then U can still recover
s = ¢s r - [[;ev #;- However, in order to let P; compute z; in this way, each P; needs to know two values:
¢.r» to compute ¢z, g = (¢pr/Cpr)", and cg 1. U sends the ¢; r value to each Server; as part of the

basic protocol, but value cg = g‘5T 2ievti jnvolves t;’s randomization values for all 7« € V. What we

can do, however, is for each P; to first send to U a pair of “randomization commitment” values, (aj, bj) =
(9%, (cp.L)) = (g%, 9™"), because then U can compute cg 1, = [y (bj - (a;)7"7).

These observations allow us to reduce the total number of communication flows to three, with the on-line
phase, i.e. between User contributing its password p and recovering the secret s, taking only two communi-
cation flows (hence we say that our protocol is non-interactive on-line). The resulting protocol, secure for
honest-but-curious adversaries, is shown in Figure 1. In Server’s precomputation step, denoted as S1, each
P, picks t; « Zq and sends (a;,b;) = (g%, (¢p,1,)%) to U. In step U1, on input p, user U chooses a set V' of
t + 1 servers, computes e; = (a;)"? for each j € V, and forwards the set {(a;,b;, e;)}jev to each P; in V
together with its password encryption c;. In the final step U2, the user decrypts s = ¢5 g - [[oy 2; if each
P; returns, as part of step S2,

JjeEV

% = (da;,L) " Where g p = (cp.r/cpr)Y and doy , = (cor - [] (b /)

J'ev

The protocol in Figure 1 contains one more change compared to the “Basic Protocol” we explained first.
Namely, the base used in the shifted EIGamal encryption is changed from g to an additional random base
h in G. In other words, E,(m) = ry,,y"™h™) instead of (¢"™,y"™h™). The reason for this change is that
otherwise for any d,, = (p — p) the user would recover o = g% 2t . g, However, unlike the basic protocol,
the modified protocol reveals a = [[a; = g2-" to the user. This would allow for an off-line dictionary
attack where each p’ can be tested by checking if s = (a)ﬁ_p/ - o looks like a valid plaintext s. This very
attack is prevented by modifying the shifted ElGamal encryption so that E,(m) = (¢",y"h™), because
under DDH the value o = h% 2i % acts like a one-time pad even given gzi ti,

Assuring Security against Malicious Adversary. To achieve security against malicious adversaries the full
PPSS protocol in Figure 2 contains additional modifications to the above sketch. First, to prevent man-in-
the-middle attacks we encrypt P;’s response z; under the user’s public key (step S2), and we bind this key
to the user’s message using labeled simulation-sound zero-knowledge proofs (step Ul).

Second, in step U1, we incorporate an additional encryption of the shifted p value into the user’s mes-
sage, namely o1 = (y1)r3h}, using an additional base h; and an “encryption key” 7, both random elements
in G. (The only party which holds the decryption key corresponding to 7 is the simulator.) We also include
in the user’s message value 03 = h;ﬁ , for yet another random base element ho € G. (This is not hiding
user-created value r; in a semantically secure way, but it is good under DDH because hs is random in G’ and
5 is random in Z,.) These two values allow the simulator to compute elements h;” where w is a witness in
the user’s message, i.e. w = p or w = rp, where h; is a random base element. This allows the simulator to
compute 2" for w € {p, 5} and any challenge element z € G, by setting the corresponding h; base as z“.
It turns out that this ability to exponentiate any challenge element z € G to witnesses p or 75 contained in
user’s messages, is sufficient for the simulator to efficiently simulate the honest server’s responses to user’s
messages, and it avoids having to extract the witnesses in user’s statements. (Recall that the cheapest known
concurrently extractable zero-knowledge proofs of knowledge in ROM, due to Fischlin [Fis05], multiply the
protocol cost by a factor close to 10).

Third, to enable simulation of the user’s algorithm without extraction of witnesses contained in server’s
messages, the user-side simulator utilizes an additional value w; = hgj which we add to the server’s “pre-
computation” message (a;, b;) in step S1. Finally, both sides employ non-interactive simulation-sound zero-
knowledge proofs (see a paragraph above) which ensure well-formedness of their messages, and in particular
ensure that the (h;)" values in each party’s messages involve the true witness(es) w contained in this party’s
statement.

Non-Interactive Simulation-Sound Zero-Knowledge Proofs. As mentioned above, in order to assure the
well-formed-ness of certain messages exchanged between the user and the servers, and hence achieve secu-
rity against malicious adversaries, we use simulation-sound zero-knowledge non-interactive labeled proof

Init(p, s) (on public parameters g, q,n,t and I D1, ..., 1 D,)
(n,t)

z & Zgyy — g% {aitie <= SS(x), (h, ho, k1, ha, §1) <= (G)°, (rp,7s) < (Zq)?,
cp — (g, y""hP), cs — (g™, y"s), sto < (9,4, h, ho, b1, ha, §1, cp, Cs), {sti — Ti}izy.

User(sto, p) = (Server(sto,sti1),- -, Server(sto, stn))

S1 (Server;): Pickt; < Z,, compute a; < g'9,b; < (cp.0)",w; < hg', and
T1j < PH[,CSSt"]((aj,bj,wj),tj). Send ([Dj,aj,bj,wj,mj) to User.

Ul (User) : Pick aset V of ¢t + 1 servers s.t. V*[£5°]((aj, bj, w;), 1) = 1forall j € V.
Pick 5 < Z4 and (sk, pk) < K.

Compute: {ej — (a;)"?}jev, ¢ — (977,37 hP), (01,02) — (§;"hl, hy")
T2 PH [‘Cg'o](({aj’ ej}j€V7cﬁ7 01, 02)3 (Tﬁaﬁ)7pk)

Vj €V, send ({ID]-/,CLJ-/,bj/,wj/,ej/ﬂ'rlj/}j/ev/{j},6j,pk,65701,02,71'2) to Server;.

S2 (Server;): Stopif forany j' € V/{j}, V*[LZ°]((a;jr,bjr,wjr), m1j) = O or
VH[,CSStO}(({aj/,ejr}j,ev,cﬁ,01,02),7r27pk:) =0.

Compute: A; < [[;/cy, ;3 (=1D;)/(ID; — IDjr) (mod gq)

Nz
o,y — (es,0 - b3/€5 - Tlyrev 5y (b /) 174
carj — (cpr/csrR)Y and zj «— ca R - (dayr,j) "

Send ¢; < Epk(z;) to User.

