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Potential scattering problems governed by the time dependent Gross-Pitaevskii equation are inves-

tigated numerically for various values of coupling constants. The initial condition is assumed to have

the Gaussian type envelope, which differs from the soliton solution. The potential is chosen to a box

or well type. We estimate dependencies of reflectance and transmittance on width of the potential

and compare these results with those given by the stationarySchrödinger equation. We attribute the

behaviors of these quantities to limitation on width of nonlinear wave packet. The coupling constant

and the width of the potential play an important role in distribution of the waves appearing in the

final state of the scattering.

KEYWORDS: Gross-Pitaevskii equation, nonlinear Schrödinger equation, potential scattering,

Gaussian initial condition, numerical analysis, Bose-Einstein condensation

1. Introduction

The nonlinear Schrödinger equation (NLSE), which has a cubic nonlinear term,

iφt + φxx + 2|φ|2φ = 0, (1)

appears in various fields of physics.1) The NLSE can be derived as an amplitude equation of the system

whose dispersion relation depends dominantly on the squareof the amplitude. Among them is enve-

lope motion of coupled nonlinear oscillators with cubic interaction.2) In nonlinear optics, both self-

focusing effect in two-dimensional (2D) systems and optical soliton propagation in one-dimensional

(1D) systems are governed by the NLSE.3, 4) Another important example is the Bose-Einstein con-

densed (BEC) system6, 7) where macroscopic wave function of condensate atoms appears as the order

parameter accompanied with the spontaneous breakdown of the U(1) gauge symmetry.5) In this case,
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the NLSE is regarded as mean-field approximation of the Heisenberg equation for field operators and

describes the time-evolution of this macroscopic wave function in good accuracy.6, 7)

One of the striking feature of 1D NLSE is its integrability. In particular, exact solutions un-

der a given initial condition can be uniquely solved by the inverse scattering transformation (IST)

method.8, 9) It is based on an auxiliary linear eigenvalue problem,
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whereζ is the eigenvalue which is independent of time,φ is the solution of the NLSE and asterisk

means its complex conjugate. This formulation takes a form of a potential scattering problem for aux-

iliary field ψwhereφworks as a potential. The eigenvalue spectrum consists of discrete and continuous

parts, where the former generates soliton solutions and thelatter corresponds to small ripples. For the

sech-type initial condition with suitable amplitude, the eigenvalue consists only of discrete part. In this

case, whole initial value problem is solved analytically and results in famousN-soliton solution.10)

Time evolution of the auxiliary field is defined by another linear equation
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However, the time evolution of the wave packet from non-soliton initial condition is relatively unclear

since analytic expressions are hardly feasible.

On the other hand, in the BEC system, it is natural to assume the existence of external field to

express the effect of gravity or quadratic traps for atoms.11) Thus, the term of external field is added

to conventional NLSE (1), and the equation is called the timedependent Gross-Pitaevskii equation

(TDGPE). So far, most of analytic studies have assumed linear or quadratic potentials only, in which

case the integrability of the systems are not spoiled and onecan obtain analytical results by systematic

application of the IST method.12, 13) In such cases, soliton initial conditions are also assumed.

However, we can also consider spatially-localized potentials where the integrability is manifestly

violated. It is important to evaluate the role of nonlinearity on such potential scattering problems like

the tunneling effect. In particular, time dependent analysis of moving wave packets is intriguing since

in situ observation of condensed atoms is possible in the BEC system,6, 7) although most of studies

deal with these kinds of problems as stationary ones.14)

When we analyze the stationary potential scattering problems, we entirely adopt the wave-like

nature and the resonant phenomena brought about by the interference effect. On the the other hand,

spatially-localized pulse is expected to exhibit the so-called wave packet effect in the scattering pro-

cess. In addition, nonlinear effects are also interesting in the potential scattering problem. To investi-
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gate the influence of this wave packet effect under nonlinearity on the potential scattering problem, it

is necessary to trace the dynamics of the system. Some authors have reported on this kind of problem

assuming soliton initial conditions.15, 16) However, examples which take non-soliton solutions as ini-

tial conditions have been rare because of extra complexities. In this paper, we numerically trace and

examine the dynamics of the wave packets governed by 1D TDGPEwith the box or well type potential

under the Gaussian type initial conditions, different from soliton solutions.

This paper is organized as follows. In the next section, the non-soliton dynamics of the wave

packets without external field are analyzed. In section 3, weevaluate and characterize the nonlinear

wave packet on the reflectance or transmittance, changing the magnitude of the nonlinearity, position

of the initial wave packet, and the width of the potential. The section 4 is devoted to discussion, and

we interpret the results on the basis of squeezed width of wave packets. Extra complexities intrinsic to

non-soliton initial conditions are also argued in detail. The summary is given in the section 5.

