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Models of diffusion driven pattern formation that rely on the Turing mechanism are utilized in
many areas of science. However, many such models suffer from the defect of requiring fine tuning
of parameters or an unrealistic separation of scales in the diffusivities of the constituents of the
system in order to predict the formation of spatial patterns. In the context of a very generic
model of ecological pattern formation, we show that the inclusion of intrinsic noise in Turing models
leads to the formation of “quasi-patterns” that form in generic regions of parameter space and
are experimentally distinguishable from standard Turing patterns. The existence of quasi-patterns
removes the need for unphysical fine tuning in the application of Turing models to real systems.

PACS numbers: , 87.10.Mn, 02.50.Ey, 87.23.Cc

The study of the emergent spatiotemporal patterns in
physical or biological systems is an exciting and fruit-
ful line of research in physics and in many other dis-
ciplines such as chemistry, ecology, animal biology, and
neuroscience [1–5]. Examples include patterns on animal
coats [6], engineered bacterial systems [7], chemical pat-
tern formation [8], mussel population densities [9], and
Rayleigh-Benard convection in fluids [10].

One particularly satisfying aspect of these studies is
that insight into the origins of one kind of pattern often
yields insight into the origins of patterns in entirely dif-
ferent systems. A key example is the Turing mechanism
[3]. Turing’s argument, which will be described in detail
below, showed how diffusion, which is typically thought
of as a randomizing influence, can give rise to spatial
pattern formation when there are two or more classes of
degrees of freedom (species) with “activator” and “in-
hibitor” dynamics. This mechanism has been proposed
as an explanation for an enormous variety of systems in-
cluding short (< 10m) length scale patchiness in plank-
tonic ecosystems [11–14], patterning in plant-resource
systems [15], patchiness in insect abundance [16], stripe
and spot patterns on the coats of animals [6], patterns in
mussel beds [9] and even the geometric visual hallucina-
tions experienced by shamans and users of hallucinogenic
drugs [4, 17].

However, in spite of the seeming success of the Tur-
ing mechanism in explaining patterns across many disci-
plines, the partial differential equations representing the
dynamics of systems with Turing patterns typically re-
quire unphysical fine tuning of parameters or separation
of scales in the diffusivities of the different species in or-
der to predict pattern formation [5, 8, 11, 18–21]. The
requirement that the system either have fine tuning of
kinetic parameters or a separation of scales in diffusivi-
ties in order to predict patterns, is unphysical for many
applications and will be referred to below as the “fine
tuning problem”. To resolve the fine tuning problem for
Turing patterns we show that a full statistical mechani-
cal treatment of Turing patterns, where fluctuations due
to the discrete nature of the degrees of freedom in the

system – intrinsic noise – are included, the fine tuning
problem is resolved [21].

It may seem counterintuitive to claim that including
fluctuations resolves the fine tuning problem for Turing
patterns because fluctuations are generally expected to
destabilize ordered states such as spatial patterns. This is
the rule in standard statistical mechanics [22] and many
statistical mechanical models in ecology [23, 24]. How-
ever, exceptions exist in systems out of equilibrium. For
example, careful experiments on Rayleigh-Benard con-
vection have shown that fluctuations can drive the for-
mation of convection rolls in fluid dynamics that would
not form in the absence of fluctuations [25]. In ecology,
recent theoretical work and careful data analysis have
shown that the observed cyclic population dynamics of
predator-prey systems can be explained in many cases
by fluctuation driven cycles in time [26–29]. Similar phe-
nomena have been predicted in evolutionary game theory
and systems biology [30, 31]. In cell biology, simulating
the interactions of individual proteins in discrete time
and space in a model of proteins that regulate cell divi-
sion in e-coli results in pattern formation over a wider
range of parameters than the corresponding reaction-
diffusion partial differential equations [32]. Thus it seems
possible that a full many body treatment of the Turing
mechanism that incorporates intrinsic noise will resolve
the fine tuning problem.

The purpose of this paper is to present an analyisis
of the Turing mechanism with intrinsic noise included to
resolve the fine tuning problem. The analysis results in a
derivation of a phase diagram and to power spectra with
experimentally distinctive and relevant properties. This
paper is an expansion and elaboration of our paper [21]
which originally reported the resolution of the fine tuning
problem of Turing instabilities through the incorporation
of intrinsic noise. We will first review the Turing mecha-
nism, and then present an extremely simple model of the
Turing mechanism for planktonic predator-prey popula-
tions that we then analyze in detail. The results of the
analysis show that in large regions of parameter space
predicted by deterministic modeling to have only triv-
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ial spatial states a new kind of spatial pattern emerges
that we call a “quasi-pattern.” The quasi-pattern state is
analogous to intrinsic noise driven “quasi-cycles” recently
discovered in the time domain [26]. Quasi-patterns are
recognizable immediately as spatial patterns, but with a
few important, experimentally relevant, differences from
patterns predicted with deterministic analysis. The fi-
nal sections of the paper will focus on possible experi-
mental tests and extensions of the theory developed in
the body of the paper. We focus on a model of plank-
tonic predator-prey interactions throughout the paper for
simplicity and also because predator-prey systems have
been extensively analyzed theoretically [11, 12, 18, 20, 33]
and there is beginning to be an experimental literature
[16, 19]. However, we emphasize that the goal of this
paper is insight into the general interactions of intrin-
sic fluctuations with the Turing mechanism for pattern
formation and that the results should be valid for most
models of Turing instabilities. Evidence for this asser-
tion is provided by the recent replication of our results on
the Brusselator model of chemical pattern formation [34],
which additionally pointed out that the phase boundary
can differ for different species of reactants, a model of
embryonic pattern formation [35], as well as our own
forthcoming results on pattern formation on the visual
cortex [17].

