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Abstract

We consider evolutionary equations of the form ut = F (u,w) where w = D−1

x Dyu is the
nonlocality, and the right hand side F is polynomial in the derivatives of u and w. The recent
paper [6] provides a complete list of integrable third order equations of this kind. Here we
extend the classification to fifth order equations. Besides the known examples of Kadomtsev-
Petviashvili (KP), Veselov-Novikov (VN) and Harry Dym (HD) equations, as well as fifth
order analogues and modifications thereof, our list contains a number of equations which
are apparently new. We conjecture that our examples exhaust the list of scalar polynomial
integrable equations with the nonlocality w. The classification procedure consists of two
steps. First, we classify quasilinear systems which may (potentially) occur as dispersionless
limits of integrable scalar evolutionary equations. After that we reconstruct dispersive terms
based on the requirement of the inheritance of hydrodynamic reductions of the dispersionless
limit by the full dispersive equation.
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1 Introduction

The classification of integrable 1 + 1 dimensional scalar evolutionary equations,

ut = F (u),

has been (and still is) a subject of active research within the soliton community. Here u(x, t)
is a scalar potential, and F denotes a differential expression which depends on x-derivatives
of u up to some finite order. Although the general classification problem is still out of reach,
quite a few important results were obtained under various additional assumptions on F (such
as polynomiality, linearity in the highest derivative, etc). We refer to the review article [12]
for a detailed discussion of the classification techniques involved, extensive lists of integrable
equations within particularly interesting subclasses, and references.

In this paper we apply the novel perturbative approach outlined in [5, 6] to a similar problem
in 2 + 1 dimensions, the area where very few classification results are currently available. The
main challenge of higher dimensions is the non-locality of scalar evolutionary integrable equa-
tions: the corresponding right hand side F must contain nonlocal variables whose differential
structure was clarified in [13]. Here we consider equations of the form

ut = F (u,w) (1)

where u(x, y, t) is a scalar field and w = D−1
x Dyu is the simplest nonlocality (equivalently, w can

be introduced via the relation wx = uy). We assume that the right hand side F is polynomial
in the x- and y-derivatives of u and w, while the dependence on u and w themselves is allowed
to be arbitrary. The paper [6] provides a complete list of integrable third order equations of the
form (1),

ut = ϕux + ψuy + ηwy + ǫ(...) + ǫ2(...), (2)

where ϕ,ψ and η are functions of u and w, while the terms at ǫ and ǫ2 are assumed to be
homogeneous differential polynomials of the order two and three in the derivatives of u and
w (one can show that all terms at ǫ have to vanish). We use the following weighting scheme:
u and w are assumed to have order zero, their derivatives ux, uy, wx, wy are of order one, the
expressions uxx, uxy, uyy, wyy, u

2
x, uxuy, u

2
y, uxwy, uywy, w

2
y are of order two, and so on. Assuming

that the dispersionless limit of the equation (2),

ut = ϕux + ψuy + ηwy, wx = uy, (3)

is linearly nondegenerate (the property to be clarified in Sect. 2.2), and satisfies the condition
η 6= 0 (which is equivalent to the requirement that the dispersion relation of the system (3)
defines an irreducible conic), we have the following result:

Theorem 1 [6] Up to invertible transformations, the examples below provide a complete list of
integrable third order equations (2) with η 6= 0 whose dispersionless limit is linearly nondegen-
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erate:

KP equation ut = uux + wy+ǫ
2uxxx,

modified KP equation ut = (w − u2/2)ux + wy+ǫ
2uxxx,

Gardner equation ut = (βw − β2

2
u2 + δu)ux + wy+ǫ

2uxxx,

V N equation ut = (uw)y+ǫ
2uyyy,

modified V N equation ut = (uw)y+ǫ
2

(

uyy −
3

4

u2y
u

)

y

,

HD equation ut = −2wuy + uwy−
ǫ2

u

(

1

u

)

xxx

,

deformed HD equation ut =
δ

u3
ux − 2wuy + uwy−

ǫ2

u

(

1

u

)

xxx

,

Equation E1 ut = (βw + β2u2)ux − 3βuuy + wy + ǫ2[B3(u)− βuxB
2(u)],

Equation E2 ut =
4

3
β2u3ux + (w − 3βu2)uy + uwy + ǫ2[B3(u)− βuxB

2(u)],

here B = βuDx −Dy, β=const.