2. Time Dependent Gross-Pitaevskii Equation and Scattering Problem

In this section, we briefly summarize mathematical descriptions of the system to be considered.

We restrict ourselves to 1D case throughout this paper. By virtue of scale transformation, we can put

both of the coefficients ofφt andφxx of the TDGPE to be unity and we shall consider

iφt + φxx + V(x)φ + g|φ|2φ = 0, (4)

whereV(x) is an external potential applied to the system, andg is the coupling constant. To investigate

the nonlinear and wave packet effects, the sign ofg is important and we discard the possibility of

g < 0 throughout this paper. If we takeg to be negative, which means the repulsively interacting field,

the wave packet immediately expands and this rapid diffusing makes the amplitude of the wave packet

very small. Therefore, excitation of higher harmonic wavesis extremely suppressed, and manifestation

of nonlinear effect is less expected. Moreover, these widespread wave packets share most of scattering

features with stationary plane waves in the linear limit, because the broaden wave packets have narrow

spectra in the Fourier space. Therefore, we focus on theg > 0 case, which means the attractively

interacting field, in order to investigate the nonlinear andwave packet effects on the potential scattering

problem. According to the theory of partial differential equation, finite and unique solution of eq. (4)

exists for arbitrary initial conditions for 1D case and instability or explosion of the solution observed

in multi dimensions never occurs even if we takeg to be positive.

Hereafter, we shall normalize the wave functionφ as
∫

R
|φ|2dx = 1. The initial condition of the

wave packet is fixed to be the Gaussian type,

φ(x, 0) =
1
4
√
π

e−
1
2 (x+x0)2+iv(x+x0), (5)
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where−x0 is the position of the center of the initial wave packet andv gives the half of its velocity. We

assume right-forward propagation of the wave packet, i.e.,x0 > 0 andv > 0. The energy functionalE,

the Hamiltonian of the system, is defined as

E =
∫ (

|φx|2 − V(x)|φ|2 − 1
2

g|φ|4
)

dx. (6)

Equation (4) can be derived straightforwardly from the Hamiltonian through standard canonical pro-

cedure. Since we have assumedg to be positive,E might take negative value. In fact, for the initial

wave packet located sufficiently far from the potential, the initial value ofE becomes negative under

the condition

1
2
+ v2 −

g
√

8π
< 0. (7)

We consider the box and well type external potential

Vbox = −θ(x) + θ(x − a), (8)

Vwell = V0(θ(x) − θ(x − a)), (9)

wherea is the width of the potential andθ(x) denotes the step function. We define the reflectance and

transmittance from these potentials as

Rbox = lim
t→∞

∫ 0

−∞
|φ|2dx, (10)

Rwell = lim
t→∞

∫ −b

−∞
|φ|2dx, (11)

Twell = lim
t→∞

∫ ∞

a+b
|φ|2dx. (12)

The reason why we introduceb for the definition ofRwell (11) andTwell (12) is as follow. For well-

type potential, a part of the wave packet is trapped by the potential well and oscillates around the

potential area. The distance ofb is provided as a margin to distinguish trapped portion and reflected

or transmitted ones. The trapped portion never completely separates from the other parts of the wave

packet, and continues to exchange very small amount of theirnorms, and the limits in eqs. (11) and

(12) do not exist in strict meaning. However, for an evaluating measure, we use the values att = 80 as

if they were limiting ones. In the next sections, we variateg, x0 anda and investigate their influence

on Rbox andTwell. For numerical integration, we employ the symplectic Fourier method18) throughout

this paper.

3. Results

In this section, effects of nonlinearity on free propagation and potential scattering problems under

the wave packet initial condition are considered.
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3.1 Free propagation

Fig. 1. Free propagating breather-like motion of a wave packet starting from the initial wave packet (5) with

x0 = 20,v =
√

1.5 andg = 4. The nine wave packets show|φ|2 at t=0, 2, . . . , 14 and 16 from the left to the

right.

In this subsection, we discuss free propagation of a wave packet where no external potential exists.

In this case, 1-soliton solution of eq. (4) withV(x) = 0 can be written as

φ(x, t) =

√

2
g
η sech(xη + 2tηξ)ei{xξ−t(η2−ξ2)}, (13)

whereη andξ are independent parameters and responsible for amplitude and velocity of the soliton,

respectively. Once this form of solution is taken to be the initial condition, it never diffuses and keeps

its own shape during time evolution.