I. THE TURING MECHANISM

The Turing mechanism in its most basic form requires
two different species that react and diffuse. One species,
the “activator,” diffuses relatively slowly, and catalyzes
(activates) both its own production and the production of
the second species. The second species, the “inhibitor,”
diffuses faster, and reduces (inhibits) the concentration
of both the activator species and itself. These combined
mechanisms lead to pattern formation from random ini-
tial conditions. We illustrate the mechanism with the
example of predator-prey dynamics with random initial
conditions
1. Random regions of activator (prey) with higher lo-
cal concentrations reproduce rapidly, leading to dense
clumps of activator species that then begin to diffuse.
2. Rapidly diffusing inhibitors (predators) are produced
in the neighborhood of the high density autocatalyzing
clumps of prey.
3. The predators inhibit the spread of the prey clumps
through their production in the neighborhood of prey
clumps. The autoinhibitory nature of predators prevents
them from overwhelming the prey population.

These steps, summarized in fig. 1, show how activator-
inhibitor dynamics can lead to spontaneous pattern for-
mation [3]. As was noted above, formalizing this argu-
ment into standard deterministic reaction-diffusion equa-
tions results in models that only exhibit Turing patterns
if the predator (inhibitor) diffusivity is much larger than
the prey (activator) diffusivity or the parameters are fine

tuned [8, 11, 18–20]. Note that consistent with the exis-
tence of pattern forming systems which do not apparently
display very large separation of diffusivities [15, 16] the
qualitative argument made above for pattern formation
does not depend on very large differences in diffusivities,
nor on additional kinetic details.

FIG. 1: Illustration of the steps of the Turing mechanism as
described in the text. The figure should be viewed from top to
bottom. The prey (activators) are represented by black dots,
and the predators (inhibitors) are represented by red dots.

II. TURING PATTERNS IN THE LEVIN-SEGEL
MODEL

One of the simplest models of Turing patterns is drawn
from ecological pattern formation and was originally
introduced to model plankton-herbivore dynamics [11].
The reaction diffusion equations for this model are

∂tψ = µ∇2ψ + bψ + eψ2 − (p1 + p2)ψϕ

∂tϕ = ν∇2ϕ+ p2ϕψ − dϕ2
(1)

where the plankton population ψ is the activator, as can
be seen by the nonlinear growth term eψ2, and the her-
bivore population ϕ is the inhibitor due to the predation
terms pψϕ and the competition term −dϕ2. The non-
linear growth term eψ2 was origingally introduced to be
a proxy for predator satiation [11] but can also be in-
terpreted as an Allee effect, wherein many species have
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enhanced reproduction at higher concentrations (for a
review, see [36]).

Setting p1 = 0 and p2 = p, the model contains a stable
homogeneous coexistence state when

p > e and p2 > de (2)

with stationary fixed point populations given by

ψs =
bd

p2 − de
, ϕs =

bp

p2 − de
(3)

It contains a Turing instability if [11]

ν

µ
>

 1(√
p/d−

√
p/d− e/p

)
2

(4)

The model is only valid when the coexistence fixed point
is stable. Outside of that regime, a plankton regulation
term such as −fψ3 is required to make the model valid.
For the present analysis, we assume that fψ3 is suffi-
ciently small to be ignored. The fine tuning problem can
be illustrated in this model by taking the set of O(1) ki-
netic parameters b = 1/2, e = 1/2, d = 1/2 and p = 1.
With these parameters Eq. 4 shows that non-generic dif-
fusivities, ν/µ > 27.8, are required for pattern formation.
Similar results are obtained for other generic parameter
sets.

A. Extrinsic noise driven pattern formation

To gain preliminary insight into the effects of intrinsic
noise on the Levin-Segel model, we can analyze the effects
of unconserved extrinsic noise on the linearized dynamics
of the Levin-Segel model as in previous studies of extrin-
sic noise driven pattern formation [21, 37–39]. While not
identical, expansion schemes such as the system size ex-
pansion [40] indicate that the effects of extrinsic noise
and intrinsic noise on the linearized dynamics of reaction
diffusion systems are closely related. Additionally, we
will use the calculation of the effects of extrinsic noise on
the Levin-Segel model to predict observable differences
between unconserved extrinsic and intrinsic noise driven
pattern formation.

To calculate the effects of extrinsic noise, we look at the
Fourier transformed dynamics of the fluctuations from
the coexistence fixed point with added white noise ξ, vari-
ance C. These dynamics are given by

− iωx = Ax+ ξ (5)

The matrix A is the Fourier transformed stability ma-
trix and x is the vector of deviations from equilibrium of
predator and prey populations respectively,

A =

(
−νk2 − pψs pϕs
−pψs −µk2 + eψs

)
(6)

Simple manipulations yield the average power spectrum

P (k, ω) = C
[
p2ϕ2

s + (eψs − µk2)2
]
×
[(
pbψs + µνk4 − ω2

− ψsk2eν
(

1− pµ

eν

) )2
+ ω2((e− p)ψs − (µ+ ν)k2)

]−2
(7)

To a crude approximation, Eq. 7 predicts that pat-
terns (indicated by peaks in the power spectrum) form
whenever eν > pµ, and that without noise and away from
a classical Turing instability the power spectrum is zero.
As anticipated, the condition eν > pµ can be satisfied
easily and avoids the fine tuning problem. However, the
calculation with the extrinsic noise considered here dif-
fers in important ways from the intrinsic noise case, such
as the determination of the strength of the noise and the
presence of diffusive noise. As will be shown below, these
differences lead to experimentally distinguishable differ-
ences in the resulting spatiotemporal patterns.