The main result of this paper is a generalisation of the above classification to fifth order
equations,

ut = ϕux + ψuy + ηwy + ǫ(...) + ǫ2(...) + ǫ3(...) + ǫ4(...), (4)

where the terms at ǫk are assumed to be homogeneous differential polynomials of the order k+1
in the derivatives of u and w, respectively. We also assume that the ǫ4 term depends on at least
one of the possible fifth derivatives uxxxxx, uxxxxy, . . ., i.e. the equation (4) is of order 5.

Theorem 2 Up to invertible transformations, the examples below provide a complete list of in-
tegrable fifth order equations (4) with η 6= 0 whose dispersionless limit is linearly nondegenerate:

BKP equation ut = 5(u2 + w)ux + 5uuy − 5wy + 5ǫ2(uuxxx + uxxy + uxuxx) + ǫ4uxxxxx,

CKP equation ut = 5(u2 + w)ux + 5uuy − 5wy + 5ǫ2(uuxxx + wxxx +
5

2
uxuxx) + ǫ4uxxxxx,

HD5 equation ut = 15wuy − 5uwy + 5ǫ2
[

uxxy
u2

− 3

u

(uxuy
u2

)

x

]

− ǫ4

2u2

(

1

u2

)

xxxxx

,

Equation E3 ut = 4γ2
ux
u5

+ 5(3w − γ

u2
)uy − 5uwy

+ 5ǫ2
[

γ

2u2

(

1

u2

)

xxx

+
uxxy
u2

− 3

u

(uxuy
u2

)

x

]

− ǫ4

2u2

(

1

u2

)

xxxxx

,

Equation E4 ut = 4γ2
ux
u5

+ 5(3w − γ

u2
)uy − 5uwy

+ 5ǫ2

[

γ

3u

(

1

u3

)

xxx

− γ
ux
u7

−
(

1

u

)

xxy

+
(uxuy
u3

)

x
− uy

4u4
(

2uuxx − 3u2x
)

]

− ǫ4
[

1

2u2

(

1

u2

)

xxxxx

− 15

16

(

(2uuxx − 3u2x)
2

u8

)

x

]

.
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We point out that the last two examples from Theorem 2 are apparently new. The equation
E3 can be viewed as a deformation of the fifth order Harry Dym equation HD5: it reduces
to HD5 when γ = 0. Although each equation appearing in Theorems 1-2 gives rise to an
integrable hierarchy, the corresponding higher flows will not belong to the class (1): they will
necessarily have a more complicated nonlocality. Preliminary calculations suggest that there
exist no seventh order equations of the form (1). This leads to the following

Conjecture Up to invertible transformations, Theorems 1-2 provide a complete list of integrable
evolutionary equations of the form (1) which are polynomial in the derivatives of u and w.

Remark. The assumption of polynomiality is essential: there exist examples of integrable
equations of the form (1) where the right hand side F is an infinite series in ǫ. As an illustration,
let us consider integrable differential-difference equations of the Toda lattice,

vt = v△−(w), wx = △+(v),

where

△−(w) =
w(y) −w(y − ǫ)

ǫ
, △+(v) =

v(y + ǫ)− v(y)

ǫ
.

Introducing the variable u by the formula △+(v) = uy, one can rewrite the equations of the
Toda lattice in such a way that the nonlocality w will be of the required form,

ut = D−1
y △+

(

△−1
+ (uy)△−(w)

)

, wx = uy.

Expanding the first equation in powers of ǫ one obtains an infinite series,

ut = uwy +
ǫ2

12
(uwyy)y + ..., wx = uy.