However, the Gaussian initial condition (5) leads to quasi-breather-like solutions. We show time

evolution of the wave profile|φ|2 in Fig. 1. We have also calculated the wave function in wave-number
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Fig. 2. Solid line shows|φ̃|2, freely propagating breather-like wave packet observed inwave number space at

t = 16. The parameters are the same as the ones used in Fig. 1. The dashed line fort = 0.

spaceφ̃ as

φ̃(k, t) =
1
√

2π

∫ ∞

−∞
φ(x, t)eikxdx. (14)

We show a snapshot of|φ̃|2 taken att = 16 in Fig. 2. In wave number space, the breathing motion

is also observed and a notched structure grows on the surfaceof the wave packets. This structure

is the result of repeated expansion and contraction in the wave number space, i.e. expansion by the

higher harmonic excitation and contraction by the dispersion effect (suppression of higher harmonic

excitation).

It is known that any solitary waves governed by eq. (4) withV(x) = 0 finally split into a complete

soliton part and a small oscillating tail (radiation) whichrapidly leaves the soliton part in the long

run.19) Therefore, this quasi-breather-like behavior is considered to have finite life time and the decay

process is rather transient phenomenon. Fortunately, thislife time is sufficiently long to observe the

breather-like motion.
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Fig. 3. ReflectanceRbox from the box type potential (8) for various values ofg. The initial condition is the

Gaussian type wave packet (5) withx0 = 5 andv =
√

1.5 except forg = 0. The curve forg = 0 corresponds

to linear case given by eq. (15).

3.2 Box type potential

We go on to the main issue, the influence of the nonlinear wave packet effect on the potential

scattering problems. In this subsection, we consider a box type (repulsive) potential (8).

When we consider a stationary problem withg = 0, this is a text book example of quantum

mechanics where analytic expression for the reflectance is obtained. The expression reads

Rs =













1+
4v2(v2 − 1)

sin2(a
√

v2 − 1)













−1

, (15)

wherev is the twice of the wave number of the incident plain wave. When sin(a
√

v2 − 1) = 0, Rs

becomes 0 and the perfect transmission is realized. This is akind of resonance scattering. Hereafter,

we setx0 in eq. (5) to be 5 or 100 throughout this paper. The parameterv is also fixed to be
√

1.5.

The dependencies ofRbox on g anda are shown in Figs. 3 and 4. The former is forx0 = 5 and

the latterx0 = 100, respectively. The curve forg = 0 corresponds to linear case given by eq. (15),

the reflectance calculated from the stationery Schödingerequation. As mentioned above, the quantity

Rs experiences 0 values twice asa increases. This is due to resonance and also expected to occur

periodically as the values ofa grows larger.

The behavior ofRbox given by TDGPE (4) is drastically different. Firstly, maximum values ofRbox

for eachg are totally suppressed forg > 2, althoughRbox is enhanced for the case ofg = 2. Secondly,
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Fig. 4. ReflectanceRbox from the box type potential (8) for various values ofg. The initial condition is the

Gaussian type wave packet (5) withx0 = 100 andv =
√

1.5 except forg = 0. The curve forg = 0

corresponds to linear case given by eq. (15).

they never experience the perfect transmission as the result of the wave packet effect, and they seem

to be approaching to their own constant values asymptotically accompanied with small oscillation as

a increases, i.e., the periodic resonance structure is destroyed for self-focusing wave packet. Thirdly,

wavy resonance structure seems to recover forg = 2 case after long free propagation as shown in

Fig. 4. This can be reasoned as follows: Since relatively week nonlinearity ofg = 2 cannot prevent the

wave packet from diffusing, it spreads and gains sufficient width for the plain wave approximation to

be applied after long propagation. Therefore, the result approaches the linear case.

3.3 Well type potential

Next, we move onto the well type (attractive) potential case. The potential is shown in eq. (9). The

parameters are the same as the previous case but the potential depthV0 is taken to be 10. For stationary

and linear case, the analytical expression for the transmittance is given as

Ts =















1+
100 sin2(a

√
v2 + 10)

4v2(v2 + 10)















−1

. (16)

The perfect transmission is realized when sin(a
√

v2 + 10)= 0. However, in the nonlinear wave packet

dynamics, we require more careful definition of the reflectance and the transmittance, since certain

amount of wave packet is trapped by attractive potentials. For example, snapshots of the trapped wave

profiles are shown in Figs. 5 and 6. We can observe standing wave-like structure in the latter, and it
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Fig. 5. Typical wave shape including the trapped portion by attractive well type potential (9) witha = 0.5.