III. PREDATOR-PREY MODEL WITH
INTRINSIC NOISE

To systematically include the effects of intrinsic noise
requires a model defined at the level of individual organ-
isms, since intrinsic noise is generated by the stochas-
tic nature of individual birth and death events as well
as the stochastic interactions between individual organ-
isms. Such a description of the dynamics at the individ-
ual level is called an individual level model (ILM). One
simple way to define an ILM is to specify the reactions
that can take place in a well mixed patch of volume V .
To include space, a lattice of patches can be considered
with additional reactions corresponding to movement of
predator and prey organisms between the patches. With
parameters to specify the relative rates of the reactions,
a model of individual level interactions on a single patch
that incorporates intrinsic noise is fully specified.

For an ILM version of the Levin-Segel model we con-
sider the following reactions

P
b→ PP

PP
e/V→ PPP

PH
p1/V→ H

PH
p2/V→ HH

HH
d/V→ H (8)

where P denotes plankton and H denotes herbivores,
with the parameters as described above. Stochastic tra-
jectories of H and P , enumerated by m and n respec-
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tively, are described by the master equation

∂tP (m,n) = b(−nP (m,n) + (n− 1)P (m,n− 1))

+
e

V
((n− 1)(n− 2)P (m,n− 1)− n(n− 1)P (m,n))

+
p1
V

(−mnP (m,n) + (m)(n+ 1)P (m,n+ 1))

+
p2
V

(−mnP (m,n) + (m− 1)(n+ 1)P (m− 1, n+ 1))

+
d

V
[(m+ 1)mP (m+ 1, n)−m(m− 1)P (m,n)] (9)

The master equation, which is exactly equivalent to
the specification of the model as a collection of reactions
in Eq. 8, can then be used to analyze the ILM version
of the Levin-Segel model by applying techniques from
non-equilibrium statistical mechanics.

A. Field theory representation of the model

While several options exist for analysis of the master
equation, such as direct expansion of the master equa-
tion [40], we analyze the master equation by a mapping
to field theory, because it is convenient for handling spa-
tially extended systems. To analyze the master equation
using the techniques of field theory, we introduce the op-
erators

a|m,n〉 = m|m− 1, n〉
â|m,n〉 = |m+ 1, n〉

[a, â] = 1

b|m,n〉 = n|m,n− 1〉
b̂|m,n〉 = |m,n+ 1〉[
b, b̂
]

= 1 (10)

and the state |ψ〉 =
∑
P (n)|n〉. These definitions allow

the master equation to be mapped to a bosonic field the-

ory [41–45]. As an explicit example of how to convert
the master equation to a field theory, consider the mas-
ter equation corresponding to the second reaction in Eq.
8 alone.

∂tP (n) =
e

V
[(n−1)(n−2)P (n−1)−n(n−1)P (n)] (11)

Ignoring V for now, we multiply both sides by |n〉 and
sum over n∑

n

∂tP (n)|n〉 =

e
∑
n

[(n− 1)(n− 2)P (n− 1)− n(n− 1)P (n)] |n〉 (12)

We next shift the sums, and manipulate the first term
in the sum

Let n′ = n− 1→ n = n′ + 1.

e
∑
n′

n′(n′ − 1)P (n′)|n′ + 1〉 , n′ → n

= eb̂3b2
∑

P (n)|n〉

= eb̂3b2|ψ〉 (13)

We now work out the second term in the sum

e
∑
n

n(n− 1)P (n)|n〉

= eb̂b̂bb|ψ〉 (14)

This yields

∂t|ψ〉 = e
[
b̂3 − b̂2

]
b2|ψ〉 (15)

Similar analyses lead to second quantized forms for
the rest of the master equation. We can now assemble
the entire Hamiltonian. We start by writing the master
equation in second quantized form

∂t|ψ〉 =

[
b(b̂2 − b̂)b+

e

V
(b̂3 − b̂2)b2 +

p1
V

(âab− âab̂b) +
p2
V

(â2ab− âab̂b) +
d

V
(1− â)âa2

]
|ψ〉 (16)

Since the standard definition of the Hamiltonian is

∂t|ψ〉 = −Ĥ|ψ〉 (17)

we have

Ĥ = −
[
b(b̂2 − b̂)b+

e

V
(b̂3 − b̂2)b2 +

p1
V

(âab− âab̂b) +
p2
V

(â2ab− âab̂b) +
d

V
(1− â)âa2

]
(18)



5

According to the standard mapping between Hamilto-
nians represented by bosonic operators we can easily de-
rive the Lagrangian, generalized to space. To generalize
to space, we implement a random walk between patches
of volume V for every organism as a reaction with rate
τi where i is an index for species. Appropriately rescaled
[28], the continuum limit and mapping to the functional
integral formulation yields the Lagrangian

L = a∗∂ta+ b∗∂tb− νa∗∇2a− µb∗∇2b

+H(b̂, â, b, a) (19)

The boundary conditions are ignored, because the fo-
cus of this paper is the long time limit and there is only
one attractor in the system.

To transform to more physical variables, the standard
Cole-Hopf transformation can be applied to transform
the field variables to direct number and noise represen-
tations. This transformation is given by

a = ze−ẑ

â = eẑ (20)

b = ρe−ρ̂

b̂ = eρ̂ (21)

the new field variables z and ρ can be heuristically inter-
preted as the number of predator and prey respectively
(the precise interpretation is that their expectation val-
ues correspond, i.e. 〈f(ρ, z)〉 = 〈f(NP , NH)〉) and the
auxiliary fields denoted by carets generate the intrinsic
noise, as will be seen below by showing that the minimum
of the action, which corresponds to mean field theory is
at ρ̂ = ẑ = 0. The Lagrangian in the new variables is

L = x̂∂tz + ρ̂∂tρ− νẑ∇2z − µρ̂∇2ρ

− νz(∇ẑ)2 − µρ(∇ρ̂)2 + bρ(1− eρ̂)

