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Abstract

We adapt the Kolmogorov’s normalization algorithm (which is the key element
of the original proof scheme of the KAM theorem) to the construction of a suitable
normal form related to an invariant elliptic torus. As a byproduct, our procedure can
also provide some analytic expansions of the motions on elliptic tori. By extensively
using algebraic manipulations on a computer, we explicitly apply our method to a
planar four-body model not too different with respect to the real Sun—Jupiter—
Saturn—Uranus system. The frequency analysis method allows us to check that our
location of the initial conditions on an invariant elliptic torus is really accurate.
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1 Introduction

Since the birth of the KAM theory (see [20], [36] and [1]), the invariant tori are expected
to be the key dynamical object which explains the (nearly perfect) quasi-periodicity of
the planetary motions of our Solar System.

Among the consequences of the KAM theory, which concern the tori of maximal
dimension, the following one looks natural. In a planetary system including n planets,
one expects that the persistence under small perturbations should hold also for the n—
dimensional invariant tori, which are a slight deformation of the composition of n coplanar
circular Keplerian orbits. However, a separate proof is needed in order to ensure the
existence of these lower dimensional invariant tori which are said to be elliptic, because
they correspond to stable equilibrium points of the secular motions. Such a theorem has
been recently proved by Biasco, Chierchia and Valdinoci in two different cases: for the
spatial three-body planetary problem and for a planar system with a central star and
n planets (see [4] and [5], respectively). In our opinion, their approach is deep from
a theoretical point of view, but is not suitable for explicit applications, even if one is
interested just in finding the locations of the elliptic invariant tori. In order to clarify
this point, let us roughly summarize the scheme of their proofs as follows: first, they
carry out all the preliminary canonical transformations that are necessary to bring the
Hamiltonian in a particular form, to which they can subsequently apply a theorem due
to Poschel (see [40] and [41]), so to ensure the existence of elliptic lower dimensional tori.
Moreover, Poschel’s versions of this theorem are based on a careful adaptation of the
usual Arnold’s proof scheme for non-degenerate systems: the perturbation is removed by
a sequence of canonical transformations which are defined on a subset of the phase space
excluding the “resonant regions” (see [1] and [2]). Since resonances are everywhere dense
(but the width of the regions eliminated around them is suitably decreased, when the
order of the resonances increases), therefore the change of coordinates giving the shape
of the invariant elliptic tori is defined on a Cantor set which does not contain any open
subset. The efficiency of an eventual explicit application based of such an approach is
highly questionable and, as far as we know, it has never been used to calculate an orbit
of a Celestial Mechanics problem.

The original proof scheme of the KAM theorem, introduced by Kolmogorov himself,
is in a much better position for what concerns the translation into an explicit algorithm
constructing invariant tori (see [20], [3], [I3] and [14]). In fact, this approach has been suc-
cessfully used to calculate the orbits for some interesting problems in Celestial Mechanics
(see [32], [33], [34] and [11]). The present work aims to adapt the Kolmogorov’s algorithm,
in order to construct a suitable normal form related to the elliptic tori. Moreover, this
will allow us to explicitly integrate the equations of motion on those invariant surfaces,
by using a so called semi-analytic procedure.

When one is interested in showing the long term stability of a planetary system, the
construction of a normal form related to some fixed elliptic torus could be a relevant
milestone. In fact, it is possible to ensure the effective stability in the neighborhood of
such an invariant surface by implementing a partial construction of the Birkhoff’s normal
form (see, e.g., [I8] and [I5], where this approach is used in order to study the stability
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nearby an invariant KAM torus having maximal dimension). For what concerns our
Solar System, such an approach might be applied to some asteroids with small orbital
eccentricities and inclinations. However, as explained in [43], this same approach can not
yet succeed in proving the long-time stability of the major planets of our Solar System.

The location of the elliptic tori can be useful also for practical purposes. In fact,
the regions close to them are exceptionally stable, being mainly filled by invariant tori
of maximal dimension. Therefore, they can be of interest for spatial missions aiming,
for instance, to observe asteroids not far from the elliptic tori. Moreover, our technique
should adapt quite easily also to the construction of hyperbolic tori that can be used in
the design of spacecraft missions with transfers requiring low energy. Also in view of this
kind of applications, lower dimensional tori of elliptic, hyperbolic and mixed type have
been studied in the vicinity of the Lagrangian points for both the restricted three-body
problem and the bicircular restricted four-body problem (see, e.g., [17], [19], [§] and [10]).

The present paper is organized as follows. The search for elliptic tori is applied just
to a model not far from the SJSU planar system (let us recall that the real orbits of the
planets of our Solar System are not lying on lower dimensional tori). Therefore, sect.
is devoted to the introduction of our Hamiltonian model and to the description of its
expansion in canonical coordinates. This will allow us to write down the form of the
Hamiltonian to which our approach can be applied. By the way, we think that with some
minor modifications our procedure should adapt also to the more general spatial case, after
having performed the reduction of the angular momentum, which is not considered here in
order to shorten the description of all the preliminary expansions (for an introduction to
some methods performing both the partial and the total reduction, see [9], [35] and [37]).

Our algorithm constructing a normal form for elliptic tori is presented in a purely
formal way in sect. [3l Let us recall that our procedure is mainly a reformulation of the
classical Kolmogorov’s normalization algorithm, that is modified in a suitable way for our
purposes. The theoretical background necessary to understand when our algorithm can
converge is informally discussed in subsect. 3.4l and it will be fully detailed in a future
work (see [16]).

Sect. [l is devoted to explain an application which is also a test of our procedure.
First, in subsects. we describe the way to implement our algorithm, by using an
algebraic manipulator on a computer so to produce both the normal form and the semi-
analytic integration of the motion on an invariant elliptic torus. The Fourier spectrum of
the motions on elliptic tori is strongly characteristic: just the mean-motion frequencies
and their linear combinations can show up. This simple remark allows us to check the
accuracy of our results by using frequency analysis, as it will be described in sect. 4.3l

2 Classical expansion of the planar planetary Hamilto-
nian
As claimed in the introduction, in order to fix the ideas, we think it is convenient to focus

on a concrete planetary model, to which we will apply our algorithm constructing the
elliptic tori in the next sections. Let us consider four point bodies Fy, P, P, P3, with
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masses mg, my, My, mz, mutually interacting according to Newton’s gravitational law.
For shortness, hereafter we will assume that the indexes 0, 1, 2, 3 correspondl to Sun,
Jupiter, Saturn and Uranus, respectively.

Let us now recall how the classical Poincaré variables can be introduced so to perform
a first expansion of the Hamiltonian around circular orbits, i.e., having zero eccentricity.
We basically follow the formalism introduced by Poincaré (see [38] and [39]; for a modern
exposition, see, e.g., [27] and [28]). We remove the motion of the center of mass by

using heliocentric coordinates r; —POP with j =1, 2, 3. Denoting by ; the momenta

conjugated to r;, the Hamiltonian of the system has 6 degress of freedom, and reads

F(&,r) =TO0) + U0 + TV(@) + UV () , (1)
where
3
TG = LR, V0 = (B L L L L)
© S mo &
. mo my; . mi ma mim3 ma ms
VR = =9 2 T UO(r) = G (it + e + )

The plane set of Poincaré’s canonical variables is introduced as

mom;
Aj:ﬁ\/g<m0+mj>aj , A= M;+w;,
j
(2)
§i = V201 — /1 —¢5 cosw; N = =201 — /1 —¢f sinw; ,

for j = 1,2,3, where a;, ¢;, M; and w; are the semi-major axis, the eccentricity,
the mean anomaly and the perihelion argument, respectively, of the j—th planet. One
immediately sees that both ¢; and n; are of the same order of magnitude as the eccentricity
e; . Using Poincaré’s variables (), the Hamiltonian F' can be rearranged so that one has

FANEn) = FOQ) + FOANE D), (3)

where FOO = 7O 4 y© pl) = 70 4 7O Let us emphasize that F(©) = O(1) and F) =
O(u), where the small dimensionless parameter p = max{m; / mg, ms/mg, ms/mg }
highlights the different size of the terms appearing in the Hamiltonian. Therefore, let us
remark that the time derivative of each coordinate is O(u) but in the case of the angles
A. Thus, according to the common language in Celestial Mechanics, in the following we
will refer to A and to their conjugate actions A as the fast variables, while (¢,7n) will be
called secular variables. o

We proceed now by expanding the Hamiltonian (3)) in order to construct the first basic
approximation of the normal form for elliptic tori. After having chosen a center value A*

'Let us stress that the four considered point bodies have the same masses as Sun, Jupiter, Saturn and
Uranus, but the orbits here studied are significantly different with respect to the real ones.
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Table 1: Masses m; and initial conditions for Jupiter, Saturn and Uranus in our planar
model. We adopt the UA as unit of length, the year as time unit and set the gravitational
constant G = 1. With these units, the solar mass is equal to (27)2. The initial conditions
are expressed by the usual heliocentric planar orbital elements: the semi-major axis a;,

the mean anomaly M , the eccentricity e; and the perihelion longitude w; .

taken by JPL at the Julian Date 2440400.5 .