The wave packet located near the origin is the trapped portion. The initial condition is the Gaussian type

wave packet (5) withx0 = 5, v =
√

1.5 andg = 8. This figure shows the snapshot taken att = 30.

swings back and forth in the potential area. Moreover, thesetrapping phenomena seem to be inter-

mediate state and the trapped parts continue to gradually emit a part of themselves mainly toward the

left. Therefore, the reflectance defined by eq. (10) never converges even after very long time. Here, we

employ the expression (11) or (12) instead of (10) to evaluate the nonlinear wave packet effect. The

value of the marginb is chosen to be 30 in this paper.

The dependencies ofTwell on g anda are shown in Figs. 7 and 8. The former is forx0 = 5 and

the latterx0 = 100, respectively. The curve forg = 0 corresponds to linear case given by eq. (16), the

transmittance calculated from the stationery Schödingerequation. The quantityTs takes unity several

times asa increases. This is also due to resonance and also expected tooccur periodically as the values

of a grows larger.

Main features resemble the box type potential case. Firstly, the maximum values ofTwell for each

g are totally suppressed forg > 2, althoughTwell is enhanced for the case ofg = 2. Secondly, they
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Fig. 6. Typical wave shape including the trapped portion by attractive well type potential (9) witha = 5.

The trapped portion forms standing wave like structure in the potential well. The initial condition is the

Gaussian type wave packet (5) withx0 = 5, v =
√

1.5 andg = 4. This figure shows the snapshot taken at

t = 30.

never experience the perfect transmission as the result of wave packet effect, and periodic resonance

structure is destroyed for self-focusing wave packet. Thirdly, the wavy resonance structure seems to

recover forg = 2 case after long free propagation (Fig. 8). The reason for this restoration is seemed to

be the same as the box type potential case.

Here, we evaluate the amount of trapped portion by subtracting the sum of the reflectance (11)

and the transmittance (12) from unity, i.e.,

Ntrapped= lim
t→∞

∫ a+30

−30
|φ|2dx. (17)

As mentioned before, these values are nothing more than estimates from the values att = 80. Figures

9 and 10 show the dependencies ofNtrappedon g anda. They basically show that the amount of the

trapped portion rises asg anda increase except for the relation betweeng = 2 and 4 cases in the small

10/16



J. Phys. Soc. Jpn. Full Paper

Fig. 7. TransmittanceTwell over the well type potential (9) for various values ofg. The initial condition is the

Gaussian type wave packet (5) withx0 = 5 andv =
√

1.5. The curve forg = 0 corresponds to linear case

given by eq. (16).

Fig. 8. TransmittanceTwell over the well type potential (9) for various values ofg. The initial condition is the

Gaussian type wave packet (5) withx0 = 100 andv =
√

1.5. The curve forg = 0 corresponds to linear case

given by eq. (16).
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Fig. 9. Trapped portionNtrappedby the well type potential (9) for various values ofg. The initial condition is

the Gaussian type wave packet (5) withx0 = 5 andv =
√

1.5.

a region. Finally, we mention that the wavy structures seem tobe accompanied with the resonances.

4. Discussions

We have studied the scattering problems of nonlinear wave packets in the previous section. One

of the remarkable properties of these problems is that the final reflectance or transmittance is not a

function of only v but also the initial position of the wave packet. In section 2, we showed strong

modulation of the Fourier spectrum of a wave packet due to thenonlinearity which is shown in Fig. 2.

The shape of the Fourier spectrum deforms and oscillates moment by moment during propagation.

Therefore, the Fourier spectrum when the wave packet arrives at the potential area, which evidently

affects on the reflectance or the transmittance, depends on the parameterx0, i.e., the distance between

the starting position of the wave packet and the potential. This is the reason why the final results

depend onx0. On the contrary, for linear case, the initial Fourier spectrum is conserved under free

propagation, and the role ofx0 is not important.

The initial position of the wave packet also affects the result of scattering problem through alter-

ation of the incident kinetic energy. The kinetic energyK is defined as

K =
∫

|φx|2dx, (18)
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Fig. 10. Trapped portionNtrappedby the well type potential (9) for various values ofg. The initial condition is

the Gaussian type wave packet (5) withx0 = 100 andv =
√

1.5.

and the self-interaction energy

I = −1
2

g
∫

|φ|4dx. (19)

The breathing wave packet is always exchanging its kinetic and self-interaction energy even during

free propagation. As we can see from eq. (18), when the wave packet gets steeper, the kinetic energy

increases. Since total energyE = K + I is a conserved quantity, the negative self-interaction energy

decreases to compensate the increase of kinetic energy. Therefore, the incident kinetic energy is also

a function of the initial position of the wave packetx0. This incident kinetic energy directly fixes the

wave number at the incident and becomes one of the most significant factors of the scattering problem.