+
e

V
ρ2(1− eρ̂) +

p1
V
zρ(1− e−ρ̂)

+
c

V
zρ(1− eẑ−ρ̂) +

d

V
z2(1− e−ẑ) (22)

B. System size expansion

We now can carry out the system size expansion in
the field theoretic formalism. Other than notation, it is
identical to the direct expansion of the master equation
reviewed in [40]. We expand the fields as

ẑ → ẑ√
V
, ρ̂→ ρ̂√

V

z = V ϕ+
√
V η, ρ = V ψ +

√
V ξ (23)

To perform this expansion to consistent order, it is
necessary to expand the exponentials out to second order.
This is because the expansion will promote second order

terms to first order. The result is an expansion of the
Lagrangian in the form

L =
√
V L1 + L2 +O(1/

√
V ) (24)

We once again carry out the expansion explicitly for
the term coupled by e/V .

e

V
ρ2(1− eρ̂)

=
e

V

(
V ψ +

√
V ξ
)(

V ψ +
√
V ξ
)(

1−
(

1 +
ρ̂√
V

+
ρ̂2

2V

))
= −e

(√
V ψ2ρ̂+

ψ2ρ̂2

2
+ 2ξρ̂

)
+O(1/

√
V ) (25)

Collecting terms of leading order,
√
V , we have

L1 = ρ̂∂tψ + ẑ∂tϕ− νẑ∇2ϕ− µρ̂∇2ψ − bψρ̂− eψ2ρ̂

+ bϕψρ̂− cϕψ(ẑ − ρ̂) + dϕ2ẑ (26)

It is trivial to extract the mean field PDE’s by using
the Euler-Lagrange equations. The equations that result
are

δL1

δẑ
= ∂tψ − µ∇2ψ + bψ + eψ2 − (p1 + p2)ψϕ = 0

(27)

which is the first of the equations for the Levin-Segel
model. The second equation is

δL1

δρ̂
= ∂tϕ− ν∇2ϕ+ p2ϕψ − dϕ2 = 0 (28)

again reproducing the Levin-Segel model equation of mo-
tion. Note that the auxiliary fields have zero expectation
value at mean field, which confirms the interpretation
that they correspond to noise. Now L2 can be assembled.
The terms in L2 that are linear in η or ξ correspond to the
stability matrix of the MFT. Terms that are quadratic in
the hatted variables ρ̂ and ẑ are noise terms and will be
considered next.

Proceeding, we have

L2 = ẑ∂tη + ρ̂∂tξ − ẑν∇2η − ρ̂µ∇2ξ + p1ηψρ̂

− p2ηψ(ẑ − ρ̂) + 2dηϕẑ + bξρ̂+ 2eξψρ̂+ bξϕρ̂

− p2ξϕ(ẑ − ρ̂) (29)

We convert this into a Fourier transformed matrix form
that includes time and space

L2 = yT∂tx− yTAx−
1

2
yTBy (30)

with vectors given by

x =

(
η
ξ

)
, y =

(
ẑ
ρ̂

)
(31)
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so that the predator variables are on top. The matrix A
is the Jacobian J of the MFT with space added and is
given by

A =
(
−νk2+p2ψ−2dϕ p2ϕ

−(p1+p2)ψ −µk2+b+2eψ−(p1+p2)ϕ

)
(32)

The matrix for the correlations of the noise is given by

B =
(
dϕ2+p2ϕψ+νϕk

2 −p2ϕψ
−p2ϕψ bψ+eψ2+bϕψ+p2ϕψ+µψk

2

)
(33)

We also now note that L2 is in the form of a Lagrangian
in the Martin-Siggia-Rose (MSR) response function for-
malism for Langevin equations [46, 47].

C. The power spectrum

We now extract the stochastic differential equations
(SDE) that govern the dynamics of the fluctuations, and
calculate the power spectrum of the fluctuations. The
Langevin equations from the response function formalism
are

iωx = Ax+ γ(ω)

〈γi(ω)γj(−ω)〉 = Bij (34)

We solve formally to obtain

x = (A+ iω)−1γ(ω) ≡D(ω)−1γ(ω) (35)

The power spectrum is

〈x1x∗1〉 =
〈(D22γ1 −D12γ2)(D∗22γ1 −D∗12γ2)〉

|det(D)|2

=
|D22|2B11 − 2D12Re(D22)B21 + |D12|2B22

|det(D)|2
(36)

To find the phase diagram, take p1 → 0, p2 = p. This
simplification does not substantially change the dynamics
of the model. In terms of elements of the stability matrix,
the denominator of the power spectrum is

det(D) = (J11 + iω − νk2)(J22 + iω − µk2)− J12J21
= det(J) + iω(Tr(J)− (µ+ ν)k2)

− (J11µ+ J22ν)k2 + µνk4 − ω2 (37)

The full expression for the power spectrum is

P (k, ω) =
|D22|2B11 − 2D12Re(D22)B21 + |D12|2B22

(det(J) + µνk4 − ω2 − (J11µk2 + J22νk2))2 + ω2(Tr(J)− (µ+ ν)k2)2
(38)

Recall the fixed point values at coexistence are

ϕ =
pb

p2 − de

ψ =
db

p2 − de
(39)

Using the fixed point values, the matrix A can be further
simplified to

A =

(
−νk2 − pψ pϕ
−pψ −µk2 + eψ

)
(40)

Now we evaluate the determinant of the ODE stability
matrix (J above, and equal to A with space removed)
and the trace

det(J) = pψb (41)

The trace is

Tr(J) = (e− p)ψ (42)

