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Potential scattering problems governed by the time dep#rii®ss-Pitaevskii equation are inves-
tigated numerically for various values of coupling consgamhe initial condition is assumed to have
the Gaussian type envelope, whiclffelis from the soliton solution. The potential is chosen toxa bo
or well type. We estimate dependencies of reflectance andmittance on width of the potential
and compare these results with those given by the statid®amddinger equation. We attribute the
behaviors of these quantities to limitation on width of noear wave packet. The coupling constant
and the width of the potential play an important role in digttion of the waves appearing in the
final state of the scattering.
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1. Introduction

The nonlinear Schrodinger equation (NLSE), which has acaubnlinear term,

it + dxx + 2¢1%0 = O, (1)

appears in various fields of physibsThe NLSE can be derived as an amplitude equation of the system
whose dispersion relation depends dominantly on the sapfaree amplitude. Among them is enve-
lope motion of coupled nonlinear oscillators with cubiceiraction? In nonlinear optics, both self-
focusing dfect in two-dimensional (2D) systems and optical solitonpaigation in one-dimensional
(1D) systems are governed by the NL3E. Another important example is the Bose-Einstein con-
densed (BEC) syste) where macroscopic wave function of condensate atoms appedhe order

parameter accompanied with the spontaneous breakdowe bf(ff) gauge symmet’). In this case,
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the NLSE is regarded as mean-field approximation of the Hbig equation for field operators and
describes the time-evolution of this macroscopic wavetiondn good accurac$.”

One of the striking feature of 1D NLSE is its integrabilitya particular, exact solutions un-
der a given initial condition can be uniguely solved by theeise scattering transformation (IST)

method® 9 It is based on an auxiliary linear eigenvalue problem,

[wlx]:[—ig i¢*][w1
Yox g i )\Y2

where( is the eigenvalue which is independent of tinpes the solution of the NLSE and asterisk

: (2)

means its complex conjugate. This formulation takes a fdrenpotential scattering problem for aux-
iliary field y whereg works as a potential. The eigenvalue spectrum consistsofate and continuous
parts, where the former generates soliton solutions ankttee corresponds to small ripples. For the
sech-type initial condition with suitable amplitude, thgesmvalue consists only of discrete part. In this
case, whole initial value problem is solved analyticallgl aesults in famousl-soliton solution'®

Time evolution of the auxiliary field is defined by anotherelm equation

[wu] _ [Zig2 —ig gy -2’ ][m]_ -
va) \~¢x-2ic¢ 20+l (v

However, the time evolution of the wave packet from nontsnlinitial condition is relatively unclear
since analytic expressions are hardly feasible.

On the other hand, in the BEC system, it is natural to assumexfstence of external field to
express theféect of gravity or quadratic traps for atorhi®.Thus, the term of external field is added
to conventional NLSE (1), and the equation is called the titapendent Gross-Pitaevskii equation
(TDGPE). So far, most of analytic studies have assumedrlimequadratic potentials only, in which
case the integrability of the systems are not spoiled andan®btain analytical results by systematic
application of the IST methot?: 13 In such cases, soliton initial conditions are also assumed.

However, we can also consider spatially-localized posmitivhere the integrability is manifestly
violated. It is important to evaluate the role of nonlingaon such potential scattering problems like
the tunneling &ect. In particular, time dependent analysis of moving waaekpts is intriguing since
in situ observation of condensed atoms is possible in the BEC systémithough most of studies
deal with these kinds of problems as stationary dfies.

When we analyze the stationary potential scattering probleve entirely adopt the wave-like
nature and the resonant phenomena brought about by théerstere &ect. On the the other hand,
spatially-localized pulse is expected to exhibit the skkedawave packet féect in the scattering pro-

cess. In addition, nonlineaffects are also interesting in the potential scattering prablTo investi-
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gate the influence of this wave packéieet under nonlinearity on the potential scattering probliém

is necessary to trace the dynamics of the system. Some authee reported on this kind of problem
assuming soliton initial condition's: 1) However, examples which take non-soliton solutions as ini-
tial conditions have been rare because of extra complexitiethis paper, we numerically trace and
examine the dynamics of the wave packets governed by 1D TD@tREhe box or well type potential
under the Gaussian type initial conditionsffelient from soliton solutions.

This paper is organized as follows. In the next section, the-soliton dynamics of the wave
packets without external field are analyzed. In section 3evaduate and characterize the nonlinear
wave packet on the reflectance or transmittance, changsmégnitude of the nonlinearity, position
of the initial wave packet, and the width of the potentialeection 4 is devoted to discussion, and
we interpret the results on the basis of squeezed width oéwagkets. Extra complexities intrinsic to

non-soliton initial conditions are also argued in detaleTsummary is given in the section 5.