Jupiter (j = 1)

Saturn (j = 2)

Uranus (j = 3)

1.61225062288036902

m; | (27)2/1047.355 (27)2/3498.5 (2)2,/22902.98

a; | 5.20463727204700266 | 9.54108529142232165 | 19.2231635458410572
M; | 3.04525729444853654 | 5.32199311882584869 | 0.19431922829271914
e; | 0.04785365972484999 | 0.05460848595674678 | 0.04858667407651962

2.99374344439246487

The data are

;1 0.24927354029554571

for the Taylor expansions with respect to the fast actions (in a way we will explain later),
we perform a translation 7y~ defined as
This is a canonical transformation that leaves the coordinates A, { and n unchanged.
The transformed Hamiltonian H(7) = F o T;+ can be expanded in power series of L, & n
around the origin. Thus, forgetting an unessential constant we rearrange the Hamiltonian
of the system as

HD(LAEm) =n"- L+ Z ML)+ 3 ST (LA &)

1=2 Jj1=072=0

(5)

where the functions hj1 j, are homogeneous polynomials of degree j; in the actions L

and of degree j, in the secular variables ({,1). The coefficients of such homogeneous

polynomials do depend analytically and periodically on the angles A. The terms h(Kep)
of the Keplerian part are homogeneous polynomials of degree j; in the actions L, the
explicit expression of which can be determined in a straightforward manner. In the latter
equation the term which is both linear in the actions and independent of all the other
canonical variables (i.e., n*- L) has been separated in view of its relevance in perturbation
theory, as it will be discussed in the next section. We also expand the coefficients of the
power series h§1TF ])2 in Fourier series of the angles A. The expansion of the Hamiltonian
is a traditional procedure in Celestial Mechanics. We work out these expansions for the
case of the planar SJSU system using a specially devised algebraic manipulator. The
calculation is based on the approach described in sect. 2.1 of [32], which in turn uses the
scheme sketched in sect. 3.3 of [42].

The reduction to the planar case is performed as follows. We pick from Table IV of [44]
the initial conditions of the planets in terms of heliocentric positions and velocities at the
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Julian Date 2440400.5 . Next, we calculate the corresponding orbital elements with respect
to the invariant plane (that is perpendicular to the total angular momentum). Finally we
include the longitudes of the nodes 2; (which are meaningless in the planar case) in the
corresponding perihelion longitude w; and we eliminate the inclinations by setting them
equal to zero. The remaining initial values of the orbital elements are reported in Table [Il

Having fixed the initial conditions we come to determining the average values (a}, a3, a})
of the semi-major axes during the evolution. To this end we perform a long-term numer-
ical integration of Newton’s equations starting from the initial conditions related to the
data reported in Table [l After having computed (ai, a;, a}), we determine the val-
ues A* via the first equation in (2)). This allows us to perform the expansion (B]) of the
Hamiltonian as a function of the canonical coordinates (L, A, &, n). In our calculations
we truncate this initial expansion as follows. (a) The keplerian part is expanded up to
the quartic terms. The series where the general summand hg?k appears are truncated
so to include: (bl) the terms having degree j; in the actions L with j; < 3, (b2) all
terms having degree j, in the secular variables (£,7n), with js such that 2j; + jo < 8,
(b3) all terms up to the trigonometric degree 18 with respect to the angles A. Let us
remark that with respect to the analogous initial expansion we performed in [43], here
we preferred to considerably reduce the maximal degree in the secular coordinates, in
order to increase those related to the fast ones. This choice is motivated by the fact that
the orbits on elliptic tori experience smaller values of the eccentricities (let us recall that
both &; = O(e;) and n; = O(e;) V j =1, 2, 3) than those related to the real motions;
moreover, larger limits on the fast coordinates are needed, in order to give a sharp enough
numerical evidence of the convergence of the algorithm described in the next section.

Let us now focus on the average with respect to the fast angles of the Hamiltonian
written in (B, i.e. <’H(T)> ,- The fast actions L are obviously invariant with respect

to the flow of <7—[(T)> \ o thu;, they can be neglected while just the secular motions are
considered. The remaining most significant term is given by the lowest order approxim-
ation of the secular Hamiltonian, namely its quadratic term <h89> ) » which is essentially

the one considered in the theory first developed by Lagrange (see [21]) and furtherly im-
proved by Laplace (see [24], [25] and [26]) and by Lagrange himself (see [22], [23]). In
modern language, we can say that the origin of the secular coordinates phase space (i.e.,
(&,m) = (0,0)) is an elliptic equilibrium point for the secular Hamiltonian. In fact, under
mild assumptions on the quadratic part of the Hamiltonian which are satisfied in our case
(see sect. 3 of [5], where such hypotheses are shown to be generically fulfilled for a planar
model of our Solar System), it is well known that one can find a canonical transformation
(L, A\, &,n) = D(p,q,z,y) owning the following properties: (i) L = p and A = ¢, (ii) the
map (£,1) = (£(z),n(y)) is linear, (iii) D diagonalizes the quadratic part of the Hamilto-

nian, so that we can write <h(()9> , In the new coordinates as Z?Zl uj(-o) (234 y3)/2, where

all the entries of the vector v(¥) have the same sign. Our algorithm constructing a suitable
normal form for elliptic tori can be started from the Hamiltonian H©® = HT) oD | i.e.

HOp, q,z,y) = H D (D(p. g, 2.y)) - (6)
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3 Formal algorithm

In the present section, let us more generically assume that the number of degrees of
freedom of our system is nj +ngy , where the canonical coordinates (p, ¢, z, y) can naturally
be split in two parts, that are (p,q) € R™ x T™ and (z,y) € R" x x R™.

In order to better understand our whole procedure we think it is convenient to
immediately state our final goal. We want to determine a canonical transformation
(p,q,z,y) = K (P,Q, X,Y) such that the Hamiltonian H) = H© o K(>) is brought
to the following normal for

2 G
O(II?) + O(IEIIE V) + Ol |

where the notation means that we want to remove all terms which are linear in P and
independent of (X,Y), or at most quadratic in (X,Y) and independent of P.

When initial conditions of the type (P,Q,X,Y) = (0,Q,,0,0) (with @, € T™) are
considered, the normal form (7)) allows us to easily calculate the solution of t the Hamilton
equations, i.e.

(P(1),Q(t), X (1), Y (1)) = (0, Q, +w™,0,0) . (8)

This clearly means that the n;—dimensional (elliptic) torus corresponding to P = X =
Y =0 is invariant and the orbits are quasi-periodic on it.