U2 (User) : For each j € V, compute 2; < Dsk((;). Output s — J[; oy 2j - ¢s,r-

Fig. 2. PPSS: The Full Protocol

(NILP) system for two languages £;; and L, both parameterized by the public parameters sty which are

output by Init algorithm. Let G be a group of order q. Let sty = (g,y, h, ho, h1, ha, U1, ¢p, ¢s) Where
.Y, h, ho, hi, ha, 71 € G and ¢,, cs € (G)2. We define languages £5%° and £ as follows:

9,y y P guages Ly s

E?}O ={(a1,€1, ..., @41, €141, Cp, 01,02) € (G)2t+6 | 3 (rp,p) € (Zq)2 s.t.
{ej = (a]')rﬁ ;ill’ Cﬁ = (yrﬁhp’gﬁ;)’ and (01702) = (g;ﬁhlﬂhgﬁ)}

L3 = {(a,b,w) € (G)* |Ja € Zyst.a=g* b= (c5r)* and w = (ho)*}

The idea of having labeled non-interactive proof (NILP) is to attach a label to the proven statement, similarly
to how labeled encryption adds a label to a ciphertext. The simulation-soundness of a NILP system demands
that if the simulator produces a NILP proof for any (wrong) statement « under label [then the adversary
cannot produce a valid proof for z under any different label I’ # [. We define the simulation-soundness
and zero-knowledge properties of labeled NILP’s in Appendix A. The constructions we provide for SS-ZK
NILP’s for both languages above are simple extensions of the well-known ROM-based non-interactive proof
of knowledge of discrete-logarithm, and these constructions are included in Appendix A for completeness.

Standard Message Spaces, Soundness, Robustness, Efficiency. Protocol in Figure 2 works for a non-
standard message space G, but this can be easily assuaged as follows: The public parameters string st
is amended by a random key & to a universal hash function Hj which maps elements of G onto 160-
bit bitstrings in such a way that Hy(x) is statistically indistinguishable from random 160-bit string if x
is random in G. (Note also that such hashing is trivial in ROM, which our protocol assumes anyway for
efficient NIZK’s.) The PPSS initialization on password p and a secret bitstring s of any length would run

10

the PPSS protocol of Figure 2 on random s’ in GG, and attach to sty an encryption of bitstring s under key
k' = Hy(s'), using any symmetric semantically secure encryption scheme. The PPSS protocol would then
proceed as in Figure 2 except that the user uses the recovered s’ to compute key k' = Hy(s") and decrypt
secret s from the above ciphertext.

The PPSS protocol in Figure 2 also does not have the soundness or robustness properties. Recall that
soundness requires that malicious Servers cannot make the User recover any other secret except of the one
which was initially secret-shared, while robustness requires that recovery of the correct secret is assured if
there are at least ¢ + 1 honest Servers participating in the protocol. Both properties can be easily added to
the protocol. Soundness can be added by including a public key of an existentially unforgeable signature
scheme in stg, using the corresponding signature key to sign secret s and running the above modified PPSS
algorithm on s concatenated with this signature. The protocol then proceeds as above except that at the
end the user parses the recovered secret as s|o and outputs s only if o is a valid signature on it under the
key in stg. It’s easy to see that this makes the scheme (7, €) robust given a (one-time) signature scheme
which is unforgeable by T-bounded adversary except for probability €. Note that these modifications have
a minimal impact on protocol efficiency. Robustness can be achieved using Feldman verification values to
the initial secret-sharing, i.e. extending sty with a set of values {y; = ¢**}?_,), and adding a proof of well-
formedness to the final server’s message S2. This proof is a standard Schnorr-like zero-knowledge proof of
equality of representations which shows that z; = o' B"1Pi where o, 3 are elements in G' computed (by
both parties) as in step S2, and exponents ¢; and x 7, are the same as in equations a; = g% andy; = g""Pi.
(The NIZK proof for this statement works along the same lines as the proofs in Appendix A, and it costs
only 3 additional exponentiations for both parties.) This makes the protocol robust if User who detects
some misbehaving parties among its chosen set V' just restarts the PPSS protocol using a set of players that
excludes these misbehaving parties, although this may take O(t) rounds in the worst case. The resulting
protocol is (7', €)-robust where ¢ is the total soundness error of the Server-side NIZK proofs when faced
with a T-time limited adversary.

Assuming no active faults (which trigger protocol re-start as explained above), the efficiency of the
PPSS protocol including these modifications is 4¢ + 15 (multi)exponentiations per Server and 8¢ + 16
(multi)exponentiations per User, assuming that the proof systems are instantiated in ROM as shown in
Appendix A. However, 4¢ + 5 of Servers’ exponentiations are in verification of the NIZK’s in step S2,
whose cost is reduced by a factor of at least 4 using batch verification techniques, e.g. [BGR98], resulting in
about ¢ + 11 (multi)exponentiations. Similarly 6(¢ + 1) exponentiations for the User come from two NIZK
verification steps, 3(¢ + 1) exponentiations each, whose cost can be reduced by a factor of 4 again, resulting
in User’s costs of about 3.5¢ + 12 (multi)exponentiations.

Theorem 1. Let t < n, let G be a group of prime order q where the DDH problem is (Tyqp,, €4ap)-hard,
let texp be the time of full exponentiation in G, let X = (KC,E,D) be a public key encryption scheme
which is (Tepa, €cpa)-indistinguishable, and let I [L3:°] and IT"'[L%°] be labeled proof systems which are
respectively (Tyr, 4%, 4%, €5, €9) and (T, qjg, qf[, e% K egs) simulation-sound zero-knowledge in ROM.
The PPSS protocol in Figure 2 is (n,t,qu, qs, T, €)-secure where qu < ¢%, s < q3/n, and:

T < min{TCpa, Tddh} - (TU + Ts) — [11 + (QOTL + 22)(]5 + (3n + 22)qU]temp

e < (2qu + 8)€adn + 2nqs€cpa + 665 + 2e5 5 + 6q5€5s
Note that Appendix A provides very efficient instantiations of the two proof systems used in PPSS, secure
in the Random Oracle Model. The simulation-soundness and zero-knowledge bounds for these proofs, given

an adversary making ¢z hash function queries, are ezx = qp - qi/q and egg = 1/q, for both U and S,
while simulation times are Tty = ((t + 6)q%) - texp and Ts = (3¢3) - teap.

11

Proof. Let A be an interactive algorithm followed by an adversary attacking the PPSS scheme while in-
teracting with at most gy user and gg server sessions and corrupting servers {P;};cg for some set B s.t.
|IB| = ¢’ < t. Figure 3 describes a series of games, G, ..., Gg, all initialized on secret s, where Gy mod-
els the interaction of A with the PPSS scheme i.e. AYser (psto)Server®(stg) (st stp) where p — D and
st < Init(p, s), and games Gy, ..., Gg are modifications of Gy used in the security argument. We also define
a crucial event F as shown in figure 3, which roughly corresponds to an adversary A sending an encryption
of the correct password to a group of at least ¢ — ¢ + 1 distinct servers. The goal of the security argument is
to show that for any two secrets sg, S1,

as

[
—— | x = +¢€
t—t' 117 |D

[po(s1) — po(so)| < [
where € is some negligible quantity. This would follow if we showed that |po(s1) — po(so)| < Pr[F] + €1
and Pr[F] < {t_%ﬁj * \Th + €9 where €1, €5 are negligible. Technically the proof we show below contains
a few extra steps but this is its most intuitive outline.