Simplifying the denominator in Eq 38 yields

|det(D)|2 = (det(J) + µνk4 − ω2 − (J11µk
2 + J22νk

2))2 + ω2(Tr(J)− (µ+ ν)k2)2

= (pbψ + µνk4 − ω2 − ψ(−pµk2 + eνk2))2 + ω2((e− p)ψ − (µ+ ν)k2)2

=
(
pbψ + µνk4 − ω2 − ψk2eν

(
1− pµ

eν

))2
+ ω2((e− p)ψ − (µ+ ν)k2)2 (43)

The form of the denominator is (A − Bk2 + Ck4)2, which has a minimum at non zero k. This minimum cor-
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responds to an emergent length scale, and is the first in-
dication of pattern formation. Systematic demonstration
of the emergence of pattern formation requires account-
ing for the k dependence in the numerator. The noise
matrix B can be simplified to

B =

(
2pϕψ + νϕk2 −pϕψ
−pϕψ 2pϕψ + µψk2

)
(44)

Notice the symmetry in the noise correlations. We now
can expand out the numerator of Eq. 38

|D22|2B11 − 2D12Re(D22)B21 + |D12|2B22

= |eψ − µk2 + iω|2(2pϕψ + νϕk2) + 2pϕ(eψ − µk2)(pϕψ) + p2ϕ2(2pϕψ + µψk2)

= (eψ − µk2)2(2pϕψ + νϕk2) + ω2(2pϕψ + νϕk2) + 2p2ϕ2ψ(eψ − µk2) + p2ϕ2(2pϕψ + µψk2) (45)

This gives the final form of the power spectrum

P (k, ω) =
(eψ − µk2)2(2pϕψ + νϕk2) + ω2(2pϕψ + νϕk2) + 2p2ϕ2ψ(eψ − µk2) + p2ϕ2(2pϕψ + µψk2)(

pbψ + µνk4 − ω2 − ψk2eν
(
1− pµ

eν

))2
+ ω2((e− p)ψ − (µ+ ν)k2)2

(46)

IV. ANALYSIS OF THE POWER SPECTRUM

A. Phase diagram for quasi-patterns

The expression for the power spectrum in Eq. 46 is
not very illuminating, and does not simplify a great deal.
To find quasi-patterns we note that the highest power of
k in the denominator of Eq. 46 is larger than the highest
power in the numerator. That means for sufficiently large
k, the power spectrum is always decreasing. Thus, to
show the existence of a maximum, it is sufficient to show
that for small k, the power spectrum is increasing. This
can be shown by computing dP

dk2 and evaluating at k2 = 0.
When this expression is greater than 0, there is pattern
formation. This yields the analytical criterion

ν

µ
>

p3(5p2 + 7de)

e(4p4 + 5p2de+ 3d2e2)
(47)

This criterion is much less stringent than the criterion
for Turing instabilities. The conditions for a Turing in-
stability are

ν

µ
>

(
1√

p/d−
√
p/d− e/p

)2

(48)

For the generic parameters b = 1/2, p = 1, d =
1/2, e = 1/2 the criterion 47 yields ν/µ > 2.48, while
the Turing condition yields ν/µ > 27.8. This behavior is

typical of generic parameters. The phase diagram of the
system bears out this conclusion as shown in figure 2.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

10

20

30

40

50

60

70

80

90

p/d

ν/
µ

II

I

III

FIG. 2: Phase diagram over stable parameter region in p/d.
Region I is MFT level pattern formation, region II contains
fluctuation driven quasi-patterns, and region III is a spatially
homogeneous phase.

An additional feature of the model is that oscillations
and spatial pattern formation are essentially decoupled.
This means that the model predicts global population



8

oscillations and spatial pattern formation, but not trav-
eling waves. The mathematical origin of this can be seen
in Eq. 7. The k2 term with a negative coefficient at
ω = 0 is quickly overwhelmed by the positive k2 depen-
dence of the ω2 term as the frequency begins to grow. In
the power spectrum (fig. 3) this can be seen as the deep
valley between the peaks in k and ω. This interpretation
is supported by preliminary simulations.

FIG. 3: Power spectrum with p=1, ν/µ=15

B. Wavelength of fluctuation driven patterns

To a fairly good approximation, the wavelength of the
Turing quasi-patterns can be calculated. The wavelength
corresponds to the wave vector that maximizes the power
spectrum. To calculate that value, consider the numera-
tor of the power spectrum only at ω = 0.(

pbψ + µνk4 − ψk2eν
(

1− pµ

eν

))2
)2 (49)

The minimum of this expression will correspond with
reasonable accuracy to the real wavelength and can be
obtained through straightforward calculation to be

λm =
2π

km
=

√
2µ

ψ

(
1− cµ

eν

)
(50)

This shows that for a fixed ratio of diffusivities, the
wavelength increases as the square root of the diffusivity.
In addition, while the phase diagram of the system (fig
2) and therefore the presence of Turing quasi-patterns
depends on diffusivity only through the ratio ν/µ, the
wavelength of the patterns depends on the values of the
diffusivities.

This calculation also implies that the wavelength of
the quasi-patterns is closely related to the wavelength of

patterns in the region of the phase diagram where pat-
terns are generated at mean field. In the standard theory
of Turing patterns, patterns are formed when the homo-
geneous steady state is unstable to perturbations with a
specific set of wave vectors k. The wavelength is then
the wavelength corresponding to the mode that is most
unstable. In the calculation above, we have picked out
the mode that in mean field theory corresponds to the
slowest decaying mode as the wavelength of the quasi-
patterns. This is because the denominator of the power
spectrum is equal to the product of the eigenvalues of the
stability matrix squared. This product is smallest for the
slowest decaying mode, which is also the mode that will
go unstable in mean field theory first as parameters are
varied. Therefore the wavelength of the quasi-patterns
corresponds to the wavelength of the mean field patterns.