Let us start the description of the generic r—th step of our algorithm constructing the
normal form. We begin with a Hamiltonian of the following type:

HO Vg ey =o ) p e 20 2435 Y gz, ©

s=0 [=0 2j1+52=l
J120,352>0

where J; = (23 +y3)/2 is the action which is usually related to the j-th pair of secular

canonical coordinates (x;, yj) Vj=1,...,ny. Moreover, there is a fixed integer value
K > 0 such that the terms f]1 i Ls) satisfy the following hypotheses:

(A) fj(lr J123 € P](flgw where 79](1 7, is the class of functions such that (al) they are
homogeneous polynomials of degree j; in the actions p, (a2) they are homogeneous
polynomials of degree j, in the secular variables (z,y), (a3) their Fourier expansion

is finite with maximal trigonometric degree equal to sK ;

(B) the terms fj o ) are “well Fourier- ordered”; this nonstandard definition means that
Vi1 >0,52>0,s >1 every Fourier harmomc k appearing in the expansion of

2Let us here stress a little abuse of notation. Hereafter, the symbol w will mean the frequencies vector
related to the motion on a torus (as it is usual in KAM theory), while in the previous sections it was
used to represent the perihelion longitudes (according to the classical notation in Celestial Mechanics).
Analogously, hereafter, 2 will denote the oscillation frequencies transverse to an elliptic torus, while
before it was used for the longitudes of the nodes.
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fj(lr ]12 * is such that its corresponding trigonometric degree |k| = k1| + ...+ |k;,| >

(s—1)K.

By using formula (B) and the properties (i)—(iii) of the canonical transformation D,
one easily sees that the Hamiltonian H® (that is defined in (@) can be expanded in the
form written in (0), after having suitably reordered its Fourier expansion so to satisfy the
above requirements (A) and (B) Therefore, our constructive algorithm can be concretely
applied to the Hamiltonian H® by starting with r» = 1.

The comparison of the expansion in GQ]) Wlth the normal form in (7)) clearly shows

that we have to eliminate all the terms fj1 J» where the index [ = 2j; + ja is such that

0 <[ < 2. Thus, the r—th step of our algorlthm can be naturally divided in three stages,
each of ones aims to reduce the perturbative terms with [ = 0, 1, 2, respectively.

3.1 First stage of the r-th normalization step: removing of the
terms depending just on ¢

By making use of the classical Lie series algorithm to calculate canonical transforma-
tions (see, e.g., [I12] for an introduction), we first introduce the new Hamiltonian H&") =

eXpE o yH=1 where the generating function Xo ( ) € 77 is determined as the solu-

{X((]T)v—(r 1) } Z (7’ 13 q O, (10)

where we used the classical symbol {-, -} to represent the Poisson brackets. The previous
equation (that is usually said to be of homological type) admits a solution provided the
frequency vector w"~Y is non-resonant up to order rK , i.e.

tion of the equatlon

min ‘k w1 ‘ > a, with a,. >0, (11)
0<|k|<rK
where, for the time being, {a, },~o is nothing but a sequence of real positive numbers and

|k| denotes the I'-norm of the integer vector k, i.e. |k| = |ki| + ...+ |kn,|. The solution
of the homological equation (I0) can be easily recovered by looking at the little more

complicate case of Xér), which is discussed in the third stage of the r—th normalization

step (see formulas (21)—(23))).

In order to avoid the proliferation of too many symbols, let us make a common abuse of
notation so to still denote with (p, ¢, , y) the new canonical coordinates exp EX(T) (p,q,z,y) .
P4ty AV AR

The expansion of the new Hamiltonian can be written as follows:

H (pgz,y) ="V p+ Q043 30 >0 [T wazy) . (12)

s=0 =0 2j1+j2=!
j120,42>0

The mathematical recursive definitions of the terms fj(llrjz) are lenghty, but it is rather
easy to understand how to deal with them when they are translated in a programming
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language. The main remark is concerned with the classes of functions, i.e.

—Ll(r)f(”sep(”’m VO<i<j, j2>0,s>0. (13)

Ji,32 J1—1,72

(r—1,s)

Therefore, after having calculated all the Poisson brackets needed by the term ﬁ ndig

it is enough to know that it contributes to the sum ZSH J(ll ) )JQ . A suitable ° reorderlng

of the Fourier series” will allow us to ensure that also the expansion (I2) satisfies the
conditions (A) and (B), which have been stated at the beginning of the present section.

3.2 Second stage of the r-th normalization step: removing of
the terms linear in (z,y) and independent of p

Let us now introduce the new Hamiltonian H ") = exp EX(T)H (IL7) where the generating
1

function X§’"’ (¢,z,y) € PO(SK ) is determined as the solution of the equation

) na Q(T*U
r (r=1) . § J
X1 ¥ ]_7 + — 2

In order to explicitly write down the solution of the previous equation, it is convenient to
temporarily introduce action-angle coordinates so to replace the secular pairs (z,y) by

putting x; = \/2Jjcosp; and y; = \/2J;sinp; ¥V j =1, ..., ny; therefore, let us assume
that the expansion of the known terms appearing in equation (I4]) is the following one:

n2
Zf(“’s) q,J ): Z Z\/ZJj [CS,:;COS(Egi¢])+dé%281n(kgiwj):| ’

0<|kl<rK j=1

(«F +7) }+Zfom a2,y) =0, (14)

(15)
with suitable real coefficients c(i and déiz . Thus, one can easily check that
no ) ()
) . -sin (k: qj:%) d&jcos (@-Qigoj)
(g, J,0) = Z Z V2] [ o+ D (16)
0</EI<rK =1 k-wrb £, k- w6

is a solution of the homological equation ([I4]) and it exists provided the frequency vector
WY satisfies the so-called first Melnikov non-resonance condition up to order rK , i.e.

min |k-w" QY >0, with o, >0, (17)
0<|k|<rK
Jj=1,...,n2

and all the entries of the frequency vector QU~Y are far enough from the origin, i.e.

min  |QVY| >4 with 5>0. (18)

J=1,...,n2

For what concerns planetary Hamiltonians Where the D’Alembert rules hold true, let us

remark that all the coefficients c,(fi and d,i _; appearing in (I5) and having even values of
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|k| are equal to zero. In order to solve the equation (I4)), therefore, we could to not need
the condition (I8, which however is substantially included in another one (i.e., (31)) that
we will be forced to introduce later.

Starting from the expansion (I6) of XY)( ,J, ), one can immediately recover the

expression of x; )(q, r,y) as a function of the original polynomial variables. We can then
explicitly calculate the expansion of the new Hamiltonian, which can be written as follows:

gz =gt 253 Y g (9

s=0 1=0 2j1+j2=!
j120,3j220

Also in this case, providing mathematical recursive definitions of the terms f; (ILrs) 5g a

g1, J2
quite ennoying task. Thus, we think it is better to just describe how to deal with them
when they are translated in a programming language. First, let us remark that the

following relations about the classes of functions hold true:

1 ..
~ i T;r,s) ((s+49)K) <<
'EXY) E f € II P VO_Z_Z,SZO. (20)

il J1, 32 Ji,J2
2j1+72=l 2j1+jo=l—1

Therefore, after having calculated all the Poisson brackets appearing in the expression

of the term .,ﬁ ) 22j1+j2 lf(ll r]z , it is enough to know that it contributes to the sum

ZSH 22]1 vjamii ) J(ln ;23 ) Again a suitgble “reordfering of the Tgylor—Fourier series” Will
allow us t0 ensure that also the expansion ([I9)) satisfies the conditions (A) and (B), which

have been stated at the beginning of the present section.

3.3 Third stage of the r-th normalization step: removing both
the linear terms in p that are independent of (z,y) and the
quadratic ones in (z, y) which are independent of p

The Hamiltonian produced at the end of the r—th normalization step is provided by the

composition of three canonical transformationsd which can be given in terms of Lie series,

ie. H" =exp LmoexpL,moexpL, (»«)H(H ) where the generatlng functions belong
2 2

to three different classes: XQ(T)( q) € 7710 : )(q,x y) € 7702 and DY (z, y) € 790(?2)
The explicit expressions of these generating functlons are given below, in formulas (21]),

@4)) and (28)), respectively.