Modeling the PPSS Attack: Let us first look closer at how the game Gy models the interaction of .4 with
the User®(p, sty) and Server®(stg) oracles in an attack on a PPSS scheme. The Init® procedure assumes
the discrete-log setting of our PPSS scheme, i.e. generator g of group G of prime order ¢, and it treats
threshold (t,n), the set of corrupted players B, and the dictionary D C Z, as parameters. Moreover, it
assumes certain assignment between all possible server sessions and the identities of the servers executing
these sessions. Note that adversary A can engage in at most gg sessions but it’s up to A to decide which
servers will be involved in these sessions. Therefore in the security game we prepare gg distinct sessions for
every n servers, thus n - gg total sessions, even though a gg-limited adversary will utilize only ¢g of them.
For notational ease we fix the identity of a server executing the j-th session, where j = 1,..,ngs, as Pp,
where I D; = (j mod n) + 1. Since our PPSS protocol starts from Servers’ messages to the Client, without
loss of generality we let the Init® procedure prepare the first message from all these ngg sessions, which it
then passes to adversary A.

Procedure Init® on input s picks p <~ D and generates the vector of initial states st, including all the
public values in sty and the shares st; = z; for each server F;. Note that in game G, which models the
real execution, procedure Init® generates these values with exactly the same distribution as the real initial-
ization procedure Init(p, s). As a result the adversary A receives st, initial states of the corrupted servers
stg = {x;}icp, and a Server’s first message on all ngs sessions. Afterwards .4 can make gy queries to
the User® oracle, which models execution of procedure User(stg, p) on a set of messages, specified by the
adversary, which look like the initial messages from some ¢ + 1 servers. A can also make gg queries to the
Serverj oracle, for qg distinct values j, which models execution of the Server procedure on j-th session. The
variables used in the description of Server}> algorithm consist of inputs received from the adversary, the pub-
lic values stg = (t, g,y, h, ho, h1, ha, §1, ¢, cs), the share xp, of server I D; in whose name this session is
executed, and the local variables (¢;, a;, b;) created for the j-th session by the Init® procedure. All the inputs
that User® and Server}? oracles receive from the adversary are freely chosen by the adversarial algorithm .4,
but in Figure 3 we denote some of these values as “primed”, for example values ID’,, a’,, b, 111 in the
inputs to the Server;? oracle, so that to stress that they are potentially different from the global constants I.D;
or values a;, bj, IT;j created by the Init® procedure. Similarly we denote all inputs to the User® oracle with
primes to stress that these can be different values from the corresponding values output by Init®.

Proof Roadmap: In the rest of the proof we will use the following notation: By F; ; we denote event F hap-
pening in the interaction between A and game G; initialized on secret s; by p;(s) we denote Pr[l « (A =
Gi(s))]; and by p;F(s) we denote the joint probability Pr[1 « (A = G;(s)) A, =F; s]. Let tezp be a time
of a single (multi)-exponentiation in G, let the DDH problem be (741, €44)-hard in group G, let the en-
cryption scheme £ = (K, £, D) be (Tepa, €cpa)-indistinguishable, and let labeled proof systems I17¢[L;0] =

12

(PH[ESUtO],VH[[,?}O]) and HH[ES;O] = (PH[ESStO],VH[E;tO]) be respectively (T, q%, 4%, €75, €%g) and

(Ts, q}g, q%, e% 5 egs) simulation-sound zero-knowledge. Assume that ¢y < qg ,qs < qg /n,and T4 <

min{Tepa, Taan} — Tv — Ts — [11 4 (20n 4 22)gg + (3n + 22)qu|teqp. We will show the following facts,

where € 3 = (qu +1)€dan +ngseécpa + 2€§K + egK —I—qsegs, €45 = €ddn, and €4 8 = deqqn+ 26§K + qsegs.

Claim 1 |po(s) — p3(s)| < €03, forall s

Claim 2 |p3(s) — p3(s")| < |p;F(s) — piF(s")| + max(Pr[Fys], Pr[Fyy]), forall s, s'
I

Claim 3 Pr[F,] <

— t,+1j | + €s8, forall s
Claim 4 |p;F(s) — p,F(s")| < 2eq5, forall s, s'

Summing these inequalities, with the first instantiated first for s and then for s/, we obtain an inequality
which completes the proof:
[Po(s) — po(s')] < 2(e03 + €a5) + a8

Claim 1 follows from claims 5-7 below, because €g 3 is the sum of the upper bounds on the dis-
tances |p;—1(s) — pi(s)| shown for i = 1,2,3 in claims 5-7. (The proofs of all the technical claims re-
lating adversary’s view between subsequent games are removed to Appendix B.) Similarly claim 3 fol-
lows from claims 9-12 below (the proof to these claims are in section Appendix B), because €45 is the
sum of the upper bounds on the distances | Pr[F;_; s] — Pr[F; ;]| which are shown for i = 5,6,7,8
in claims 9-12. Claim 4 follows from claim 9 below because game Gj is independent of secret s, and
therefore for every s, s’ we have that p;F(s) = ng(N. Flnally claim 2 follows from claim 8 below:
Note first that [p3(s) — p3(s')| = |(p37(s) + pE(s)) — (37 (s') + pE(s'))| can be upper bounded by
Ip3F(s) — p3F(s")| + max(Pr[F3s), Pr[F3 ¢]). Secondly, since claim 8 shows that p5™ (s) = p;F(s) and
Pr[F3,s] = Pr[F4] for all s, this upper bound is equal to |p;F(s) — p;F(s")| + max(Pr[Fy 5], Pr[Fy«]).

Claim 5 Games Gg and Gy are indistinguishable under DDH assumption. Concretely, for any secret s, if
qu < q9, and T < Tyan — Ty — [T+ (11n+9)gs + (5n+12)qu|tesp then [po(s) —p1(s)| < queadn + € -

Claim 6 Games G and G are indistinguishable assuming the X = (KC, €, D) encryption scheme is IND-
CPA. Concretely, for any secret s, if Tqg < Tepg — Ty — [6 + (11n + 9)gs + (5n + 12)qultesp then
‘pl <3> - P2(3)| < ngse€cpa-

Claim 7 Games Gy and G35 are indistinguishable under DDH assumption. Concretely, for any secret s,
if gs < qg/n, qu < qg, and Ty < Tgap, — Ty — Ts — [6 + (14n + 12)gs + (5n + 12)qu|tesp then
[p2(s) — ps(s)| <

Claim 8 For any secret s, p3" (s) = pyF(s).