C. Period of quasi-cycles

A similar calculation to the calculation above for the
wavelength of the quasi-patterns can be carried out for
the period of the quasi-cycles. Consider the denominator
of the power spectrum with k = 0(

pbψ − ω2
)2

+ ω2((e− p)ψ)2 (51)

Analogous to the wavelength calculation, we seek the
minimum in ω. Simple calculation yields a period of

T =
2π

ωm
=

4π√
2bpψ − (e− p)2ψ2

(52)

Similar arguments to those for the wavelength indicate
that the period for the quasi-cycles is approximately the
period for the stable spirals present in mean field theory
[26].

V. DISTINGUISHING QUASI-PATTERNS AND
QUASI-CYCLES FROM OTHER
SPATIOTEMPORAL PATTERNS

To distinguish spatiotemporal patterns generated by
intrinsic noise from those generated by feedbacks alone
(i.e. mean field patterns) or by extrinsic noise, it is nec-
essary to develop theoretical predictions that differ for
each of these cases. Previous work has focused primarily
on time series data, focusing on problems such as dis-
tinguishing quasi-cycles from limit cycles [29] as well as
the task of simply determining the amount of extrinsic
versus intrinsic noise in ecosystems [48]. This work has
confirmed that both extrinsic noise and intrinsic noise
are important in real ecosystems for populations such as
temperate songbirds in Norway, and the beetle species
Tribolium [48–50] and that quasi-cycles are present in
real ecological time series data[29]. The work also con-
firms that the importance of intrinsic noise decreases as
population density increases, in line with the expectation
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that the scale of intrinsic noise depends on the scale of
the population density [50].

While separate signatures of quasi-cycles and quasi-
patterns will be discussed below, one common feature
that distinguishes quasi-cycles and quasi-patterns from
their counterparts in mean field theory is that they de-
pend on the concentration of the population being stud-
ied. To leading order only the fluctuations have patterns,
implying that the local populations can be written as
mean value plus fluctuations scaled by the size of a lo-
cally well mixed region (see below). Thus the amplitude
of the patterns relative to the mean population size of
the fluctuation driven patterns will change as the size of
a locally well mixed area changes, while the relative am-
plitude of mean field patterns and limit cycles would not
change. Such a variation of the size of a locally well mixed
area could presumably be used to detect quasi-patterns
and quasi-cycles.

A. Distinguishing quasi-cycles from limit cycles

Given a population that has oscillatory abundance in
time, theory indicates that the oscillations can come from
either quasi-cycles driven by noise or from population
density dependent feedbacks alone, perturbed by noise
(mean field cycles). The key difference mathematically
is that the power spectrum of limit cycles has a pole at
its frequency while the power spectrum of quasi-cycles
does not. In the time domain, this means that the cycles
driven by intrinsic noise have a short correlation time
while limit cycles have an infinite correlation time. Since
poles do not exist in real population data due to stochas-
ticity, finite size populations, measurement error, etc.
what this means for real data is that there is a sepa-
ration of scales between the correlation time of limit cy-
cles and quasi-cycles. This was first pointed out in detail
by Pineda-Krch et al. [29]. These authors also showed
that wolverine population cycles are likely quasi-cycles,
while the celebrated lynx-hare cycles from the Hudson
Bay company’s trapping records are most likely limit cy-
cles [29].

Other studies of the role of intrinsic noise have fo-
cused on intrinsic noise contributions compared to ex-
trinsic noise contributions as a function of local popula-
tion size [48, 50]. In frequency space, the best frequencies
to analyze to distinguish the relative importance of noise
are high frequencies, corresponding to the short timescale
fluctuations of the system. To extract predictions for the
case of intrinsic noise, we look at the large ω asymptotics
of the power spectrum Eq. 46 at k = 0

P (k = 0, ω) =
2pψϕ

ω2
, ω � ωm (53)

where ωm is the modal frequency of the quasi-cycles.
For cycles driven by extrinsic additive noise, we look at
the same asymptotics for the power spectrum from the
heuristic calculation, which, as we noted above, can be

considered as a calculation for extrinsic noise. In this
case, the asymptotic form is

P (k = 0, ω) =
p2ψ2 + e2ϕ2

ω4
〈ξξ〉, ω � ωm (54)

where the variance 〈ξξ〉 is independent of population den-
sity and ωm is the frequency of the quasi-cycles. While in
this case, both the expressions depend on the square of
population density, the decay in ω has a power of two for
intrinsic noise, and of four in the case of extrinsic noise.
Thus the tails can be easily distinguished in real data.

B. Distinguishing quasi-patterns from mean field
patterns

Similar considerations can be applied to quasi-
patterns. While further study is needed, the finite
peak in the power spectrum for quasi-patterns indicates
that quasi-patterns generically have a shorter correlation
length than mean field patterns, which have a pole in
their power spectrum at the wavelength of the pattern.
Thus the techniques outlined above for distinguishing
mean field limit cycles from quasi-cycles and applied to
real populations in [29] translate directly into the space
domain from the time domain.

For distinguishing unconserved extrinsic noise and in-
trinsic noise contributions, the asymptotics for short
wavelength fluctuations can again be derived for the in-
trinsic and extrinsic noise cases. For intrinsic noise, we
have

P (k, ω = 0) = k−2
ϕ

ν
, k � km (55)

where km is the wave vector of the mode of the power
spectrum. For extrinsic noise, we have

P (k, ω = 0) =
k−4

ν2
〈ξξ〉, k � km (56)

where the variance 〈ξξ〉 is independent of population den-
sity. Like the quasi-cycle case, the scaling in k differs by
a power of two between the extrinsic and intrinsic noise
cases. Contrary to quasi-cycles in the previous section,
the extrinsic and intrinsic noise lead to different powers
of population density for large k. This provides a useful
tool for distinguishing between the effects of unconserved
extrinsic anoise nd intrinsic noise on the formation of pat-
terns especially if the density of the populations can be
varied through comparative study of field data in differ-
ent ecosystems, or through experiments. These consid-
erations are quite broad, and should qualitatively apply
to other systems, such as chemical reaction systems in
which quasi-patterns or cycles may be present, such as
the Brusselator model of chemical pattern formation [34].