Examples of this type will be outside the scope of this paper.

The structure of the paper is as follows. Following [6], in Sect. 2.1 we review the classification
of integrable quasilinear systems of the form (3). In Sect 2.2 we outline the general procedure
which, starting with an integrable dispersionless system, allows one to systematically reconstruct
dispersive corrections. This procedure is applied in Sect. 2.3 to the case of fifth order equations
(4). For the reader’s convenience, in Sect. 3 we present Lax pairs for all equations appearing in
Theorems 1-2.

2 Proof of Theorem 2

The proof consists of two steps. In Sect. 2.1 we review the classification of integrable quasilinear
systems (3) which may (potentially) occur as dispersionless limits of integrable soliton equations.
In Sect. 2.2 we discuss the general procedure of the reconstruction of dispersive corrections based
on the requirement of the inheritance of hydrodynamic reductions. This procedure is applied to
fifth order equations in Sect. 2.3, leading to the proof of Theorem 2.

2.1 Classification of integrable dispersionless limits

For a system of the form (3),

ut = ϕux + ψuy + ηwy, wx = uy,
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the integrability conditions were obtained in [6] based on the results of [4]. They constitute an
involutive system of second order PDEs for the coefficients ϕ,ψ and η,

ϕuu = −ϕ
2
w + ψuϕw − 2ψwϕu

η
, ϕuw =

ηwϕu

η
, ϕww =

ηwϕw

η
,

ψuu =
−ϕwψw + ψuψw − 2ϕwηu + 2ηwϕu

η
, ψuw =

ηwψu

η
, ψww =

ηwψw

η
,

ηuu = −ηw (ϕw − ψu)

η
, ηuw =

ηwηu
η

, ηww =
η2w
η
;

we assume η 6= 0: this is equivalent to the requirement that the dispersion relation of the system
(3) defines an irreducible conic. The integrability conditions are straightforward to solve. First
of all, the equations for η imply that, modulo translations and rescalings, one can set η = 1,
η = u or η = ewh(u). We will consider all three possibilities case-by-case below. Notice that
ϕ and ψ are defined up to additive constants which can always be set equal to zero via the
Galilean transformations of the initial system (3). Moreover, the integrability conditions are
form-invariant under transformations of the form

ϕ̃ = ϕ− sψ + s2η, ψ̃ = ψ − 2sη, η̃ = η, ũ = u, w̃ = w + su, s = const,

which correspond to the following transformations preserving the structure of system (3):

x̃ = x− sy, ỹ = y, ũ = u, w̃ = w + su.

All our classification results are formulated modulo this equivalence.

Case 1: η = 1. Then the remaining equations imply ψ = αw + f(u), ϕ = βw + g(u), where f
and g satisfy the linear ODEs

f ′′ = α(f ′ − β), g′′ = 2αg′ − βf ′ − β2.

The subcase α = 0 leads to polynomial solutions of the form

ψ = γu, ϕ = βw − 1

2
β(β + γ)u2 + δu. (5)

Up to equivalence transformations, the case α 6= 0 leads to exponential solutions,

ψ = w + βeu, ϕ = αe2u, (6)

where α, β, γ are arbitrary constants.

Case 2: η = u. Then the remaining equations imply ψ = αw + f(u), ϕ = βw + g(u), where f
and g satisfy the linear ODEs

uf ′′ = α(f ′ − β)− 2β, ug′′ = 2αg′ − βf ′ − β2.

The case α /∈ {0,−1,−1/2} leads to power-like solutions of the form

ψ = αw + γuα+1, ϕ = δu2α+1. (7)
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The subcase α = 0 leads to logarithmic solutions,

ψ = −2βu ln u− βu, ϕ = βw + β2u ln2 u+ δu. (8)

The subcase α = −1 gives
ψ = −w + γ lnu, ϕ = δ/u. (9)

Finally, the subcase α = −1/2 gives

ψ = −1

2
w + γ

√
u, ϕ = δ lnu. (10)

Case 3: η = ewh(u). Then the remaining equations imply ψ = ewf(u), ϕ = ewg(u) where f , g
and h satisfy the nonlinear system of ODEs,

h′′ = f ′ − g, g′′h = 2fg′ − gf ′ − g2, f ′′h = 2hg′ − 2gh′ + ff ′ − fg.