Claim 9 Games Gy and Gs are indistinguishable under DDH assumption. Concretely, for any secret s, if
Ta < Tyan — Tr — [3+ (14n + 12)gs + (51 + 12)qu|tewp then |pg7 (s) — p5T ()| < €qan and | Pr[Fy] —
Pr[F5 s]| < €dan-

Claim 10 Games G5 and Gg are indistinguishable under DDH assumption. Concretely for any secret s,
if as < qp/n, qu < qp, and Ty < Tagn — To — Ts — [3 + (14n + 17)gs + (5n + 12)quteap, then
p5(s) — pe(s)| < ngseaan + 2¢5 + qs€dg and | Pr[Fs] — Pr[Fe]| < ngseqan + 265 + qsegg.

Claim 11 Games Gg and G are indistinguishable under DDH assumption. Concretely, for any secret s, if
TA < Taan — Ty — [5+ (14n 4+ 12)gs + (5n + 20)qu)texp then | Pr[Fe s] — Pr[F7]| < €qan + egU.

13

Init®(on input s)

Py e e GG o 6 @ sso
(h, ho, h1, h2) < (G)*

ne G Go-Ga | =2t — "

T ane S o

P Diry & oy — (g7, y7h) Go—Gr e = (@)

idSet « {}, pkSet « {}, F « false
{t; & Zg, (a5, by, w5) — (9%, (cp.r) ', b), w1 = PHILEY(t5, (g, by, w;))} 0%

sto «— (97 Y, h7 {hi}?:o» Y1, Cp, CS)’ {Sti A :?:1’ Ret(5t07 {Sti}iEBv {aja bj7 Wy le};isi)

Server§ (pk', {(ID}:, a1, by e, 1)}y, €5, ¢5, {0i}imr, T2)

If (Ellgjlgi st VH [Essto]((a;-/, b;-/,w;-/), 7T1]/) = O) V

VLTI (a)r €)Y —y U{(as,€5)}, cp, {0i}iz1), m2, pk’) = 0) then ABORT this session.
If (01/(cp,r.)™ = hY) then idSet « idSet U {ID;}
If (01/(cp,.)™* = hY A |idSet| > t — t') then set event F « true

N T1% o (ID}) /(ID; = ID}))). dayr,; < (cs,n - (bs/e;) - TThi_y (b /€f)) 1P

Go — G2 if (01/(cp,L)™ = hy) then ¢ r,; « (cp,r/c5,Rr)" G; —Gs
comg = (eprfopr)? ||elecon; =G
zj —cprj - (da,r,j) " Gofc.;1 If (pk’ € pkSet) then Ret(Ep./ (1))
RetEw (=) else zj — ¢p,R,j - (da,r,5) ", Ret(Eppr (25))

User®({1D5, aj, b, w}, w1, }j—1)

If (G1<j<e st VILE0)((a], b}, w]), 71;) = 0) then ABORT this session. { Go — Gs |

75, (sk,pk) < KC, pkSet « pkSet U {pk}, {e; < a}"7}i_;

_T5 1D T5 H H ™ T5
01 < ylph117702 — th i Go ! o1 — G, 03 th

c; — (9", y"?h") ' Go—Ge ||cpr < Gy — (97, ¢5,R)

2 — PH[E?EO}(({G;7 ej}j€V7 Cp, {Oi}?=1)7 (7‘1371’7 To)7pk)’ Ret({Ej}§=17pk, Cp, {Oi}?=177r2)

T2 S[E?}ﬂ(({a% 6j}j€V7 Cp, {Oi ?:1),])]{?), Ret({ej};':hpk7 Cp, {Oi}?:hﬂ'?)

Fig. 3. Games Gg,G1.,...,Gs used in the security proof of the PPSS protocol

14

Claim 12 Games Gy and Gg are indistinguishable under DDH assumption. Concretely, for any secret s, if
Ta < Tagan —Ty — [1 + (14n + 12)QS + (5TL + 12)qU]te$p then |PI"[F7,S] — PT[F&S” < €4dh-

Adding Strong Security. Theorem 1 shows that the PPSS protocol in figure 2 satisfies the basic security
property defined in definition 1, but it is easy to modify the protocol to achieve the strong security notion
defined in definition 2 at little additional cost. Consider the protocol of figure 2 modified as explained in
the paragraph on soundness and robustness on page 10. Note that in this modified protocol all server’s
actions are accompanied by proofs of well-formedness, and therefore is it easy for the simulator to verify
whether or not a particular User instance of the PPSS protocol will reconstruct some secret or reject, because
that’s dependent only on verification of the NIZK’s. Furthermore, it the soundness of these NIZK proof
systems implies that once the User instance accepts the NIZK’s then, except for NIZK soundness error(s),
it successfully outputs the originally shared secret. This is the case because encryption cg, the key y, and
the private-key encryption of the secret concatenated with its signature, are all part of the (trusted) public
string stg, and they are all committing to s and the real shared secret encrypted under the key derived from
s via Hy, key (see page 10). Therefore it is easy for the simulator in the proof of theorem 1 above to decide
whether or not a particular User instance accepts (and, by correctness, outputs the correct shared secret),
or rejects. Technically, the proof adopt the proof of theorem 1 to a proof of strong security, the sequence
of games should be amended by a game in which the challenger picks the (private,public) key pair of an
encryption scheme on behalf of each User oracle, and it determines the “accept/reject” bit which User oracle
should send back to A based on verifying the NIZK proofs in all messages .4 sent to this User instance,
including the messages in round S2, decrypted using the above-mentioned private key.

4 Efficient T-PAKE from PPSS

A password protected secret sharing (PPSS) scheme can be used as a black box to achieve a threshold
password authenticated key exchange (T-PAKE) protocol (in the public key model) at very little additional
cost. In particular, the round complexity of the resulting T-PAKE is the same as the PPSS because all the
T-PAKE messages can be piggybacked onto the PPSS protocol flows. Figure 4 shows a secure T-PAKE
protocol assuming that £ = (EKg, Enc, Dec) is a chosen-ciphertext-attack secure public-key encryption,
S = (SKg,Sign, Vrfy) is a signature scheme which is existentially unforgeable under chosen message
attack, and PPSS = (PPSS.Init, PPSS.User, PPSS.Server) is a strongly secure password protected secret
sharing protocol. We assume that PPSS consists of m rounds, and we denote the output of PPSS.User
procedure in round k as M{jser and the output of procedure PPSS.Server run by Server; in round k as
Mslferverj. Note that the Server and Client procedures of T-PAKE protocol just follows the Server and User
procedures of underlying PPSS scheme for rounds 2 < k < (m — 1). We relegate a formal proof that
this construction implies a T-PAKE to the final version of the paper, but, very briefly, the signatures and
CCA encryption scheme ensure that the network adversary cannot re-route messages from a session in
which honest players are involved, or modify them in any way, and hence in particular all User sessions are
independent of each other. Then by the security of the PPSS scheme, except for |gs/(t — ¢ +1)] - (1/|D|)
probability, the view of the PPSS protocol initialized with the real decryption key sk is indistinguishable
from a view where sk is replaced by an independent key, in which case CCA security of encryption ensures
that A gets no information about any unrevealed session keys even given a capability to reveal any other
session keys (handled by decryption queries in a reduction to CCA encryption security).