Another possibility beyond those considered here is
noise manifested through stochasticity in the kinetic pa-
rameters of the system as is common in ecological models
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[51]. Systematic study of such a model is well beyond the
scope of this paper, and is an interesting subject for fu-
ture research. However, a simple model of the effects of
weak parameter noise on the linearized dynamics shows
that the tail of the power spectrum will still be domi-
nated by the effects of extremely weak extrinsic noise so
that the k−4 tail of the power spectrum is retained with
very small k−8 corrections (See appendix one) indicating
that weak parameter noise is not a qualitatively impor-
tant factor in the analysis of quasi-patterns. Absent weak
extrinsic noise, there is no evidence that weak parame-
ter noise generates quasi-patterns on its own. Rather,
it seems to only add corrections to the approach to the
mean field steady state.

A potential difficulty with the analysis of power spec-
trum tails is that preliminary numerical study of quasi-
patterns suggests that the form of the power spectrum
used above may only be strictly valid near the onset of
the patterns due to higher order corrections to the mean
population. Evidence for this claim is discussed below.
The implications of this possibility for distinguishing dif-
ferent kinds of patterns is a subject for future research.

VI. THERMODYNAMIC LIMIT

To compare to data, we also must be able to estimate
the conditions under which the fluctuation driven effects
described above are important. While the considerations
that follow are mathematically elementary, they are im-
portant for the analysis of real data and have not always
been clearly elucidated in the ecological literature, where
it has sometimes been assumed that intrinsic noise effects
are only important if the total population of each species
is small [51]. In fact, the scale of fluctuations is governed
instead by the population size in a volume (indicated by
the parameter V in the calculation above) sufficiently
small that the crossing time for diffusion is smaller than
the reaction times. The confusion arises because when
space is neglected, the organisms are all confined to such
a small volume, so the scale of fluctuations is determined
by the total population size [26, 52].

What the current calculation shows is that there
are two separate limits in the construction of reaction-
diffusion models. One of these limits yields a particular
kind of mean field theory, and the other, corresponding
to what would traditionally be called the thermodynamic
limit in statistical physics, does not yield a mean field
theory at all. Only in d = 0 do these limits coincide. Re-
call that the theory was constructed by creating a lattice
of patches, each patch of volume V , and then taking the
limit of an infinite number of patches, and looking at the
continuum version of the theory. The thermodynamic
limit corresponds to the limit as the number of patches
goes to infinity, while the mean field limit corresponds to
taking the volume of each patch, V , to infinity.

The parameter V is determined by the kinetics of the
system and is finite whenever diffusion is significant. The

finite V dynamics described in this paper can only be
neglected when the typical number of organisms in a well
mixed patch of volume V is extremely large, since the
finite V fluctuations are large. This is discussed in more
detail in the next section.

VII. VALIDITY OF THE LARGE V EXPANSION
AND THE SCALE OF QUASI-PATTERNS

The expansion considered above is only strictly valid
near the onset of quasi-patterns. While in the absence of
space, the expansion is valid quite generally, leading to
excellent agreement between theory and simulation for
the power spectrum [26], the spatial structures do not
seem to be as well captured by the expansion deep in the
quasi-pattern regime. This is probably due to fluctuation
corrections to the mean field not studied in the current
paper. This is suggested by simulated trajectories of the
reaction-diffusion master equation using the exact algo-
rithm of Gillespie [53]. The results of this calculation,
along with the location on the phase diagram simulated
are shown in fig. 4

The calculation indicates that the patterns deep inside
the quasi-pattern phase are non-perturbative, due to the
large variance in populations. We expect that the non-
perturbative corrections to the mean field solutions arise
at higher order in the expansion. The analytical theory
above does not predict the power spectrum of these pat-
terns, but the calculation of wavelength and period above
are still approximately valid, since they are obtained by
finding the least stable modes, which are likely still dom-
inant, even in the non-perturbative regime.

VIII. EXPLAINING THE FAILURE OF MEAN
FIELD THEORY

From the above calculation, as well as related calcula-
tions ranging from zero dimensional models of ecosystems
to models of biochemical oscillations [21, 26, 30, 31] it is
clear that in many applications where the fundamental
physics contains intrinsic noise, mean field theory fails
to describe the oscillatory dynamics in time and space of
the system even for relatively large systems with many
degrees of freedom far from a critical point. Qualita-
tively, this failure can be understood quite generally by
considering the nature of mean field theory.

While there are many ways to derive mean field theo-
ries [22], to understand the failure of mean field theory,
the simplest approach for systems described by a master
equation is to note that there are two essential steps to
deriving a mean field theory: averaging and neglecting
correlations.

Consider the first step, averaging. The average of the
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FIG. 4: The phase diagram is on the left. Region I is mean field pattern formation, region II is fluctuation driven pattern
formation, and region III is homogeneous. The red arrow has its tail on the approximate location in parameter space simulated
to produce the spatial patterns shown on the right. The image on the right hand is a heat map of population density in two
dimensions. Note that the number of organisms is highly variable, even though mean field predicts a homogeneous state. The
fluctuation effects are very large and variable, with patch populations ranging from 1200 to 0. The axes are the lattice index
from simulation.

trajectories is given by

ϕ = 〈N(t, x)〉 = lim
Mζ→∞

1

Mζ

∑
ζ

Nζ(t, x) (57)

where ζ is the index for realizations of the discrete
Markov process for the population dynamics, Mζ is the
number of realizations sampled, and Nζ(t, x) is the real-
ization of the discrete Markov process. Each individual
realization may be oscillatory, but the oscillations will
have a great deal of noise in their amplitude and phase.
Summing over these oscillatory contributions will under
many conditions lead to an average, ϕ, that is no longer
oscillatory because the variance in amplitude and phase
between different realizations ζ of the stochastic process
will lead to cancellations of the oscillatory parts in the
sum for the average above. That is, the sum of noisy
oscillations is not always oscillatory. Since mean field
theory considers the dynamics of averages, it will not

capture the oscillations present in individual realizations
of the dynamics unless the feedbacks that generate the
oscillations are much more important than fluctuations
(see fig. 5).