3When one focuses on the estimates needed to prove the convergence of the algorithm, it is certainly

simpler to introduce the generating function xgr)(g, ¢, z,y) = XQ(T)(Z_), q) + YQ(T)(Q, z,y) and to consider

the new Hamiltonian exp ‘CD(T) o exp EX(MH(H;T) which slightly differs from H(T)7 because XQ(T)7 and
2 2

YQ(T) do not commute with respect to the Poisson brackets. Since in the present work we do not want to
theoretically study the problem of the convergence of our algorithm, we think here is better to distinguish
the present third stage of the r—th normalization step in other three parts, so to highlight their different
roles. Moreover, this choice looks more natural to us, when one implements the constructive algorithm
by algebraic manipulations on a computer.
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We start with X, (r) (p,q) € PerK which is determined as the solution of the equation

{XQ(r)7 (r—1) } Zf(Hrs p . (21)

This implies that

- C&’Siﬂ(ﬁ-g) dy, j cos (Eg)
Z ij [_ Ej cw(r=1) T é (=1 ) (22)

0<|k|<rK j=1

where we preliminarly assumed that the expansion of the known terms appearing in
equation (2I)) has the form

Zf(Hrs _ Z i:pj[CE,jCOS(E'g)+dk,jsm(@'g)}7 (23)

o<|k|<rK j=1

with suitable real coefficients ¢ ; and dj, ;. Let us here recall that the solution (22)) for
the equation (Z2I)) exists provided the frequency vector w1 satisfies the non-resonance
condition ([ITJ).

Let us now consider YZ(T)(q, ,Y) € POTK) which is a solution of the following homolo-

gical equation:

T Q(T‘ 1) 7’8
{YQ() Z H%} Z D ga,y) =0,  (24)

In order to explicitly write down the expansion of YQ(T), it is convenient to temporarily

reintroduce the action-angle coordinates (.J, ) so to replace the secular pairs (z,y);
therefore, let us assume that the expansion of the known terms appearing in equation (24))
has the form

ZfOHTS q,J, Z Z 2/ JiJ; {c,(fli] cos (k- g+ +¢;)+

0<|k|<rK i,j=1

I"@

(25)
a7 sin (kg + gk gy |
(&, 4) (£, %) )
with suitable real coefficients Cr.ij ) and dk i . Thus, one can easily check that
") S cg %) sin (’C gt ot soa)
Yé (gvlaf) = Z Z 2 JZJ] — D
0<|k|<rK i,j=1 k- +Q 7+ Qj
(26)

d,(giz j]:) CoS (k qE i+ goj)

E . g(ril :l: er 1 :l: QET 1
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is a solution of equation (24)) and it exists provided the frequency vector w1 satisfies
the so-called second Melnikov non-resonance condition up to order rK | i.e.

min ‘E LD 4 Qgr_l) + Qg.r_l)} > with «, >0 . (27)

0<|k|<rK

i7j:17"'7n2
Let us here remark that the previous assumption includes also the non-resonance con-
dition (1) as a special case, i.e. when ¢ = j and the signs appearing in the expression

:i:QZ(-Tfl) + Qy*l) are opposite.

Also for what concerns the generating function Dg), once again it is convenient to
replace the secular pairs (z,y) with the action—angle coordinates (J, ). Let us here

remark that QY . J and f (I5:r,0) (:L’ y) are the only terms appearing in expansion (I9),
quadratic in (z,y) (so they also are O(J) ) and not depending on p and ¢. The canonical

transformation induced by the Lie series exp £ aims to eliminate the part of fy 5 (IL:r,0)
2

depending on the secular angles ¢ . Therefore, the generating function Dér)

to solve the following equation:

is deﬁned SO

(D0, 90 g+ 150 L o) - (57), =0, (28)

where <->£ denotes the average with respect to the angles ¢ . This implies that

pY(J Z Z T, [ _ Cijsiysy S (sigi + 5505)

(r—1) (r—1)
=1 s;,8;= SiQi + Sij

8;-i+5; j;éO

(29)
di j s s, COS (sicpi + sjgoj)
D 5,

_|_

where we preliminarly assumed that the expansion of the known terms appearing in
equation (2§) is the following one:

ég;r,o)(J <p Z Z 2 JJ [cz 50,8 cos( ,go,+sj<p])+

i1,j=1 s;==%1
sj==%1

di ;s .5, 800 (si0i + 5505) |

with suitable real coefficients ¢; ; s, ,s; and d; j s, s, - Let us remark that the solution 22)

for the equation (2I]) exists provided the frequency vector Q=Y gatisfies the following
finite non-resonance condition:

|rlr‘11r21 Q= ’ >3  with 8>0. (31)
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At this point of the algorithm, it is convenient to slightly modify the frequencies w and
2, so to include the terms which are linear with respect to the actions, do not depend
on the angles and, then, can not be eliminated by our normalization procedure. More
definitely, we define w and Q") , So that

W™ p=w W= +f(HT’0)( ), Q J = Q(r 1) J+<f0Hr0) .- (32)

Standard utilities prov1ded by any computer algebra system should allow everyone to
get the expansions of Y )(q,g,g) and D (a:, y) , starting from those of Y ( q,J, ) and

Dér) (J, ), which are written in (26) and (29), respectively. Thus, we are now able to
explicitly produce the expansion of the new Hamiltonian, which can be written as follows:

H (p, g z,y) =w" V- p+ Q0. J+ZZ S (pgzy) . (33)

s=0 =0 2j1+i2=!
j120,722>0

| ’B

Let us remark that this expansion of H™ has exactly the same form of that written

for H"=1) in (@), but we stress that the algorithm is arranged so to make smaller and
S

. i»» When the value of r is increased, V s > 0 and

smaller the contribution of the terms f]
l_jl +]2 _Oa ]-7 2.

In this case too we avoid to write down the lenghty mathematical recursive definitions
of the terms f]1 i, - Instead, we provide some relations about the classes of functions,
which are useful to understand how to translate this third stage of the r—th normalization
step i ing 1 For what th ting function X3, th

p in a programming language. For what concerns the generating function X, ’, the

following relations about the classes of the functions hold true:

]- 3 7"5 S+ . . .
SLL ) e PCIO iz 0, 120, 220,520, (34)
2

7 J1,J2 Ji,J2

The relations involving the generating function YQ(T) are a little more complicated:

1 ..
1., Z ) U Pty >0, 1>0,5>0. (35)

Z' y2(r) 71,72 J1,7J2
2j1+j2=l 2j1+j2=1

Finally, one can easily remark that each class of function is invariant with respect to a
Poisson bracket with the generating function Dg), therefore:

s fin €PRS ViZ0, 120, 220, 520. (36)
By taking into account the relations ([B4)—(Bd) about the classes of functions, the defini-
tion (B2)) of the new frequencies vectors and by suitably “reordering” the Taylor—Fourier
series, it is possible to ensure that also the expansion (B33) satisfies the conditions (A)
and (B), which have been stated at the beginning of the present section about the equa-
tion ([@)). Therefore, the whole normalization procedure, that has been here described for
the r—th step can be iteratively repeated.
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3.4 Some remarks about the convergence of the normalization
algorithm

We devote this section to an informal discussion of the relations between the normal-
ization procedure for an elliptic torus, which is the subject of the present paper, and
the Kolmogorov’s algorithm for a torus of maximal dimension. Our aim is to bring into
evidence, on one hand, the differences that make the case of an elliptic lower dimensional
torus definitely more difficult and, on the other hand, the impact that these differences
have on the explicit calculation.

The main hypotheses of the classical KAM theorem are (a) that the perturbation
should be small enough and (b) that a strong non-resonance condition must be satisfied
by the frequencies of the unperturbed torus. Both these conditions appear also in the
proof of existence of elliptic tori, but the condition of non-resonance presents some critical
peculiarities.

Concerning the smallness of the perturbation, the main problem remains that the
analytical estimates are extremely restrictive. Nevertheless, one can obtain realistic res-
ults by using algebraic manipulation in order to implement a computer-assisted proof,
as it has been made sevelar times about the classical KAM theorem (see, e.g., [32]).
A computer-assisted procedure takes advantage of the preliminar application of the al-
gorithm constructing the normal form (which is explicitly performed for a finite number
of steps R, as large as possible), because a suitable version of the KAM theorem is fi-
nally applied to the Hamiltonian H® having the perturbing terms strongly reduced with
respect to the initial H®. In the case of lower dimensional elliptic tori, by comparing
the Hamiltonian normal form (7) with the expansion (33) of H™), one easily realizes that
the initial expression of the perturbation (making part of the Hamiltonian H©®, written

in (@) is given by
co 2
20 > A (37

s=0 =0 2j1+io=l
j120,3j22>0

Looking at all the preliminary expansions, which have been described in sect. 2] and
allowed us to introduce the initial Hamiltonian H®, one immediately sees that all the
perturbing terms appearing in ([B7) are proportional to . Let us also recall that the
small parameter p is equal to the mass ratio between the biggest planet and the central
star (according to its definition given in the discussion following formula (3])). In the
present context, the explicit application of the normalization algorithm mainly requires
to translate in a programming language the method described in the previous sections.
From a conceptual point of view, a much more difficult problem is here concerned with
the conditions on non-resonance for the frequencies. In the case of a torus having maximal
dimension, one must choose the n frequencies wy,...,w, so as to satisfy a strong non-
resonance condition. A typical request is that they obey a Diophantine condition, i.e., that
the sequence {a,},-, appearing in the inequality (II]) must be such that o, > v/(rK)"
with suitable positive values of the constant v and 7. This choice must be made at the
very beginning of the procedure, and the perturbed invariant torus that is found at the
end has the same frequencies as the unperturbed one. The reason is that at every step a
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small translation of the actions is introduced in order to keep the frequencies constant.