2. Time Dependent Gross-Pitaevskii Equation and Scattering Problem

In this section, we briefly summarize mathematical dedorgt of the system to be considered.
We restrict ourselves to 1D case throughout this paper. Byesiof scale transformation, we can put

both of the cofficients of¢; and¢yy of the TDGPE to be unity and we shall consider

i + dyx + V(X + glglp = O, 4)

whereV(X) is an external potential applied to the system, giwthe coupling constant. To investigate
the nonlinear and wave packeffects, the sign ofj is important and we discard the possibility of
g < 0 throughout this paper. If we takgto be negative, which means the repulsively interactingl fiel
the wave packet immediately expands and this ragidsing makes the amplitude of the wave packet
very small. Therefore, excitation of higher harmonic wasaesxtremely suppressed, and manifestation
of nonlinear &ect is less expected. Moreover, these widespread wavetpatiae most of scattering
features with stationary plane waves in the linear limitaese the broaden wave packets have narrow
spectra in the Fourier space. Therefore, we focus orgthe0 case, which means the attractively
interacting field, in order to investigate the nonlinear aade packetfects on the potential scattering
problem. According to the theory of partialfiirential equation, finite and unique solution of eq. (4)
exists for arbitrary initial conditions for 1D case and atstity or explosion of the solution observed
in multi dimensions never occurs even if we taki® be positive.

Hereafter, we shall normalize the wave functios [, [#°dx = 1. The initial condition of the

wave packet is fixed to be the Gaussian type,

0 0) = ettt ©)
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where—xg is the position of the center of the initial wave packet augilves the half of its velocity. We
assume right-forward propagation of the wave packet,xgex, 0 andv > 0. The energy functiondt,

the Hamiltonian of the system, is defined as

E= f (|<z>x|2 ~ V(X)lgl? - %gw‘) dx. (6)

Equation (4) can be derived straightforwardly from the Heonian through standard canonical pro-
cedure. Since we have assuntetb be positive E might take negative value. In fact, for the initial
wave packet located fliciently far from the potential, the initial value & becomes negative under

the condition

1 g
Z 4+ - — <. 7
2" e )
We consider the box and well type external potential
Vbox = —=0(X) + 6(X — @), (8)
Vel = Vo(0(X) — 6(X — &), 9)

wherea is the width of the potential ang{x) denotes the step function. We define the reflectance and

transmittance from these potentials as

0

Ruoc= im [ o (10)
-b

Ruet = fim | ioax a1

Twell = lim f | 2dx. (12)
t—=c0 Jaih

The reason why we introdudefor the definition ofRye (11) andTyen (12) is as follow. For well-
type potential, a part of the wave packet is trapped by therpiail well and oscillates around the
potential area. The distance lofs provided as a margin to distinguish trapped portion afidcd

or transmitted ones. The trapped portion never completgparates from the other parts of the wave
packet, and continues to exchange very small amount of tieems, and the limits in egs. (11) and
(12) do not exist in strict meaning. However, for an evah@tineasure, we use the values at80 as

if they were limiting ones. In the next sections, we varigteg anda and investigate their influence
on Ryox andTyer. For numerical integration, we employ the symplectic Feunethod® throughout

this paper.
3. Results

In this section, fects of nonlinearity on free propagation and potentialtedag problems under

the wave packet initial condition are considered.
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3.1 Freepropagation
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Fig. 1. Free propagating breather-like motion of a wave pastarting from the initial wave packet (5) with
Xo = 20,v = V1.5 andg = 4. The nine wave packets sha#f att=0, 2, ..., 14 and 16 from the left to the
right.

In this subsection, we discuss free propagation of a wavegpadhere no external potential exists.

In this case, 1-soliton solution of eq. (4) wki{(X) = O can be written as

P(x.1) = \/gn sechf + 2tng)e =€), (13)

wheren and¢ are independent parameters and responsible for amplindigedocity of the soliton,
respectively. Once this form of solution is taken to be th&ahcondition, it never difuses and keeps
its own shape during time evolution.

However, the Gaussian initial condition (5) leads to qumeather-like solutions. We show time

evolution of the wave profiles|? in Fig. 1. We have also calculated the wave function in wawener
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Fig. 2. Solid line show$p|?, freely propagating breather-like wave packet observehive number space at
t = 16. The parameters are the same as the ones used in Fig. ladieddine fot = 0.

spacep as
Bk, ) = «/iz I : B(x, t)eR*dx. (14)

We show a snapshot ¢f|? taken att = 16 in Fig. 2. In wave number space, the breathing motion
is also observed and a notched structure grows on the swfaite wave packets. This structure
is the result of repeated expansion and contraction in thewamber space, i.e. expansion by the
higher harmonic excitation and contraction by the dispergfect (suppression of higher harmonic
excitation).