References

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentiation and digital signatures.
In EUROCRYPT, pages 236-255, 1998.

15

Init(p) (on public parameters x, n, t)

(pk, sk) «— EKg, {(sski, vk;) « SKg}i_1, (sto, sto, ..., stn) « PPSS.Init(p, sk)
sto < (sto, pk, {vki }i=o), {sti < (sti,ssks)}iz,

Client(sto, p,uld) = (Server(sto,st1),-- -, Server(sto, sty))

C1 (Client) : Pick sId < {0,1}". Send (uld, sId) to each Server.

S1 (Server;): Run the interactive algorithm PPSS.Server; (sto, st;) with the Client.

C2 (Client) : Let sk be the Client’s local output of the PPSS instance. If sk =1 then set k; < for all j and stop.

Run the interactive algorithm PPSS.User(sto,) with the Servers.

If this PPSS instance aborts then assign k; «—_L on session sId and stop.
Otherwise pick k; <— {0,1}". Compute o; < Sign(ssksq;,uld, sId, k;) and e; < Enc(pk, (k;,0;)).
Send e; to Client.

Let (kj, ;) «— Dec(sk, e;) for all servers P; which sent their e;’s to the Client.

For each j, if Vrfy(vkia,, dy, (uld, sId, k;)) = 1 then output k; on session s/d with server j,
o/w output L.

[BIKS03]
[BMPOO]
[BPROO]
[BRY3]
[DF89]
[DF90]

[DFK 03]

[DFK*04]

John Brainard, Ari Juels, Burt Kaliski, and Michael Szydlo. Nightingale: A new two-server approach for authentication
with short secrets. In 12th USENIX Security Symp, pages 201-213. IEEE Computer Society, 2003.

Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated key exchange using
diffie-hellman. In EUROCRYPT, pages 156-171, 2000.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In EURO-
CRYPT, pages 139-155, 2000.

M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In ACM
Conference on Computer and Communications Security, pages 62—73, 1993.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, CRYPTO, volume 435 of Lecture
Notes in Computer Science, pages 307-315. Springer, 1989.

Yvo Desmedt and Yair Frankel. Threshold Cryptosystems. In CRYPTO ’89, volume 435 of LNCS, pages 307-315,
1990.

Yevgeniy Dodis, Matthew K. Franklin, Jonathan Katz, Atsuko Miyaji, and Moti Yung. Intrusion-resilient public-key
encryption. In Marc Joye, editor, CT-RSA, volume 2612 of Lecture Notes in Computer Science, pages 19-32. Springer,
2003.

Yevgeniy Dodis, Matthew K. Franklin, Jonathan Katz, Atsuko Miyaji, and Moti Yung. A generic construction for
intrusion-resilient public-key encryption. In Tatsuaki Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in
Computer Science, pages 81-98. Springer, 2004.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public key cryptosystems. In Lars R.

Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 65-82. Springer, 2002.

[DKXYO03] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-insulated signature schemes. In Yvo

[Fis05]
[FJOO]

[FK90]
[Jab01]

[Kl1e90]

Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 130-144.
Springer, 2003.

M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In Crypto’05, 2005.
Warwick Ford and Burton S. Kaliski Jr. Server-assisted generation of a strong secret from a password. In WETICE,
pages 176180, 2000.

David C. Feldmeier and Philip R. Karn. Unix password security - ten years later. In CRYPTO ’89: Proceedings of the
9th Annual International Cryptology Conference on Advances in Cryptology, pages 44—63. Springer-Verlag, 1990.

D. Jablon. Password authentication using multiple servers. In CT-RSA’01: RSA Cryptographers’ Track, pages 344-360.
Springer-Verlag, 2001.

D. Klein. Foiling the cracker: A survey of, and improvements to, password security. In The 2nd USENIX Security
Workshop, pages 5-14, 1990.

[KMTGOS5] Jonathan Katz, Philip Mackenzie, Gelareh Taban, and Virgil Gligor. Two-server password-only authenticated key

[KOYO1]

[Lab09]

exchange. In Proc. Applied Cryptography and Network Security ACNS05, 2005.

Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange using human-
memorable passwords. In Advances in Cryptology - EUROCRYPT 2001, International Conference on the Theory
and Application of Cryptographic Techniques, 2001.

Mozilla Labs. Weave sync, 2009. Available at http://labs.mozilla.com/projects/weave.

16

[Las09] LastPass. Lastpass password manager, 2009. Available at https://lastpass.com.

[MRO3] Philip D. MacKenzie and Michael K. Reiter. Networked cryptographic devices resilient to capture. Int. J. Inf. Sec.,
2(1):1-20, 2003.

[MSJO2] Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold password-authenticated key exchange. In
Advances in Cryptology - CRYPTO 2002, International Cryptology Conference, 2002.

[MT79] Robert Morris and Ken Thompson. Password security: a case history. Commun. ACM, 22(11):594-597, 1979.

[RGO3] Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-authenticated key exchange. In Ad-
vances in Cryptology - EUROCRYPT 2003, International Conference on the Theory and Application of Cryptographic
Techniques, 2003.

[Sch90] C.P. Schnorr. Efficient identification and signatures for smart cards. In Crypto '89, pages 239-252, 1990.

[Sha79] Adi Shamir. How to Share a Secret. Communications of the ACM, 22(11):612-613, November 1979.

[Sho00] Victor Shoup. Practical Threshold Signatures. In EUROCRYPT 00, volume 1807 of LNCS, pages 207-220, 2000.

[Wu99] Thomas D. Wu. A real-world analysis of kerberos password security. In Proceedings of the Network and Distributed
System Security Symposium, NDSS, 1999.

[XS03] Shouhuai Xu and Ravi S. Sandhu. Two efficient and provably secure schemes for server-assisted threshold signatures.
In Topics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the RSA Conference, 2003.