In the case of the elliptic lower dimensional torus one deals instead with two separate
set of frequencies, namely w(® € R™ which characterize the orbits on the torus, and
the transverse frequencies Q' e R that are related to the oscillation of orbits close to
but not lying on the torus. By the way, this justifies the adjective “transverse” that is
commonly used. Now, the frequencies w(®) on the torus can be chosen in an arbitrary
manner, but the transverse frequencies Q) are functions of w©®, being given by the
Hamiltonian. This is easily understood by considering the case of a periodic orbit, i.e.,
ny = 1, since in that case the transverse frequencies are related to the eigenvalues of the
monodromy matrix.

The striking fact is that, due precisely to the dependence of the transverse frequencies
QO on w®, the algorithm forces us to change these frequencies at every step. That is, one
actually deals with infinite sequences w™ and Q). all required to satisfy at every order
a non-resonance condition of the form (27). Moreover, both sequences should converge
to a final set of frequencies w(®) = w(>) (g(o)) and Q) = Q) (g(o)) which must be
non-resonant (e.g., Diophantine). Thus, we are forced to conclude that, depending on the
initial choice of w(®, it may happen that the algorithm stops at some step because the
frequencies fail to satisfy at least one of the non-resonance conditions (), (I7), (I8), 27)
and (B1I)). This is indeed one of the main difficulties in working out the proof of existence
of an elliptic torus.

Let us first consider the analytical aspect, in such a way that we can sketch some
of the ideas that will be exploited in detail in a future more theoretical work, dedicated
to the same subject studied here. One initially focus on an open ball B C R™ such
that the Diophantine condition at finite order required for the first step is satisfied by
every w® € B ¢ R™ and by the corresponding transverse frequencies Q. This can be
done, because only a finite number of non-resonance relations are considered. Therefore,
one shows that at every step there exists a subset of frequencies in B which satisfies
the non-resonance conditions (still at finite but increasing order) required in order to
perform the next step, together with the corresponding transverse frequencies. This is
obtained by a procedure which is reminiscent of Arnold’s proof scheme of KAM theorem:
at every step one removes from B a finite number of intersections of B with a small
strip around a resonant plane in R™, assuring that the width of the strip decreases fast
enough so that the remaining set always takes a non-empty interior part. By the way,
this is also strongly reminiscent of the process of construction of a Cantor set. The final
goal is to prove just that one is left with a Cantor set on non-resonant frequencies which
satisfy the required resonance conditions and has positive Lebesgue measure. Moreover,
the relative measure with respect to B tends to 1 when the size of the perturbation is
decreased to zero. This is the idea underlying the proof that will be expanded in [16].
We emphasize that the procedure outlined here is strongly inspired by the proof scheme
of KAM theorem introduced by Arnold, which is quite different from Kolmogorov’s one
(compare [20] with [1]).

Let us now come to the numerical aspect. At first sight the formal algorithm seems
to require a cumbersome trial and error procedure in order to find the good frequencies:
when some of the non-resonance conditions fail to be satisfied at a given step one should
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change the initial frequencies and restart the whole process. Moreover, since the non-
resonance condition must be satisfied by the final frequencies, which obviously can not
be calculated, the whole process seems to be unsuitable for a rigorous proof. We explain
here in which sense the computer-assisted proofs can help to improve the results also in
this context. We make two remarks.

The first remark is connected with the use of interval arithmetic while performing
the actual construction. Following the suggestion of the analytic scheme of proof, we
look for uniform estimates on a small open ball B, such that V w(® € B we explicitly
perform R normalization steps, with R as large as possible. Essentially, we may reproduce
numerically the process of eliminating step by step the unwanted resonant frequencies by
suitably determining the intervals. Once R steps have been explicitly performed, we may
apply to the partially normalized Hamiltonian H® a suitable formulation of the KAM
theorem for elliptic tori. This means that we recover the scheme that we have already
applied to the case of tori with maximal dimension. That is, we can take advantage of
the fact that the perturbing terms are much smaller than the corresponding ones for the
initial Hamiltonian H©; thus, in principle we could ensure that for realistic values of p
the relative measure of the invariant tori is so large that the set of those w® for which
the algorithm can not work (i.e., B\ S) is so small that can be neglected when we are
dealing with a practical application.

Taking a more practical attitude, we may rely on the fact that the set of good fre-
quencies, according to the theory, has Lebesgue measure close to one, so that the case
of frequencies which are resonant at some finite order occurs with very low probability.
Thus, we just make a choice of the initial frequencies and proceed with the construction,
checking at every order that the non-resonance conditions that we need at that order are
fulfilled. We emphasize that the most extended resonant regions are those of low order,
so that it is not very difficult to check initially that the chosen frequencies will likely be
good enough. It may happen, of course, that the whole procedure must be restarted with
different frequencies, but we expect that this will rarely occur. However, since the size of
the perturbation is expected to decrease geometrically, we may confidently expect that
the probability of failure will decrease, too. This is confirmed by the actual calculations.

When R steps have been made, in principle we can apply the theorem to a small
neighborhood of the calculated frequencies by choosing a suitable initial ball around the
frequencies approximated at that step.

4 Elliptic tori for the SJSU system

We come now to the application of the formal algorithm for the construction of an elliptic
torus to the planar SJSU system.

The initial Hamiltonian is written in (B), with a suitable rearrangement of terms so
that it is given the form (@) with » = 1. This requires also a diagonalization of the
quadratic part in the secular variables, which is performed as described at the end of
sect.

In the present section, we explicitly construct the normal form at a finite order checking
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Figure 1: Algorithm constructing the normal form related to an elliptic torus for the
planar SJSU system: plot of the norm of the generating functions as a function of the
normalization step r; more precisely, the symbols x , O, A, () and + refer to the norm
of the generating functions X((]T), XY), X2(T), Y2(r) and Dg), respectively, which are defined
during the normalization algorithm, as described in sect. The norm is calculated by
simply adding up the absolute values of all the coefficients appearing in the expansion of
each generating function.



18 M. Sansottera, U. Locatelli, A. Giorgilli

that the norms of the generating function decrease as predicted by the theory. Then we
perform a numerical check by comparing the orbit obtained via the normal form with the
numerically integrated one.

4.1 Constructing the elliptic torus by using computer algebra

We applied the algorithm constructing elliptic tori (which has been widely described
in sect. B) to the Hamiltonian H® (that is defined in (G) and has been obtained as
described in sect. 2). The parameters have been fixed according to the specific values
of the planar SJSU system, which are reported in Table [ Our software package for
computer algebra allowed us to explicitly calculate all the expansions (@) of H™ with
index r ranging between 0 and 9, so to include: (cl) the terms having degree j; in the
actions p with j; < 3, (¢2) all terms having degree js in the variables (z,y), with j; such
that 27, + j» < 8, (c3) all terms up to the trigonometric degree 18 with respect to the
angles ¢. Let us recall that the truncation rules (c1)—(c3) are in agreement with those
prescribed about the expansion (F) in sect. B at points (b1)—(b3). Let us remark that
both the truncation rules (c1) and (c2) are preserved by all the canonical transformations
included in our algorithm. Moreover, we have found that fixing K = 2 is a suitable
choice to have a rather regular decreasing of the size of the generating functions when the
normalization step r is increased, as shown in Fig. [l Since the maximal trigonometric
degree of the generating functions Xg), XY), Xér) and YQ(T) is equal to r K , the choice to
set K = 2 and the rule (¢3) explain why we stopped the algorithm after having ended the
normalization step with r = 9.