It is known that any solitary waves governed by eq. (4) Wi{t) = 0O finally split into a complete
soliton part and a small oscillating tail (radiation) whicpidly leaves the soliton part in the long
run1® Therefore, this quasi-breather-like behavior is considéo have finite life time and the decay
process is rather transient phenomenon. Fortunatelylifinisme is suficiently long to observe the

breather-like motion.

6/16



J. Phys. Soc. Jpn. FuLL PaPER

0.35 I ,t"/#'>4.77"’*‘**~I~-'.‘1 I
/F’/ "A.“la;‘ﬂ1
03 r /,i 9=0 |
/ 922777177
025 | , g=4 -
/‘// g = g rrrrrr A
* 0‘2 i /// g = O K== u
02-8 //’
015t f L Te ]
/// / oK \ e N e = R
01 | /)5 7w x
// %( \\\ T .
/ ,/" \x\ ;éiggsg B T e ki A
0.05 | A/ e
O - 1 L 1 I
0 2 4 6 8

Fig. 3. Reflectanc®,o from the box type potential (8) for various values@fThe initial condition is the
Gaussian type wave packet (5) with= 5 andv = V1.5 exceptfoig = 0. The curve fog = 0 corresponds
to linear case given by eq. (15).

3.2 Box type potential

We go on to the main issue, the influence of the nonlinear waeokei €fect on the potential
scattering problems. In this subsection, we consider ayjmx repulsive) potential (8).
When we consider a stationary problem wgh= 0, this is a text book example of quantum
mechanics where analytic expression for the reflectancet@red. The expression reads
a2 -1) |
sirf(aV\2 — 1)

wherev is the twice of the wave number of the incident plain wave. Whim@Vv2 — 1) = 0, Rs

Re=|1+ (15)

becomes 0 and the perfect transmission is realized. Thigirsdaof resonance scattering. Hereatfter,
we setxg in eq. (5) to be 5 or 100 throughout this paper. The paranvatealso fixed to bev1.5.

The dependencies ®t,,x 0n g anda are shown in Figs. 3 and 4. The former is fgr = 5 and
the latterx, = 100, respectively. The curve fgr = 0 corresponds to linear case given by eq. (15),
the reflectance calculated from the stationery Schodiageation. As mentioned above, the quantity
Rs experiences 0 values twice adncreases. This is due to resonance and also expected to occu
periodically as the values afgrows larger.

The behavior oRyox given by TDGPE (4) is drastically fierent. Firstly, maximum values &%§x

for eachg are totally suppressed fgr> 2, althoughRyox is enhanced for the case @& 2. Secondly,
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Fig. 4. Reflectanc®,o from the box type potential (8) for various values@fThe initial condition is the
Gaussian type wave packet (5) wixtp = 100 andv = V1.5 except forg = 0. The curve forg = 0
corresponds to linear case given by eq. (15).

they never experience the perfect transmission as the @fdile wave packetfeect, and they seem
to be approaching to their own constant values asymptitiaatompanied with small oscillation as
aincreases, i.e., the periodic resonance structure isayestifor self-focusing wave packet. Thirdly,
wavy resonance structure seems to recovegfer 2 case after long free propagation as shown in
Fig. 4. This can be reasoned as follows: Since relativelykwmealinearity ofg = 2 cannot prevent the
wave packet from diusing, it spreads and gainsfaient width for the plain wave approximation to

be applied after long propagation. Therefore, the resylt@grhes the linear case.

3.3 WA type potential

Next, we move onto the well type (attractive) potential cd$e potential is shown in eq. (9). The
parameters are the same as the previous case but the gdatepttay is taken to be 10. For stationary
and linear case, the analytical expression for the tratenci is given as

100siR@ VW2 + 10)|

Ts=1]1+
S A2(V2 + 10)

(16)

The perfect transmission is realized when aif¢2 + 10) = 0. However, in the nonlinear wave packet
dynamics, we require more careful definition of the reflectaand the transmittance, since certain
amount of wave packet is trapped by attractive potentiasekample, snapshots of the trapped wave

profiles are shown in Figs. 5 and 6. We can observe standing-liika structure in the latter, and it
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Fig. 5. Typical wave shape including the trapped portion tisaeative well type potential (9) witla = 0.5.
The wave packet located near the origin is the trapped poriibe initial condition is the Gaussian type
wave packet (5) withxg = 5,v = V1.5 andg = 8. This figure shows the snapshot takeh-at30.

swings back and forth in the potential area. Moreover, thegming phenomena seem to be inter-
mediate state and the trapped parts continue to gradualtyagrart of themselves mainly toward the
left. Therefore, the reflectance defined by eq. (10) nevererges even after very long time. Here, we
employ the expression (11) or (12) instead of (10) to eveltia® nonlinear wave packeffect. The
value of the margirb is chosen to be 30 in this paper.