Appendix A Simulation-Sound Zero-Knowledge Labeled Proof Systems

Experiment Expg p (A, IT"[L]) Experiment Expyn p (A, IT7[L])
b < {0,1}, HTable « (. SList « (), HTable « (.
Run A4, and handle A’s queries as follows: Run 4, and handle A’s queries as follows:
On query (x,w,) to the prover: On query (z, 7) to the prover:
If b = 0 then 7 «— P [L](z,w, T), Add (z,) to SList, pass (z,) to S[L] to
o/w pass (z,) to S[L] to obtain (m, (o, p)), obtain (7, (o, p)), add (o, p) to HTable, return 7 to A.
add (o, p) to HTable, return 7 to A. On query o to hash function H:
On query o to hash function H: If (o, p) € HTable for some p
If b =1 and (o, p) € HTable for some p then return p, o/w return H (o)
then return p, o/w return H(o) When A halts, parse its output as (z, 7, 7),
When A halts, parse its output as b'. If V[L)(z,m,7) =1)A(x ¢ L) A ((z,T) ¢ SList)
If b = b’ then output 1, o/w output 0. then output 1, o/w output 0.

Fig. 4. Experiments for Simulation-Sound Zero-Knowledge for Non-Interactive Labeled Proof Systems

Non-Interactive Labeled Proofs: A non-interactive labeled proof (NILP) system for NP language £ is
a standard non-interactive proof system where all algorithms take as an additional input a bitstring called
’label’. The point of introducing such label is to efficiently facilitate non-malleable binding of a proof to
some protocol-specific value. The non-malleability property of such labeled non-interactive proof is that
an adversary cannot substitute a label used by an honest prover with his own label. This is technically
expressed by the notion of simulation-soundness defined below as inability of an adversary, on oracle access
to a simulator which creates a simulated “proof™ for (statement,label) pair queried by the adversary, to create
a valid proof for any wrong statement, i.e. a statement outside of £, with any label, except for one of the
(statement,label) pair for which the adversary received a simulated “proof” from the simulator. In our PPSS
protocol we use labeled proofs to bind user’s proof of correct formation of its message to its public key,
so that a man in the middle attacker cannot replace the honest user’s public key while re-using its proof of
correctness.

Formally, a NILP I7[L] is a tuple of probabilistic polynomial time algorithms (P[L], V[L]) where the
prover algorithm, P[L£], on input a statement z, a witness for that statement w, and a label 7 outputs a proof
7; and the verifier algorithm, V[L£], on input a statement x, a proof 7, and a label 7 decides whether or not
m is a correct proof of membership of x in £ given label 7. These two algorithms must satisfy the usual

17

completeness and soundness properties of a proof system:

completeness: For any label 7 € {0, 1}* and any statement x € L, there exists a witness w st if 7 is output
by P[L](x,w,) then the verification passes i.e. V[L](x, 7, T) outputs 1.

(T, €)-soundness: For any label T € {0, 1}*, any statement ¢ £, and any adversarial algorithms A limited
by time 7', Pr[1 «— V[L](z, 7, 7) |7 — AL, T,2)] <e.

Simulation-Sound Zero-Knowledge: The property that makes a labeled proof system most useful in a
multi-party protocol like PPSS is simulation-sound zero-knowledge. Since our NILP constructions work in
the Random Oracle Model (ROM) [BR93], we define both properties in ROM, i.e. the prover, the veri-
fier, and the adversarial algorithms have oracle access to a hash function H modeled as a Random Oracle.
Simulation-sound zero-knowledge of NILP in ROM is defined by two experiments in Figure 4 above. In the
first experiment the adversary is faced with access to either the real prover and a real hash function or to the
simulator, and his goal is to distinguish between the two. In the second experiment the adversary has access
to the simulator and succeeds if he makes a proof for any invalid statement different s.t. either the statement
or its label are different from the (statement,label) pairs for which the simulator supplied the adversary a
(simulated) proof. One can note that Figure 4 restricts the way the simulator manipulates the hash func-
tion H: Namely, the simulator is only allowed to rewrite one (input,output) pair in H per each query to the
prover. We choose to express the SSZK notion in this way because it makes it simpler to state and because
the simulators for the non-interactive zero-knowledge proofs using the Fiat-Shamir heuristic adhere to this
restriction.

Formally, we define a non-interactive labeled proof (NILP) system IT"[L] = (P™[L], VH[L]) to be
(Ts, qp, €2k, €ss)-simulation-sound zero-knowledge if there exists a simulator S[£] with running time
bounded by Ts s.t. for any adversarial algorithm .4 that makes at most gp queries to prover P[L],

Pr[1 — Exp{{iip(A, 7([L])]
Pr(l — Expyi p(A4, 17[L])]

1/2 4+ ezx

<
< €ss

where Exp&t 5 and ExpﬁﬁLP are as in Figure 4 and the probabilities go over randomness of A, of the
experiments Exp§\ » and Expy;, p, and of the Random Oracle .

/PH[‘C?}O](ZL‘vaUVT) PH[L:ZEO](J?S7’[1)S7T)
Parse st as (g, y, h, ho, h1, ha, §1, ¢p, Cs) Parse sto as (g, y, h, ho, h1, ha, §1, ¢p, Cs)
Parse zy as ({a;, ej}zill, Cpy01,02) Parse x5 as (a, b, w)
Parse wy as (13, P) Parse wg as o
Pick 01,02 < Z, o< 7,
Viet+1]: A; — (a;)! A—g°,B«—(c1)°,C —h§
{Bi};_k:1 - (y‘”h‘”,g"%gjflh‘l’z, hgl) C — H(I, A7 B7 C7 7_)
¢ H(z, {A; 15 {Bi}iz1, 7) (—o+c-a
(€1,¢2) — (o1 +c 15,024 ¢ P) output = (¢, ¢)
output 7 = (¢, (1, (2)
VLS (v, 7, 7) VLS (s, 7, 7)
Parse sto, v, 7 as in the prover algorithm above Parse sto, x, 7 as in the prover algorithm above
Viet+1]: A — (a;)% (ej)"¢ A—g%a ™, B — (¢;,0)b°,C — hiw™®
Bi — y*h%2(c5.0) "¢, B2 — g% (cs.r) "¢ If (c = H(x, A, B,C, 1)) output 1
Bs — (51)*h$207 ¢, By — h$'0; ¢ o/w output 0

If (¢ = H(z, {A; jill, {B;}i—1,7)) output 1
o/w output 0

Fig. 5. The Prover and Verifier Algorithms for SSZK NILP Systems for £7° and £%°

18

ROM-based Instantiations of SSZK Proofs. The details of proof systems II17¢[£7°] and II"[L3°] are
shown in Figure 5. Since both proofs are straightforward generalizations of Schnorr’s proof of knowledge
of discrete logarithm [Sch90], the well-known simulation for such proof in ROM shows that for any gp
both of the above proof systems achieve (Ts, gp, qi, €2k, €55) simulation-sound zero-knowledge given an
adversary limited to at most ¢ queries to H, as long as ezx = qpqm/q, €ss = qu/q, and Ts is bounded
by (t 4+ 5)gptesp in the case of L?}O and 3gptesp in the case of Lfgto.