Although the structure of the general solution is this system is quite complicated, one can show
that Case 3 cannot occur as the dispersionless limit of an integrable soliton equation.

2.2 Reconstruction of dispersive corrections

Given an integrable dispersionless system of the form (3), one has to reconstruct dispersive
terms. This can be done by requiring that all hydrodynamic reductions of the dipersionless
system are inherited by its dispersive counterpart [5, 6]. Following [6], we will illustrate this
procedure with the example of the KP equation,

ut = uux + wy + ǫ2uxxx, wx = uy.

The dispersionless KP (dKP) equation,

ut = uux + wy, wx = uy,

possesses one-phase solutions of the form u = R, w = w(R) where the phase R(x, y, t) satisfies
a pair of Hopf-type equations

Ry = µRx, Rt = (µ2 +R)Rx; (11)

here µ(R) is an arbitrary function, and w′ = µ. Equivalently, one can say that Eqs. (11)
constitute a one-component hydrodynamic reduction of the dKP equation. Although the dKP
equation is known to possess infinitely manyN -component reductions for arbitraryN [7, 8, 9, 10],
one-component reductions will be sufficient for our purposes. The main observation of [5] is that
all one-component reductions (11) can be deformed into reductions of the full KP equation by
adding appropriate dispersive terms which are polynomial in the x-derivatives of R. Explicitly,
one has the following formulae for the deformed one-phase solutions,

u = R, w = w(R) + ǫ2
(

µ′Rxx +
1

2
(µ′′ − (µ′)3)R2

x

)

+O(ǫ4), (12)
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notice that one can always assume that u remains undeformed modulo the Miura group [2]. The
deformed equations (11) take the form

Ry =µRx

+ ǫ2
(

µ′Rxx +
1

2
(µ′′ − (µ′)3)R2

x

)

x

+O(ǫ4),

Rt =(µ2 +R)Rx

+ ǫ2
(

(2µµ′ + 1)Rxx + (µµ′′ − µ(µ′)3 + (µ′)2/2)R2
x

)

x
+O(ǫ4),

(13)

see [5]. In other words, the KP equation can be ‘decoupled’ into a pair of (1 + 1)-dimensional
equations (13) in infinitely many ways, indeed, µ(R) is an arbitrary function. The series in (12)
and (13) contain even powers of ǫ only, and do not terminate in general.

Conversely, the requirement of the inheritance of all one-component reductions allows one
to reconstruct dispersive terms: given the dKP equation, let us look for a third order dispersive
extension in the form

ut = uux + wy + ǫ(...) + ǫ2(...), wx = uy, (14)

where the terms at ǫ and ǫ2 are homogeneous differential polynomials in the derivatives of u and
w of the order two and three, respectively. We require that all one-component reductions (11)
can be deformed accordingly, so that we have the following analogues of Eqs. (12) and (13),

u = R, w = w(R) + ǫ(...) + ǫ2(...) +O(ǫ3), (15)

and

Ry = µRx + ǫ(...) + ǫ2(...) +O(ǫ3), Rt = (µ2 +R)Rx + ǫ(...) + ǫ2(...) +O(ǫ3), (16)

respectively. In Eqs. (15) and (16), dots denote terms which are polynomial in the derivatives
of R. Substituting Eqs. (15) into (14), and using (16) along with the consistency conditions
Rty = Ryt, one arrives at a complicated set of relations allowing one to uniquely reconstruct
dispersive terms in (14): not surprisingly, we obtain that all terms at ǫ vanish, while the terms
at ǫ2 result in the familiar KP equation. Moreover, one only needs to perform calculations up
to the order ǫ4 to arrive at this result. It is important to emphasise that the above procedure
is required to work for arbitrary µ: whenever one obtains a differential polynomial in µ which
has to vanish due to the consistency conditions, all its coefficients have to be set equal to zero
independently. Another observation is that the reconstruction procedure does not necessarily
lead to a unique dispersive extension like in the dKP case: one and the same dispersionless
system may possess essentially non-equivalent dispersive extensions. In particular, VN and
modified VN equations from Theorem 1, as well as BKP and CKP equations from Theorem 2
have coinciding dispersionless limits.