The behavior of the norms of the generating functions is reported in Fig. [l Let us
make a few comments. The theoretical estimates predict that the norms should decrease
geometrically with the order in order to assure the convergence of the normal form. The
figure shows that this is indeed the behavior in our case. We emphasize that the presence
of a dangerous resonance would be reflected in a sudden increase of the coefficients; thus,
the plot gives a practical confirmation that the frequencies are well chosen.

Let us stress that performing the construction of the normal form up to order r = 9 has
been very stressing for the computational resources available to us, although the length
of the calculation is not reflected in a corresponding length of the present subsection.

4.2 Explicit calculation of the orbits on the elliptic torus

We now perform a check on the approximation of the elliptic torus. To this end, we
calculate the orbit on the torus using the analytic expression and we compare it with
a numerical integration of Hamilton’s equations. In this subsection we explain how the
calculation of the orbit via normal form is performed.

According to the theory of Lie series, the canonical transformation (p,q,z,y) =
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k) (Q(”),g(r),g(r),g(”) inducing the normalization up to the step r is given by

() () ) () (1)) —
K (]_) ,q "y ) exp ED;” o exp EYQ(” o exp EXy)o
exp LXY) o exp EX(()T) O ...0exp EDS) o exp £Y2(1)O (38)

exp Lxgl) o exp Lxgl) o exp Lx(()l) (E(r)’g(r)’g(r)jg(r)) :

where (Q(”),g("),g(r),g(”) are meant to be the new coordinates. Thus, the canonical
transformation (p,q,z,y) = K)(P, Q,X,Y) brings H®O in the normal form H®) =
H©® o () which is written in (), with () = lim,_,, K. Let us introduce a new
symbol to denote the composition of all the canonical change of coordinates defined in
sects. Pland 3] i.e.

C" =EoTp0Do kKM, (39)

where (7,7) = £(A, A, £, n) is the canonical transformation giving the heliocentric positions
r and their conjugated momenta 7 as a function of the Poincaré variables. If (7(0), r(0))
is an initial condition on an invariant elliptic torus, in principle we might use the following
calculation scheme to integrate the equation of motion:

(¢!
(£(0),r(0))  — (P(0) =0, Q(0), X(0) =0, Y(0) = 0)
[  (10)
()

where @' )
course, the previous scheme requires an unlimited computing power; from a practical
point of view, we can just approximate it, by replacing C(*) with C¥), where R is as large
as possible. Thus, the integration via normal form actually reduces to a transformation of
the coordinates of the initial point to the coordinates of the normal form, the calculation
of the flow at time ¢ in the latter coordinates, which is a trivial matter since the flow is
exactly quasi-periodic with known frequencies, followed by a transformation back to the

original coordinates.

induces the quasi-periodic flow related to the frequencies vector w™). Of

Such an approximated semi-analytic calculation scheme can be directly compared with
the results provided by a numerical integrator. As it has been shown in [32], [33], [34]
and [I1], this kind of comparisons provide a very stressing test for the accuracy of the
whole algorithm constructing the normal form.
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4.3 Validation of the results by using frequency analysis

The ideal calculation scheme (40) highlights that the Fourier spectrum of each component
of the motion law ¢ — (7(t),r(t)) is the very peculiar one

ch exp (iCjt) ,  where, Vj >0, ¢; € Cand 3 k; € Z™ such that (; = k; cw(™)
=0

(41)
In other words, the Fourier spectrum of the planetary motions on elliptic tori is so charac-
teristic, because all its frequencies are given by linear combinations of the fast frequencies.
From a strictly mathematical point of view, let us recall that the previous formula for the
Fourier spectrum can be deduced by the scheme ({0), because of the analyticity of the so
called conjugacy function @ C(>) (Q, Q,0, Q) and this will be ensured as a byproduct
of the theoretical (future) study of the convergence of the constructive algorithm.

In the present subsection we aim to check the peculiar quasi-periodicity of the motions
on our approximation of an elliptic torus, by using the frequency map analysis (see,
e.g., [29] and [30] for an introduction). We focus on the following initial conditions:

(€)™ (0,0,0,0) ; (42)

according to the calculation method described in the previous subsect. 4.2l this should
be an accurate approximation of a point on an elliptic torus. Therefore, we preliminarly
integrated the motion of the planar SJSU system over a time interval of 22* years, by
using the symplectic method SBAB; (see [31]) with a time-step of 0.04 years.

Here we should add a remark concerning the precision. In order to have a signal
clean enough to be analyzed a particular care about the precision is mandatory. After
some trials tuning the parameters of the numerical integration, we found that the 80 bits
floating point numbers provided by the current AMD and INTEL CPUs fits our needs.
Technically this is obtained by using the long double types of the GNU C compiler
under a Linux operating system.

The orbits have been sampled with a time interval of 1 year. The signals related to
the secular Poincaré variables, that are &/(t) +in(t) with [ = 1, 2, 3, have been submitted
to the frequency analysis method using the so-called Hanning filter.

In Table 2l we report our numerical results about the first 25 summands of the decom-
position ([AI]) for the Uranus secular signal, i.e. &3(t) + ins(t). Let us point out that the
values of the fast frequencies vector w(®) have been preliminarly calculated by looking
at the main components of the Fourier spectrum of the signals A;(t) exp (iX(¢)), with
l =1, 2, 3. Moreover, we stress that the vectors k; € Z™ listed in the third column are
determined so to minimize the absolute difference |¢; — k; - w>)| with |k;| < 20; indeed,
one has to fix some limits on the absolute value of k;, in order to make consistent its
calculation, and our choice is motivated by the fact that the Fourier decay of the analytic
conjugacy function C(>°) (Q,Q, 0, Q) is such that the main contributions to the spectrum
are related to low order harmonics.

If the initial conditions ([@2) were exactly on an elliptic torus, each value [¢; —k; - w(>|
reported in the fourth column of Table 2 should be equal to zero. All of them, except for
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Table 2: Decomposition of the Fourier spectrum of the signal &(¢) + ins(¢), which is

21

related to the Uranus secular motion. The following numerical values have been obtained
by applying the frequency analysis method. See the text for more details.

j G k; |G — k- ] ]