Appendix B Details of the Security Proof for the PPSS Protocol

Claim 5 Games Go and G are indistinguishable under DDH assumption. Concretely, for any secret s, if
qu < qp, and Ta < Tyap — Ty — [T+ (11n+9)gs + (5n+12)qutesp then [po(s) —pi(s)| < queddn+ €7 -

Proof. Consider game G in which the proofs output by P [E?}O} in the User® oracle is replaced by a
simulated proof output by S[L3:°]. Since II"™[L5°] is (Ty, 4. 4%, €5k, €25)-SSZK, as long as the number
of User® oracle queries are less than qg, any adversarial algorithm has at most eg x chance of distinguishing
between Gg and Gy. To show that Gy and G; are indistinguishable, we make a hybrid argument over g
user sessions. We define a series of intermediary games G between Gy and G; where G in the User®
oracle calls, follows G; on the first ¢ user sessions, i.e. it picks 01 &£ @, and then follows Gp on the
remaining sessions. Clearly, G§ = Gg and GV = G;. Let p) = Pr[l < (A = G})]. For each i > 0 we
construct reduction R%),l which on input a DDH challenge (A, B, C) follows G during Init® except that it
chooses 31 «— B, hg < A", hy « ¢" for random (rg, 2) L (Zq)2, then Ré,l follows Gy in all Server®
calls, but for User sessions it follows G on all sessions prior to the i-th session, on the i-th session it sets
{ej — wjl-/ "o }5.:101 — Ch’f ,hof «— A™ c; 1, + A and simulates 72, and on remaining sessions it follows
Go. Let A = g*, B = g% and C' = ¢7. Note that if (A, B, C) is a DDH tuple then Ri (A, B,C) =Gyt
because if v = o3 then for the i-th session we have r; = o, 01 = i h However if (A B, C) is arandom
tuple then o; is independently random from e;, yjl, 02, cp 1, and so RO 1 (A B,C) = G’ Therefore for every
1 it holds that if TRZ + T4 < Tygn then |p6 \ < €44n- Since the time T R, of algorithm Ré’l is

bounded by T + [7 + (11n+9)gs + (5n + 12)qU] exp- the claim follows.

Claim 6 Games G| and G9 are indistinguishable assuming the X = (K, £, D) encryption scheme is IND-
CPA. Concretely, for any secret s, if Tq4 < Topo — Ty — [6 + (11n + 9)gs + (5n + 12)qutesp then
|p1 (5) *p2(8)| < ngseécpa-

Proof. This is a hybrid argument over ngg server sessions. For each i € [0, ngs] we define an intermediate
game Gi which follows Gy on calls to Server;? for j < i and follows Gy on calls to Server}> for j > 7. Note
G} = Gy and G{** = Gy. Let pj = Pr[l «— (A = G})]. For each i > 0 we show a reduction R} , which
reduces breaking CPA encryption to distinguishing between G{ and Glfrl. Given random pk of encryption
scheme X, R} ,(pk) picks 7’ < (1, qu], follows Init® as Gy, and follows all User® queries as G; except that
it embeds its challenge key pk as the key chosen by i’-th user session. R¢ 1,2 also follows G} 1,2 With regards
to all Server} queries except for Server{, : If A passes pk’ to Server{ | s.t. pk’ # pk then le outputs a
random bit and stops, but if pk’ = pk then R{ , sends (mo, m1) = (1, z;) to the encryption challenger, and
passes Epi, (M) computed by the challenger for a random b back to A as (;. When A outputs its final output
v, RiQ outputs the bit output by D(v). It is easy to see that Rb’s advantage in CPA security game is at
least 1/qys, the probability that it guesses the correct user’s key, times |p} — p%™!|. Therefore for each i it
holds that if Tii + T4 +Tp < Tepa then 19} — p < quécpa. Since the time TRZ of R} , is bounded

by Ty + [6 + (11n +9)gs + (5n + 12)qu|tesp exponentiations, the claim follows.

19

Claim 7 Games Go and Gs are indistinguishable under DDH assumption. Concretely, for any secret s,
if s < qp/n, qu < 4P, and Ta < Tygn — Ty — Ts — [6 + (14n + 12)qs + (5n + 12)qu]tesp then
p2(s) — p3(s)| < €aan + 265 + gsegg.

Proof. Consider games Gy and Gs in which the proofs output by P [L;t(’] in the Init® oracle is replaced
by a simulated proof output by S[L%°]. Since II™[L3°] is (Ts, g, q5r, €55+ €25)-SSZK, as long as the
number of Server® oracle queries are less than qf; /n, any adversarial algorithm has at most eg x chance of
distinguishing between G and Gy and similarly between Gs and Gs.

We use a hybrid argument over ngg server sessions to argue that Gy and Gs are indistinguishable. For
each i € [0,nqs], we define an intermediate game G} which follows Gs3 on calls to Server; for j < i and
follows Gz on calls to Serverj for j > i. Note GJ = G and G,%® = Gg. Let pb, = Pr[l «— (A = G})]. For
each i > 0 we show a reduction R 5 which reduces breaking DDH assumption to distinguishing between
C’;l and Gb. Let DDH challenge (A, B, C) where A = g%, B = g% and C' = ¢ be an input to Rég The
reduction algorithm sets h = B, a; = A, b; = A". In other words, R§’3 assumes that t; = . If (A, B, C) is
a DDH tuple (i.e. v = af3), then cg g ; = (bi/ei)‘”Cp(ol/cg}R)*l/” = oot p(P—P)ti — (cp.r/CcpR)b.
And hence R§73 is equivalent to Cé‘l except when the adversary manages to make correct proof on wrong
statement (01, 02, ¢;) which can happen with probability at most equal to egs as long as the number of User®
oracle queries are less than qg. If (A, B,C) is a random tuple, i.e. (o, 3,7y) are distributed uniformly and
independently at random, then cg r; can be replaced with a random variable which is independent from
a;, b; when p # p. Therefore 73373 is equivalent to Gé. So for each i, it holds that if TR% 4 + T4 < Tyan, then

|pb — pé“\ < €q4n- Since TRg , is bounded by Ty + T's + [6 + (14n + 12)gg + (5n + 12)qu]tesp, the claim
follows. ’

Claim 8 For any secret s, p3 (s) = p;F(s).