Let us now turn to the general case of dispersionless equations of the form (3),

ut = ϕux + ψuy + ηwy, wx = uy.

The corresponding one-component reductions are of the form u = R, w = w(R) where R(x, y, t)
satisfies a pair of Hopf-type equations

Ry = µRx, Rt = (ϕ+ ψµ + ηµ2)Rx;

7



here µ(R) is an arbitrary function, and w′ = µ. Let us seek a third order dispersive deformation
of system (3) in the form

ut = ϕux + ψuy + ηwy + ǫ(...) + ǫ2(...), wx = uy,

and postulate that one-phase solutions can be deformed accordingly,

u = R, w = w(R) + ǫ(...) + ǫ2(...) +O(ǫ3),

where

Ry = µRx + ǫ(...) + ǫ2(...) +O(ǫ3), Rt = (ϕ+ ψµ+ ηµ2)Rx + ǫ(...) + ǫ2(...) +O(ǫ3).

Proceeding as outlined above we reconstruct dispersive terms.
Remark. We point out that the formulae for dispersive deformations contain the expression

ηwµ
3 + (ψw + ηu)µ

2 + (ϕw + ψu)µ+ ϕu

in the denominator. Since µ is assumed to be arbitrary, this expression is nonzero unless ϕ,ψ, η
satisfy the relations

ηw = 0, ψw + ηu = 0, ϕw + ψu = 0, ϕu = 0. (17)

These relations characterise the so-called totally linearly degenerate systems. Dispersive deforma-
tions of such systems do not inherit hydrodynamic reductions, and require a different approach
which is beyond the scope of this paper.

2.3 Classification of fifth order equations

In this Section we summarize the classification results for integrable fifth order equations (4),

ut = ϕux + ψuy + ηwy + ǫ(...) + ǫ2(...) + ǫ3(...) + ǫ4(...),

which are obtained by adding dispersive terms to integrable dispersionless candidates from Sect.
2.1 (one can show that all terms at ǫ and ǫ3 have to vanish). Thus, we follow the classification
of Sect. 2.1. We concentrate on the case when the ǫ4-terms contain at least one fifth order
derivative of u or w, and skip all cases leading to third order equations which were already
classified in [6].

Case 1: We verified that the exponential solutions (6) do not survive, so that all non-trivial
examples come from the polynomial case (5),

η = 1, ψ = γu, ϕ = βw − 1

2
β(β + γ)u2 + δu.

A detailed analysis of dispersive deformations leads to the constraints γ = β, δ = 0. Modulo
rescalings, this gives BKP/CKP equations.

Case 2: One can prove that none of the logarithmic cases (8), (9) and (10) survive, so that all
non-trivial examples come from the power case (7),

η = u, ψ = αw + γuα+1, ϕ = δu2α+1.

The further analysis leads to the only possibility α = −3. Modulo rescalings, the case δ = γ = 0
gives the HD5 equation. The case of nonzero δ and γ leads to the new equations E3 and E4.

Case 3: One can show that no examples from this class possess fifth order dispersive extensions.
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3 Lax pairs

For the reader’s convenience, in this section we bring together Lax pairs for all equations ap-
pearing in Theorems 1-2. We emphasise that our classification scheme does not assume the
existence of a Lax pair: these come as the result of direct calculations once the classification
is completed. We refer to [11, 17] for an alternative approach to the classification of integrable
systems in 2 + 1 dimensions based on postulating the structure of a Lax pair.