0 | —7.45980878285529281 x 10=2 | (0,0, —1) 0.0 x 10790 [ 29778 x 104
1 3.80570419432301466 x 107! | (1,0, —2) 5.6 x 10717 | 5.5358 x 107°
2 6.35855778812917105 x 1072 | (0,1, —2) 2.8 x 10717 | 1.8220 x 107°
3 2.01769243591136460 x 107! | (0,2, —3) 5.6 x 10717 | 1.7402 x 107°
4 3.39952909300980821 x 10~! | (0,3, —4) 2.8 x 10716 | 6.0978 x 10~°
5 8.35738926693155748 x 107! | (2,0, —3) 0.0 x 101%0 | 3.7192 x 10~°
6 4.78136575010826514 x 10~! | (0,4, —5) 7.8 x 10716 | 2.4468 x 107°
7 | —2.12781753538397789 x 107! | (0,—1,0) 1.9 x 1071 | 1.4515 x 107
8 6.16320240720669266 x 10~! | (0,5, —6) 1.2x 107 | 1.0438 x 1076
9 | —3.50965419248241817 x 10~' | (0,-2,1) 4.4 % 10716 | 1.0174 x 1076
10 | 1.29090743395401009 x 1070 | (3,0, —4) 0.0 x 101%0 | 7.7418 x 1077
11 | —4.89149084958088287 x 10~! | (0,—3,2) 1.3 x 107 | 7.1150 x 1077
12 | 7.54503906430515681 x 10~ | (0,6, —7) 5.6 x 10716 | 4.6095 x 1077
13 | —9.84935102350262381 x 107! | (—2,0,1) 7.8 x 10716 | 4.1629 x 1077
14 | —6.27332750667927597 x 10~* | (0, —4,3) 4.0x 107 | 3.8136 x 1077
15 | —5.29766595089407821 x 10~' | (—1,0,0) 5.6 x 1071 129632 x 1077
16 | —1.10827474865547476 x 107> |  (0,0,0) 1.1 x 107% | 2.3288 x 1077
17 | —7.65516416377781117 x 107! | (0, —5,4) 4.8 x 107 | 1.9146 x 1077
18 | 8.92687572140363206 x 10~! | (0,7, —8) 3.4 x 1071 | 2.0808 x 1077
19 | 1.74607594121486587 x 1070 | (4,0, —5) 1.4 x 1071 | 1.7591 x 10~7
20 | —1.44010360961111750 x 1070 | (=3,0,2) 1.6 x 1071% | 1.3340 x 1077
21 | 2.29680677496932953 x 1072 | (—1,4,—4) | 2.8 x 1078 | 1.1411 x 1077
22 | 1.03087123785019941 x 10*° | (0,8, —9) 5.0 x 1071 ] 9.5369 x 1078
23 | —9.03700082087618650 x 10~ | (0, —6,5) 2.3 x 1071 ]9.3899 x 10~8
24 | 1.16905490356004615 x 1070 | (0,9, —10) | 2.9 x 1071 | 4.4199 x 1078
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Figure 2: Frequency analysis of the secular signal related to the secular Jupiter motion:
&1(t)+im(t) = > -7 ¢jexp (i¢;t) . Plot of the amplitudes |c;| as a function of the frequen-
cies (; in Log-Log scale. The symbol x [+, resp.] refer to the signal related to the motion
starting from the initial conditions (42)) [(43)), resp.], i.e. the approximation of a point on
an elliptic torus after having performed 9 [0, resp.] steps of the algorithm constructing
the corresponding normal form. In both cases, the results for just the first 25 components
have been reported in the figure above.
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the case corresponding to j = 16, are actually small enough to be considered as generated
by round-off errors. On the other hand, we can definitely say that (;6 ~ —1.1 x 107° is a
“secular frequency”, because its value is O(p) . Indeed, let us recall that u ~ 1073, but
the mass ratio for Uranus, i.e. m3/mg =~ 4.4 x 1075, is even smaller.

Let us say that the occurrence of secular frequencies in the Fourier decomposition of
the signal should be expected. Indeed, they could be completely avoided only in a very
ideal situation, namely: (i) all the calculations described in sects. 2 and Blshould be carried
out without performing any truncations on the expansions, (ii) the initial conditions (42)
should be replaced with (C(Oo))_1 (0,0,0,0), (iii) no numerical errors should be there. In
a practical calculation the orbit can not be exactly placed on an elliptic torus, so the
presence of secular frequencies just means that we are just close to it. Nevertheless, it is
very remarkable that the amplitude of the first found secular frequency is three orders of
magnitude smaller than the main component of the spectrum. In our opinion, this is a
first clear indication that our algorithm is properly working.

Other components corresponding to secular frequencies are expected to be even smaller
than that found with j = 16. In fact, let us recall that the frequency analysis method
detects the summands c; exp (i(’jt) appearing in (41]) in a nearly decreasing order with
respect to the amplitude |c¢;| (for instance, one can easily see that just one exchange is
needed in order to rewrite Table[2in the correct decreasing order); moreover, we calculated
that the discrepancy |&5(t) +ins(t) — Z?io cj exp (i¢;t) | is smaller than about ~ 3.2 x 1077
for all the time values t for which we sampled the signal. Let us emphasize that such an
upper bound on the maximal discrepancy is just a little larger than the amplitude |cg] .

A similar decomposition has been calculated for both the signals & (¢) + in;(t) and
&(t)+ine(t) (which are related to the secular motions of Jupiter and Saturn, respectively).
The behavior is very similar to that of Table[2 so we omit the corresponding tables because
the interesting results are more evident from the figures that we are going to present.

The most relevant information about such decompositions of the secular motions of the
three planets is summarized in the plots done with the x symbol appearing in Figs. 2Hdl

Those figures contain also a comparison with the results provided by a, say, trivial
approximation of an orbit on an elliptic torus. In fact, the dots marked with the 4+ symbol
appearing in Figs. 2Hdl refer to a frequency analysis which is performed exactly in the same
way as that corresponding to the x symbol, except the fact that the numerical integration
of the equations of motion is started from the following initial conditions

(€)™ (0,0,0,0) (43)

instead of that reported in formula ([@2). Let us remark that (C(O))_1 (0,0,0,0) = o
Ta 0 D(0,0,0,0) is a sort of trivial approximation of a point on the elliptic torus as
it is provided by simply avoiding to apply the part of our algorithm constructing the
normal form, as it is described in sect. Bl In order to discuss in a more definite way,
we have already assumed that the secular frequencies are O(u), thus, let us separate
them from the fast ones, when they are smaller than 10~2. By looking at the right side
of Figs. 2H4l one can immediately remark that the parts of the spectra related to the
fast frequencies are nearly indistinguishable when the initial conditions (42)) or (43)) are
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Saturn frequencies
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Figure 3: Frequency analysis of the secular signal related to the secular Saturn motion:
&a(t) +ima(t) = Y 72 cjexp (i¢jt) . Plot of the amplitudes |¢;| as a function of the fre-
quencies (; in Log-Log scale. The meaning of the symbols x and + is the same as in
Fig. 2

Uranus frequencies
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Figure 4: Frequency analysis of the secular signal related to the secular Uranus motion:
(1) +ims(t) = X7 ¢jexp (i¢;t) . Plot of the amplitudes |c;| as a function of the fre-
quencies (; in Log-Log scale. The meaning of the symbols x and + is the same as in
Fig. 2
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considered, because the dots marked with the symbols x and + superpose each other
in a nearly exact way for what concerns all the main components. On the other hand,
the secular parts of the spectra (that are in the left side of Figs. 2Hd)) strongly differ. In
fact, when the initial conditions ([@3]) (that trivially approximate a point on the elliptic
torus) are considered, three secular frequencies are detected; while just one is found in
the case of the more accurate initial data (42]). Moreover, by comparing the amplitudes,
one can see that the unique secular component detected by both the frequency analyses
is decreased by at least two orders of magnitude when our algorithm is applied. In our
opinion, this comparison makes evident the effectiveness of our procedure constructing
the normal form for an elliptic torus.

Acknowledgments

The authors have been supported by the research program “Dynamical Systems and
applications”, PRIN 2007B3RBEY, financed by MIUR.

References

[1] V.I. Arnold:  Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-
periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk, 18,
13 (1963); Russ. Math. Surv., 18, 9 (1963).

[2] V.I. Arnold:  Small denominators and problems of stability of motion in classical
and celestial mechanics, Usp. Math. Nauk 18 N.6, 91 (1963); Russ. Math. Surv. 18
N.6, 85 (1963).

[3] Benettin G., Galgani L., Giorgilli A. and Strelcyn J. M.: A Proof of Kolmogorov’s
Theorem on Invariant Tori Using Canonical Transformations Defined by the Lie
method, Nuovo Cimento, 79, 201-223 (1984).

[4] L. Biasco, L. Chierchia, E. Valdinoci: Elliptic two—dimensional invariant tori for the
planetary three—body problem, Arch. Rational Mech. Anal., 170 , 91-135 (2003).

[5] L. Biasco, L. Chierchia, E. Valdinoci: N-dimensional elliptic invariant tori for the
planar (N+1)-body problem, SIAM Journal on Mathematical Analysis, 37 , n. 5,
1560-1588 (2006).

[6] G.D. Birkhoff: Dynamical systems, New York (1927).

[7] Celletti, A., Giorgilli, A. and Locatelli, U.: Improved Estimates on the Existence of
Invariant Tori for Hamiltonian Systems, Nonlinearity, 13, 397412 (2000).

[8] E. Castella and A. Jorba: On the vertical families of two-dimensional tori near the
triangular points of the Bicircular problem, Cel. Mech. & Dyn. Astr., 76, 35-54
(2000).



26

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[21]

[22]

M. Sansottera, U. Locatelli, A. Giorgilli

Deprit, A., Elimination of the nodes in problems of n bodies, Cel. Mech. & Dyn.
Astr., 30, 181-195 (1983).

F. Gabern and A. Jorba: A restricted four-body model for the dynamics near the
Lagrangian points of the Sun—Jupiter system, DCDS-B, 1, 143-182 (2001).