From above considerations, any argument on potential scattering problems of nonlinear wave

packet requires considerations on the initial position of the wave packetx0, except the soliton initial

condition. In this paper, we fixedx0 to be 5 or 100. The reflectance and transmittance might be altered

for the different choice ofx0, while our main arguments are kept, i.e., the decay of resonance structure

and the existence of trapped portion for well type potentials might be observed.

In the previous section, we showed the trapping effect for self-focusing wave packets by an at-

tractive potential. This phenomenon is interpreted as manifestation of the squeezed width of the wave

packets. For linear quantum mechanics, this kind of phenomenon never occurs due to prohibition of

energy level crossing between scattering and bound states.Because time evolution of a wave packet
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from an initial state to a final one is fully described by a superposition of elements in the complete set

of the scattering state eigenfunctions, i.e.,

|φ(0)〉 =
∫

cλ|Eλ〉dλ⇒ |φ(t)〉 =
∫

cλe
−iEλ t |Eλ〉dλ, (20)

whereλ labels continuous energy eigenvalues and the integral is taken over all the scattering eigen-

states. For nonlinear wave packets, however, the distribution of the conserved energy is always chang-

ing as argued above and there appears the contribution from potential energy

V = −
∫ a

0
V(x)|φ|2dx (21)

in the potential area. Therefore, there are plenty of chances for attractive potentials that

K + I + V < 0 (22)

holds temporarily though our choices of parameters do not make inequality (7) holds. This trapped

state can be considered “dynamical bound state”. Since a part of the wave function is trapped and

continues to oscillate dynamically staying around a potential.

It is worth mentioning that for the case of the box type potentials, the reflectance of strongly self-

focusing wave packets is observed to approach constant values for larger potential widtha, and its

dependency on parametera disappears (Figs. 3 and 4). Because the norms of the self-focusing wave

packets have finite values only in the narrow limited areas between potential ends and do not have

sufficient extent to cover the whole potential area, the wave packets become insensitive to the opposite

far end of the potential. In general, the resonance is the result of interference between the forward

propagating wave and the backward propagating one. However, the squeezed wave packets merely

have backward portion since they hardly interact the other far end of the potential. Such wave packets

undergo the effective potential for largea,

Vbox−eff = −θ(x). (23)

For well type potentials, the squeezed wave packets firstly fall off the cliff of the potential,

Vwell−eff−1 = V0θ(x). (24)

Then, they encounter the other side of the potential wall, and they effectively face

Vwell−eff−2 = −V0θ(x − a). (25)

The major part of the transmittance shown in Figs. 7 and 8 can be considered as the remainders when

we subtract the reflectance shown in Figs. 3 and 4 from unity. The reflected portion by the potential

wall repeats reflection in the valley of the potential and is considered to constitute the dynamical bound

states.
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5. Summary

In this paper, we have numerically studied free propagationof wave packets governed by the

TDGPE for various values of coupling constantsg. The initial condition is taken to be the Gaussian

form, which is different from the soliton solution. For the strongly self-interacting wave packets, dif-

fusion in real space is suppressed and they exhibited breather-like behaviors. In wave number space,

the breathing motion is also observed and a notched structure grows on the surface of the wave packet.

We have also numerically investigated the potential scattering problems under the same developing

equation and initial conditions. The potential forms are chosen to be the box or the well type. We have

obtained the reflectanceRbox and the transmittanceTwell for the different values of the couplingg and

the width of the potentiala, and we compared them with the predictions by stationary Schödinger

equations. The role of nonlinearity is rather complicated,i.e., it sometimes enhancesRbox or Twell but

sometimes the opposite. However, there is a tendency that large g decreases bothRbox andTwell. For

larger values ofg anda, Rbox andTwell approach constant values and do not depend ona.

We have also observed the dynamically trapped portion of thewave packet. We estimated the

amount of itNtrapped changingg and a and found thatNtrapped is an increasing function ofg and a

except for smallg and a region. We interpreted these phenomena by squeezing of nonlinear wave

packet’s width. Whether this trapping effect is a perpetual or just transitional one is not obvious and

would be subject of future works.

Finally, we make small remarks on the possibility of real experiments. The control of external

environments is relatively easy in the BEC systems where we can confine condensate particles along

quasi rectilinear line by tightening laser beam trap. In addition, we can freely change the coupling con-

stants by application of the Feshbach resonance technique.17) Soliton-like pulses of BEC have already

been created.20) If controllable local potential are realized, the possibility to observe and confirm our

results by real experiment is promising.
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