3.1 Third order equations

Since both KP and modified KP equations are particular cases of the Gardner equation, we will
skip the first two examples.
The Gardner equation,

ut = (βw − β2

2
u2 + δu)ux + wy+ǫ

2uxxx,

possesses the Lax pair [11]

ǫ2ψxx +
ǫ√
3
(ψy − βuψx) +

δ

6
uψ = 0,

ǫψt = 4ǫ3ψyyy −
√
3βǫ2(2ψxx + uxψx) + ǫ(βw +

β2

2
u2 + δu)ψx + ǫ

δ

2
ux −

βδ

4
√
3
u2 +

δ

2
√
3
w.

The VN equation,
ut = (uw)y+ǫ

2uyyy,

possesses the Lax pair [16, 15]

ǫ2ψxy +
1

3
uψ = 0,

ψt = ǫ2ψyyy + wψy.

The modified VN equation,

ut = (uw)y+ǫ
2

(

uyy −
3

4

u2y
u

)

y

,

possesses the Lax pair [1]

ǫ2ψxy − ǫ2
uy
2u
ψx +

1

3
uψ = 0,

ψt = ǫ2ψyyy + wψy +
1

2
wyψ.

The HD equation,

ut = −2wuy + uwy−
ǫ2

u

(

1

u

)

xxx

,

possesses the Lax pair [11]

ǫ

u2
ψxx +

1√
3
ψy = 0,

ψt =
4ǫ2

u3
ψxxx +

(

2
√
3ǫw

u2
− 6ǫ2ux

u4

)

ψxx.
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The deformed HD equation,

ut =
δ

u3
ux − 2wuy + uwy−

ǫ2

u

(

1

u

)

xxx

,

possesses the Lax pair [6]

ǫ2

u2
ψxx +

ǫ√
3
ψy +

δ

4u2
ψ = 0,

ψt =
4ǫ2

u3
ψxxx +

(

2
√
3ǫw

u2
− 6ǫ2ux

u4

)

ψxx +
δ

u3
ψx +

(

−3δux
2u4

+

√
3δw

2ǫu2

)

.

The Equation E1,

ut = (βw + β2u2)ux − 3βuuy + wy + ǫ2[B3(u)− βuxB
2(u)],

possesses the Lax pair [6]

ǫ2ψxy = ǫ2βuψxx +
1

3
ψ,

ψt = ǫ2β3u3ψxxx − ǫ2ψyyy + 3ǫ2β2uuyψxx + βwψx.

The Equation E2,

ut =
4

3
β2u3ux + (w − 3βu2)uy + uwy + ǫ2[B3(u)− βuxB

2(u)],

possesses the Lax pair [6]

ǫ2ψxy = ǫ2βuψxx +
1

3
uψ,

ψt = ǫ2β3u3ψxxx − ǫ2ψyyy + 3ǫ2β2uuyψxx +
β2

3
u3ψx + wψy + βuuyψ.

3.2 Fifth order equations

The BKP equation,

ut = 5(u2 + w)ux + 5uuy − 5wy + 5ǫ2(uuxxx + uxxy + uxuxx) + ǫ4uxxxxx,

possesses the Lax pair [11]

ψy + uψx + ǫ2ψxxx = 0,

ψt + 5(u2 − w)ψx + ǫ2(15uψxxx + 15uxψxx + 10uxxψx) + 9ǫ4ψxxxxx = 0.

The CKP equation,

ut = 5(u2 + w)ux + 5uuy − 5wy + 5ǫ2(uuxxx + uxxy +
5

2
uxuxx) + ǫ4uxxxxx,
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possesses the Lax pair [11]

ψy + uψx +
1

2
uxψ + ǫ2ψxxx = 0,

ψt + 5(u2 − w)ψx + 5(uux −
1

2
uy)ψ + ǫ2(15uψxxx +

45

2
uxψxx +

35

2
uxxψx + 5uxxxψ) + 9ǫ4ψxxxxx = 0.