The dependencies dfye 0n g anda are shown in Figs. 7 and 8. The former is fgr= 5 and
the latterxg = 100, respectively. The curve fgr= 0 corresponds to linear case given by eq. (16), the
transmittance calculated from the stationery Schodiegeiation. The quantitys takes unity several
times asaincreases. This is also due to resonance and also expeaieduioperiodically as the values
of a grows larger.

Main features resemble the box type potential case. Fitbymaximum values dF,e for each

g are totally suppressed fgr > 2, althoughTe; is enhanced for the case gf= 2. Secondly, they
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Fig. 6. Typical wave shape including the trapped portion tisaative well type potential (9) witla = 5.
The trapped portion forms standing wave like structure engbtential well. The initial condition is the
Gaussian type wave packet (5) with= 5,v = V1.5 andg = 4. This figure shows the snapshot taken at
t = 30.

never experience the perfect transmission as the resulaeé wacket #ect, and periodic resonance
structure is destroyed for self-focusing wave packet. diithe wavy resonance structure seems to
recover forg = 2 case after long free propagation (Fig. 8). The reason ferdstoration is seemed to
be the same as the box type potential case.

Here, we evaluate the amount of trapped portion by subtigdtie sum of the reflectance (11)

and the transmittance (12) from unity, i.e.,
a+30

Nirapped= t"m f |¢|2dX. (17)

As mentioned before, these values are nothing more thanast from the values &t 80. Figures
9 and 10 show the dependenciesNabppedOn g anda. They basically show that the amount of the

trapped portion rises aganda increase except for the relation betweapea 2 and 4 cases in the small
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Fig. 7. Transmittanc@&,. over the well type potential (9) for various valuesgpfThe initial condition is the
Gaussian type wave packet (5) with = 5 andv = V1.5. The curve foig = 0 corresponds to linear case

given by eq. (16).
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Fig. 8. Transmittance&,. over the well type potential (9) for various valuesgpfThe initial condition is the
Gaussian type wave packet (5) with= 100 andv = V1.5. The curve fog = 0 corresponds to linear case

given by eq. (16).
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Fig. 9. Trapped portioMNyappedby the well type potential (9) for various values@fThe initial condition is
the Gaussian type wave packet (5) with= 5 andv = V1.5.

aregion. Finally, we mention that the wavy structures seetyetaccompanied with the resonances.
4. Discussions

We have studied the scattering problems of nonlinear waukgta in the previous section. One
of the remarkable properties of these problems is that tta fidflectance or transmittance is not a
function of onlyv but also the initial position of the wave packet. In sectignw2 showed strong
modulation of the Fourier spectrum of a wave packet due totiméinearity which is shown in Fig. 2.
The shape of the Fourier spectrum deforms and oscillatesembby moment during propagation.
Therefore, the Fourier spectrum when the wave packet arevé¢he potential area, which evidently
affects on the reflectance or the transmittance, depends oathmetelrxg, i.e., the distance between
the starting position of the wave packet and the potentibis s the reason why the final results
depend omxg. On the contrary, for linear case, the initial Fourier spgutis conserved under free
propagation, and the role & is not important.

The initial position of the wave packet alsfiects the result of scattering problem through alter-

ation of the incident kinetic energy. The kinetic eneKjys defined as

K= f |pl2dX, (18)
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Fig. 10. Trapped portiohappeaby the well type potential (9) for various values@fThe initial condition is
the Gaussian type wave packet (5) with= 100 andv = V1.5.

and the self-interaction energy

1
1=-3 f 6l4dx. (19)

The breathing wave packet is always exchanging its kinettt self-interaction energy even during
free propagation. As we can see from eg. (18), when the waskepgets steeper, the kinetic energy
increases. Since total energ§y= K + | is a conserved quantity, the negative self-interactiorrggne
decreases to compensate the increase of kinetic energefdte the incident kinetic energy is also
a function of the initial position of the wave packet This incident kinetic energy directly fixes the
wave number at the incident and becomes one of the most simtifiactors of the scattering problem.