F. Gabern, A. Jorba and U. Locatelli: ~ On the construction of the Kolmogorov
normal form for the Trojan asteroids, Nonlinearity, 18, n.4, 1705-1734 (2005).

Giorgilli, A.: Quantitative methods in classical perturbation theory, proceedings of
the Nato ASI school “From Newton to chaos: modern techniques for understanding
and coping with chaos in N-body dynamical systems”, A.E. Roy e B.D. Steves eds.,
Plenum Press, New York (1995).

A. Giorgilli and U. Locatelli, Kolmogorov theorem and classical perturbation theory,
J. of App. Math. and Phys. (ZAMP), 48, 220-261 (1997).

A. Giorgilli and U. Locatelli:  On classical series expansion for quasi-periodic mo-
tions, MPEJ, 3, 5, 1-25 (1997).

Giorgilli, A., Locatelli, U. and Sansottera, M.: Kolmogorov and Nekhoroshev theory
for the problem of three bodies, Cel. Mech. & Dyn. Astr., 104, 159-173 (2009).

Giorgilli, A., Locatelli, U. and Sansottera, M.: Construction of the normal form for
elliptic tori in planetary systems. Part II: theoretical study of the convergence of the
algorithm, in preparation.

Jorba, A. and Villanueva, J.: On the persistence of lower dimensional invariant tori
under quasiperiodic perturbations, J. of Nonlin. Sci., 7, 427-473 (1997).

Jorba, A. and Villanueva, J.: On the Normal Behaviour of Partially Elliptic Lower
Dimensional Tori of Hamiltonian Systems, Nonlinearity, 10, 783-822 (1997).

Jorba, A. and Villanueva, J.: Numerical Computation of Normal Forms Around
Some Periodic Orbits of the Restricted Three Body Problem, Physica D, 114, 197
229 (1998).

A.N. Kolmogorov:  Preservation of conditionally periodic movements with small
change in the Hamilton function, Dokl. Akad. Nauk SSSR, 98, 527 (1954). Engl.
transl. in: Los Alamos Scientific Laboratory translation LA-TR-71-67; reprinted in:
Lecture Notes in Physics 93.

J.L. Lagrange: Sur laltération des moyens mouvements des planétes, Mem. Acad.
Sci. Berlin 199 (1776); Oeuvres complétes, VI, 255, Paris, Gauthier—Villars (1869).

J.L. Lagrange: Théorie des variations séculaires des éléments des planetes. Premiere
partie contenant les principes et les formules générales pour déterminer ces variations,
Nouveaux mémoires de 1 Académie des Sciences et Belles-Lettres de Berlin (1781);
Oeuvres completes, V, 125-207, Paris, Gauthier—Villars (1870).



Explicit construction of the normal form for elliptic tori in planetary systems 27

[23] J.L. Lagrange: Théorie des variations séculaires des éléments des planétes. Seconde
partie contenant la détermination de ces variations pour chacune des planetes pri-
cipales, Nouveaux mémoires de 1 Académie des Sciences et Belles—Lettres de Berlin
(1782); Oeuvres completes, V, 211-489, Paris, Gauthier—Villars (1870).

[24] P.S. Laplace: Mémoire sur les solutions particuliéres des équations différentielles et
sur les inégalités séculaires des planétes (1772); Oeuvres complétes, IX, 325, Paris,
Gauthier—Villars (1895).

[25] P.S. Laplace: Mémoire sur les inégalités séculaires des planétes et des satellites, Mem.
Acad. royale des Sci. de Paris (1784); Oeuvres completes, XI, 49, Paris, Gauthier—
Villars (1895).

.S. Laplace: Théorie de Jupiter et de Saturne, Mem. Acad. royale des Sci. de Paris
26| P.S. Lapl Théorie de Jupi de S M Acad le des Sci. de Pari
(1785); Oeuvres completes, X1, 164, Paris, Gauthier—Villars (1895).

[27] Laskar, J.: Systémes de variables et éléments, in Benest, D. and Froeschlé, C. (eds.):
Les Méthodes modernes de la Mécanique Céleste, 63-87, Editions Frontieres (1989).

[28] Laskar, J. and Robutel, P.: Stability of the Planetary Three—Body Problem — I. Expan-
sion of the Planetary Hamiltonian, Celestial Mechanics and Dynamical Astronomy,
62, 193-217 (1995).

[29] Laskar, J.: Introduction to frequency map analysis, in C. Simo (managing ed.), Pro-
ceedings of the NATO ASI school: “Hamiltonian Systems with Three or More Degrees
of Freedom”, S’Agaro (Spain), June 19-30, 1995, Kluwer, 134-150 (1999).

[30] Laskar, J: Frequency Map analysis and quasi periodic decompositions, in Benest et
al. (managing eds): “Hamiltonian systems and Fourier analysis”, Taylor and Francis
(2005).

[31] Laskar, J. and Robutel, P.: High order symplectic integrators for perturbed Hamilto-
nian systems, Celestial Mechanics and Dynamical Astronomy, 80, 39-62 (2001).

[32] Locatelli, U. and Giorgilli, A., Invariant tori in the secular motions of the three—body
planetary systems, Cel. Mech. & Dyn. Astr., 78, 47-74 (2000).

[33] U. Locatelli and A. Giorgilli:  Construction of the Kolmogorov’s normal form for a
planetary system, Regular and Chaotic Dynamics, 10, n.2, 153-171 (2005).

[34] U. Locatelli, A. Giorgilli: Invariant tori in the Sun—Jupiter—Saturn system, DCDS-
B, 7, 377-398 (2007).

[35] Malige, F., Robutel, P. and Laskar, J.: Partial reduction in the N-body planetary
problem using the angular momentum integral, Celestial Mechanics and Dynamical
Astronomy, 84, 283-316 (2002).

[36] J. Moser:  On invariant curves of area—preserving mappings of an annulus, Nachr.
Akad. Wiss. Gott,. II Math. Phys. KI 1962, 1-20 (1962).



28

[37]

M. Sansottera, U. Locatelli, A. Giorgilli

Pinzari, G.: On the Kolmogorov set for many-body problems, Ph.D. thesis,
Universita di Roma Tre (2009); publicly available at the web page:
http://ricerca.mat.uniroma3.it/dottorato/Tesi/pinzari.pdf

Poincaré, H.: Les méthodes nouvelles de la Mécanique Céleste, Gauthier—Villars,
Paris (1892), reprinted by Blanchard (1987).

Poincaré, H.: Lecons de Mécanique Céleste, tomes I-II, Gauthier—Villars, Paris

(1905).

Poschel, J.: On elliptic lower dimensional tori in Hamiltonian systems, Math. Z.,
202, 559608 (1989).

Poschel, J.: A KAM-theorem for some nonlinear PDEs, Ann. Scuola Norm. Pisa CI.
Sci., 23, 119-148 (1996).

P. Robutel:  Stability of the Planetary Three—Body Problem — II. KAM Theory and
Existence of Quasiperiodic Motions, Celestial Mechanics and Dynamical Astronomy;,
62, 219-261 (1995).

Sansottera, M., Locatelli, U. and Giorgilli, A.: On the stability of the secular evolution
of the planar Sun—Jupiter—Saturn—Uranus system, preprint (2010).

E.M. Standish: JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Propul-
sion Laboratory — Interoffice memorandum, IOM 312.F — 98 — 048 (1998).


http://ricerca.mat.uniroma3.it/dottorato/Tesi/pinzari.pdf

	1 Introduction
	2 Classical expansion of the planar planetary Hamiltonian
	3 Formal algorithm
	3.1 First stage of the r-th normalization step: removing of the terms depending just on q
	3.2 Second stage of the r-th normalization step: removing of the terms linear in (x,y) and independent of p
	3.3 Third stage of the r-th normalization step: removing both the linear terms in p that are independent of (x,y) and the quadratic ones in (x,y) which are independent of p
	3.4 Some remarks about the convergence of the normalization algorithm

	4 Elliptic tori for the SJSU system
	4.1 Constructing the elliptic torus by using computer algebra
	4.2 Explicit calculation of the orbits on the elliptic torus
	4.3 Validation of the results by using frequency analysis