The HD equation,

ut = 15wuy − 5uwy + 5ǫ2
[

uxxy
u2

− 3

u

(uxuy
u2

)

x

]

− ǫ4

2u2

(

1

u2

)

xxxxx

,

possesses the Lax pair [11]

ψy +
ǫ2

u3
ψxxx = 0,

ψt + 15ǫ2
w

u3
ψxxx + ǫ4

[

9

u5
ψxxxxx − 45

ux
u6
ψxxxx +

15

u3

(

1

u2

)

xx

ψxxx

]

= 0.

The Equation E3,

ut =4γ2
ux
u5

+ 5(3w − γ

u2
)uy − 5uwy

+ 5ǫ2
[

γ

2u2

(

1

u2

)

xxx

+
uxxy
u2

− 3

u

(uxuy
u2

)

x

]

− ǫ4

2u2

(

1

u2

)

xxxxx

,

possesses the Lax pair

ψy −
γ

u3
ψx +

ǫ2

u3
ψxxx = 0,

ψt +

(

6γ2

u5
− 15γw

u3

)

ψx + 15ǫ2
[

( w

u3
− γ

u5

)

ψxxx +
3γux
u6

ψxx +
2γ

u3

(ux
u

)

x
ψx

]

+ǫ4
[

9

u5
ψxxxxx − 45

ux
u6
ψxxxx +

15

u3

(

1

u2

)

xx

ψxxx

]

.

The Equation E4,

ut =4γ2
ux
u5

+ 5(3w − γ

u2
)uy − 5uwy

+ 5ǫ2

[

γ

3u

(

1

u3

)

xxx

− γ
u3x
u7

−
(

1

u

)

xxy

+
(uxuy
u3

)

x
− uy

4u4
(

2uuxx − 3u2x
)

]

− ǫ4
[

1

2u2

(

1

u2

)

xxxxx

− 15

16

(

(2uuxx − 3u2x)
2

u8

)

x

]

,

possesses the Lax pair

ψy +
(γux
u4

+
uy
2u

)

ψ − γ

u3
ψx + ǫ2

[

1

u3
ψxxx +

(

3

2

uxx
u4

− 9

4

u2x
u5

)

ψx +

(

1

2u

(uxx
u3

)

x
+

3

4

u3x
u6

)

ψ

]

= 0,

11



ψt +

(

15(u3uy + 2γux)w

2u4
− 10γuy

u3
− 10γ2ux

u6
− 5

2
wy

)

ψ +

(

6
γ2

u5
− 15

γw

u3

)

ψx +

+ǫ2
[

15(wu2 − γ)

u5
ψxxx +

(

60γux
u6

+
15uy
2u3

)

ψxx+

+

(

30γ

u2

(ux
u4

)

x
+

15uxuy
2u4

+
(90uuxx − 135u2x)w

4u5

)

ψx+

+

(

5γ
(uxx
u6

)

x
− 15γ

u

(

u2x
u6

)

x

+
5

2

(uxy
u3

)

x
+

15

2u
w
(uxx
u3

)

x
+

45u3x
4u6

w +
15u2xuy
2u5

)

ψ

]

+

+ǫ4
[

9

u5
ψxxxxx −

45ux
u6

ψxxxx +

(

−15uxx
2u6

+
225u2x
4u7

)

ψxxx +

(

30
(uxx
u6

)

x
+ 180

u3x
u8

)

ψxx+

+

(

45

2

(uxxx
u6

)

x
− 60

(uxuxx
u7

)

x
− 105u2xx

2u7
+

825

6u4

(

u3x
u4

)

x

− 235u4x
8u9

)

ψx

+

(

−
(

1

u5

)

xxxxx

+
195

2

(uxuxxx
u7

)

x
+

135

2

(

u2xx
u7

)

x

− 4605

4

(

u2xuxx
u8

)

x

− 165uxu
2
xx

2u8
+

+
3375

2

(

u4x
u9

)

x

+
3645u5x
8u10

)

ψ

]

.

We do not exclude a possibility that simpler Lax pair can be found in this case.
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