IX. APPLICATION TO FIELD DATA AND
EXPERIMENTS

While the calculation above was intended primarily to
shed light on the broad theoretical question of the fine
tuning problem in Turing instabilities rather than the
Levin-Segel model alone, it would still be satisfying to
match the predictions above to plankton data. Such an
application to current field data in planktonic systems
is very difficult. In part this is because data on plank-
ton patterns are primarily gathered for large scale spa-
tial patterns that are driven by turbulent stirring, rather
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FIG. 5: Sample trajectories of the Markov process for
predator-prey dynamics. Note that while each is roughly os-
cillatory, a mean field theory derived from the average of many
such trajectories would not contain oscillations.

than biological interactions as in the theory presented
here [14]. Convection accounts for most of the spatial
heterogeneity of plankton at scales above tens of meters
[14]. However, there do exist some limited data on plank-
ton population heterogeneity at meter and shorter length
scales [13]. Further data on the motility of plankton sug-
gest that the ratio of diffusivities for predator-prey pairs
is of order 10 [54]. We calculated above that with generic
parameters, the criterion 47 yields ν/µ > 2.48, while the
Turing condition yields ν/µ > 27.8. Under these condi-
tions, it is likely that some populations have fluctuation
driven patterns, if the Turing mechanism is responsible
for the pattern formation. Current data are not, to our
awareness, adequate to go much further.

There are several additional problems with applying
the current theory to real planktonic systems, even if
the data were to be much higher resolution. The first is
that plankton are enormously diverse, with many species
interacting with many others, and body sizes and behav-
iors spanning several orders of magnitude [55, 56]. A
second problem is that the current theory is so simpli-
fied that there is no clear connection between many of
the parameters in the model and what is measured in
real populations. The best way to carry out the iden-
tification of quasi-patterns is probably not to engage in
detailed modeling of the population dynamics, but rather
to use model independent predictions, such as the den-
sity dependence of the correlations described above, and
the power of k and ω for large values of k and ω in the

power spectrum. Data sets associated with plant systems
are likely to be amenable to such analysis [15]. Addition-
ally, laboratory experiments in engineered microbial [7],
or even in chemical systems (see above comments on the
thermodynamic limit) may provide more controlled ways
to detect quasi-patterns.

X. CONCLUSIONS AND PROSPECTS FOR
FUTURE RESEARCH

We conclude by noting that our analysis of the model
in Eqs. 1 has demonstrated that Turing patterns are
much more generic than is to be expected on the basis of
mean field theory, partial differential equation analysis.
We also have pointed out some possible ways in which
the fluctuation driven spatiotemporal patterns discussed
can be identified in real data. While this paper focused
on a single model, we wish to emphasize again that the
model was deliberately chosen to be highly generic with
the goal of providing broad insight into the statistical
mechanics of the Turing mechanism that can be widely
applied. As noted in the introduction, the conjectured
wide applicability of this result has received some sup-
port from calculations on the Brusselator model [34] and
a model of Turing patterns in neuronal networks stud-
ied in the following paper [17]. Further applications of
this theory are potentially as wide as the applicability
of the Turing mechanism, which, as was pointed out in
the introduction, has been used to explain patterns in an
enormous variety of systems. In fact, we conjecture that
perhaps many or most observed Turing patterns are the
quasi-patterns predicted in this paper. To demonstrate
this conjecture, the next step is to apply the concepts in
this paper to an experimentally well-characterized sys-
tem, such as an engineered bacterial system with Turing
feedbacks. Another important avenue of investigation
is to further explore ways to distinguish between quasi-
patterns and mean field patterns. Further theoretical
progress may also be made by addressing with a simi-
larly detailed theory other noise driven spatiotemporal
patterns such as intrinsic noise driven epidemic waves,
which seem to be present in measles and dengue fever
epidemics [57, 58].
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Appendix A: Influence of parameter noise on
quasi-patterns

To calculate the effects of parameter noise on Turing
models to a first approximation, we take the linearized
mean field dynamics

− iωx = Ax (A1)

and generalize to

− iωx = Ax+ εξx+ x0 (A2)

where x0 is an initial deviation from mean field equilib-
rium, ε is a small parameter, and ξ is a diagonal matrix
of white noise, variance one. Only contributions to the
power spectrum that are independent of x0 persist in the
long time limit.

Rearranging Eq. A2 yields

x = − (A− εξ1)
−1
x0 (A3)

For small ε, this can be expanded to yield

x = A−1
(
1 + εA−1ξ

)
x0 +O(ε2) (A4)

Taking the dot product and averaging yields the sum of
the power spectrum for the predator and prey species,
which is sufficient for detecting the presence or absense
of quasi-patterns

〈xx∗〉 =
(
A−1x0

) (
A−1x0

)∗
+ε2A−2x0(A−2x0)∗ (A5)

Note that this power spectrum depends term by term
on the initial conditions x0, indicating that the power
spectrum is dominated completely by the effects of tran-
sient patterns at times shorter than the relaxation time
to the steady state. Parameter noise only has the effect
of correcting the approach to steady state. Any quali-
tatively important effects of parameter noise on quasi-
patterns are thus present only in a nonlinear analysis.
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