From above considerations, any argument on potentialesgajt problems of nonlinear wave
packet requires considerations on the initial positionhefwave packekg, except the soliton initial
condition. In this paper, we fixexh to be 5 or 100. The reflectance and transmittance might bedlte
for the diferent choice okg, while our main arguments are kept, i.e., the decay of regmnatructure
and the existence of trapped portion for well type potesitiaight be observed.

In the previous section, we showed the trappifigat for self-focusing wave packets by an at-
tractive potential. This phenomenon is interpreted as fest@tion of the squeezed width of the wave
packets. For linear quantum mechanics, this kind of phenoma&ever occurs due to prohibition of

energy level crossing between scattering and bound sBgesuse time evolution of a wave packet
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from an initial state to a final one is fully described by a sppsition of elements in the complete set

of the scattering state eigenfunctions, i.e.,

16(0)) = f CIEDd = 16(D) = f cie ENE AL, (20)

where labels continuous energy eigenvalues and the integrakéntaver all the scattering eigen-
states. For nonlinear wave packets, however, the disiibbaff the conserved energy is always chang-

ing as argued above and there appears the contribution fotengal energy
V=-— fo aV(x)|¢>|2dx (21)
in the potential area. Therefore, there are plenty of chafareattractive potentials that
K+I+V<0 (22)

holds temporarily though our choices of parameters do ndienr@equality (7) holds. This trapped
state can be considered “dynamical bound state”. Sincetaop#ine wave function is trapped and
continues to oscillate dynamically staying around a pdaént

It is worth mentioning that for the case of the box type paaatthe reflectance of strongly self-
focusing wave packets is observed to approach constants/édw larger potential widtla, and its
dependency on parametgdisappears (Figs. 3 and 4). Because the norms of the sei§ifar wave
packets have finite values only in the narrow limited areawéen potential ends and do not have
suficient extent to cover the whole potential area, the wavegiaddecome insensitive to the opposite
far end of the potential. In general, the resonance is thdtreginterference between the forward
propagating wave and the backward propagating one. Howthaeisqueezed wave packets merely
have backward portion since they hardly interact the othieefid of the potential. Such wave packets

undergo the fective potential for large,
Voox-eft = —0(X). (23)
For well type potentials, the squeezed wave packets firstipft the cliff of the potential,
Viell-eff-1 = VoO(X). (24)
Then, they encounter the other side of the potential watl,thay dfectively face
Viell-ef—2 = —Vof(X — a). (25)

The major part of the transmittance shown in Figs. 7 and 8 eatohsidered as the remainders when
we subtract the reflectance shown in Figs. 3 and 4 from unitg. rEflected portion by the potential
wall repeats reflection in the valley of the potential ancoissidered to constitute the dynamical bound

states.
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5 Summary

In this paper, we have numerically studied free propagabibwave packets governed by the
TDGPE for various values of coupling constagtsThe initial condition is taken to be the Gaussian
form, which is diferent from the soliton solution. For the strongly self-ratging wave packets, dif-
fusion in real space is suppressed and they exhibited lenekite behaviors. In wave number space,
the breathing motion is also observed and a notched steugtows on the surface of the wave packet.

We have also numerically investigated the potential scagg@roblems under the same developing
equation and initial conditions. The potential forms aresdn to be the box or the well type. We have
obtained the reflectand®,ox and the transmittancg,e for the diferent values of the couplinggand
the width of the potentiah, and we compared them with the predictions by stationaryd&aclger
equations. The role of nonlinearity is rather complicates, it sometimes enhanc&gqx or Tyey but
sometimes the opposite. However, there is a tendency tlggdadecreases botRyox and Tyey. For
larger values of) anda, Ryox and Ty approach constant values and do not depena on

We have also observed the dynamically trapped portion ofméree packet. We estimated the
amount of itNyapped Changingg anda and found thalNgappediS an increasing function aj anda
except for smallg and a region. We interpreted these phenomena by squeezing oiheanlwave
packet's width. Whether this trappindfect is a perpetual or just transitional one is not obvious and
would be subject of future works.

Finally, we make small remarks on the possibility of real exkments. The control of external
environments is relatively easy in the BEC systems whereameconfine condensate particles along
guasi rectilinear line by tightening laser beam trap. Iniéait, we can freely change the coupling con-
stants by application of the Feshbach resonance techhiy8eliton-like pulses of BEC have already
been created? If controllable local potential are realized, the posiipito observe and confirm our

results by real experiment is promising.
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