Proof. We argue that under condition that event F does not happen the adversarial views in games G3
and Gy are identical. This immediately implies that (1) Pr[F3 ;] = Pr[F4], and (2) that the conditional
probabilities Pr[1 «— (A = G3(s)) | ~F3] and Pr[1 « (A = G4(s)) | —F4,4] are the same, and hence the
claim follows, because p; " (s) = Pr[l « (A = G;(s)) | —Fis] * Pr[F; 5] To argue this, note that the only
difference between Gg and Gy is that in Gg, z;’s are (n, t)-secret-sharing of a random value whereas in G4
x;’s are (n, t)-secret-sharing of zero. Therefore unless adversary knows ¢ + 1 shares of x;’s, the view of the
adversary in Gg is identical to its view in G4. Now, adversary gets to know ¢’ < ¢ shares of x simply by
corrupting t’ servers. However server queries could possibly leak information about x;’s as in d,, 1, ; value.
But in any server query, if adversary does not use the legitimate password, d, 1, ; is masked with a random
value in both Gz and Gy4; otherwise if adversary uses the legitimate password, unless event F happens, the
number of distinct servers which adversary contacts is bounded by ¢ — t’. Thus, unless event F happens, the
maximum number of x; shares that is effectively used in either game is bounded by ¢.

Claim 9 Games G4 and Gs are indistinguishable under DDH assumption. Concretely, for any secret s, if
TA § Tddh — TU - [3 + (1471 + 12)(15' + (571 + 12)qU}t6zp then |pZF(S) - ng(S)| S €ddh and | PI‘[F47S] -
Pr(F5]| < €ddn.

Proof. Given DDH challenge (A, B, ('), the reduction R4 5, embeds y <« A, ¢5, < B and ¢sp —
C-s.If (A,B,C) is a DDH tuple, then ¢; = (cs,1., ¢s,r) is a valid ElGamal encryption of s and hence
Ras(A, B,C) = G4. However if (A, B, C') is arandom tuple, then c¢5 = (cs 1., ¢, r) is distributed uniformly
at random in G2 and hence Rau5(A, B,C) = Gs. Since the event F can be tested by the reduction R4 5 and
the reduction can also observe if A outputs 1, it follows that the probability difference between an event
that (A outputs 1 and —F) is at most €443, in these two games. By the same token, the probability difference
between just the event F in these two games is also bounded by €gqp,.

20

Claim 10 Games Gs and Gg are indistinguishable under DDH assumption. Concretely for any secret s,
if gs < Q}S;/TL, qu < qg, and Ty < Taqp — Ty — Ts — [3 + (14n + 17)q5 + (5n + 12)qU]texp, then
Ips(s) — pe(s)| < ngseqan + 26§K + qsegs and | Pr[Fs] — Pr[Fe s]| < ngseqan + 26§K + qsegs.

Proof. Consider games G and Gg in which the proofs output by PH [Cfgto] in the Init® oracle are replaced
by simulated proofs output by S[£%°]. Since IT™[L%°] is (Ts,q3, a5, €55 €95)-SSZK, as long as the
number of Server® oracle queries are less than g7 2 /n, any adversarial algorithm has at most €, ~ i chance of
distinguishing between G5 and G and similarly between Gg and Gg.

We use a hybrid argument over ngs server sessions to argue that G5 and Gg are indistinguishable. For
each i € [0,ngs], we define an intermediate game G{ which follows Gg on calls to Server? for j < i and
follows G on calls to Server? for j > i. Note G = G5 and G£% = Gg. Let pi, = Pr[l < (A = GL)]. For
each 7 > 0 we show a reductlon R576, which reduces breaking DDH assumption to distinguishing between
C?l and Gi. Let DDH challenge (A, B,C) where A = g®, B = ¢g” and C = g" be an input to joﬁ
The reduction algorithm sets y = A, a; = B,y" = C. In other words, Rfm assumes that x = «a and
t; = B.1f (A, B,C) is a DDH tuple (i.e. ¥ = a/3), then cg r; = C™(02)~Y/"2[BP(01/(c5.0)™) /")
Crrs BPPT = oo =ra)lip (PP = (¢, g /cp g)". And hence R} 4 is equivalent to G~ except when the
adversary manages to make correct proof on wrong statement (01, 02) which can happen with probability at
most equal to fgs as long as the number of User® oracle queries are less than qg. If (A, B,C) is a random
tuple, i.e. (o, 3,) are distributed uniformly and independently at random, then cg g ; can be replaced with
a random variable which is independent from a;, b;, ; and w; when r,, # r5. Therefore Ri 5.6 is equivalent

to Cg. So for each i, it holds that if TR% o T4 < Tgan, then | pf) H'1| < €44n- Since Tw is bounded by
Ty +Ts + [3+ (14n + 17)gs + (5n + 12)qur]teap, the claim follows.

Claim 11 Games Gg and Gy are indistinguishable under DDH assumption. Concretely, for any secret s, if
Ta < Tyan — Ty — [5 + (14n + 12)gs + (5n + 20)qu)tep then | Pr[Fe] — Pr[Fr]| < €gan + €5y

Proof. We make a hybrid argument over gy user sessions. We define a series of intermediary games G%
between Gg and G7 where G in the User® oracle calls, follows G on the first ¢ user sessions, i.e. it picks
Ch.R < G and hence there is no information about p revealed in these sessions. On the remaining sessions,
G follows Gg. Clearly, G} = Gg and GV = Gr. Let pi; = Pr[l « (A = G})]. For each i > 0 we
construct reduction Réﬁ which on input a DDH challenge (A, B, C) follows G¢ during Init® except that
it chooses y < A, hg < B, hy « ¢" for random 7, ry < Zg, then Réj follows Gy in all Server®
calls, but for User sessions it follows G7 on all sessions prior to the i-th session, on the i-th session it

1/T0}

sets {ej «— w; cpr. +— B, cgr « ChP, 0o « B™ and simulates II2; on remaining sessions

=1
Ry 7 follows G6. Let A = ¢g®, B = g% and C = g¢7. In other words, we assume 7; = (3. Note that
if (A, B,C) is a DDH tuple then R’éj(A,B, C) = Gé‘l because if v = «af then for the ith session

we have y = g%, e; = hgj/ro = g% (for j = 1tot), 00 = g2 = hg, CpR = g“%hP which is
distributed as in Géfl except when the adversary manages to make correct proof on wrong statement w;
which can happen with probability at most equal to ef]U as long as the number of Server® oracle queries
are less than qlg. However if (A, B, C) is a random tuple then c; g is distributed uniformly at random in
G independent of all {e;}!_, and ¢; 1, and thus Rg ;(A, B,C) = Gj. Therefore for every i it holds that

if TRZ + T4 < Tygp then]pﬁ ” < €4qn- Since the time T Ri of algorithm Ré - is bounded by

Ty + [5 + (14n + 12)gs + (5bn + 20)qU) exp €Xponentiations, and reductlon Re,7 can test whether event F
happens, the claim follows.

Claim 12 Games G; and Gg are indistinguishable under DDH assumption. Concretely, for any secret s, if
T4 < Tagn — Tu — [L+ (14n + 12)gs + (5n + 12)qu]tecp then | Pr[F7] — Pr[Fs]| < eqan.

21

Proof. The claim easily follows by constructing a reduction that embeds the DDH challenge (A, B, C) as
follows: y «<— A, cp 1, +— B and c3 g < ChP.

22

