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Abstract

Non-point invertible transformations are completely described for difference equations
on the quad-graph and for their differential-difference analogues. As an illustration, these
transformations are used to construct new examples of integrable equations and autotrans-
formations of the Hietarinta equation.

1 Introduction

The present paper is devoted to invertible transformations for both discrete equations of the
form

ui+1,j+1 = F (ui,j, ui+1,j , ui,j+1) ,

and “semi-discrete” chains of the differential equations

(ui+1)x = F (x, ui, ui+1, (ui)x) .

Here j and j are integers, x is a continuous variable, u is a function of i, j and i, x for the first
and the second equation, respectively. From now on, we shall omit i and j for brevity and, in
particular, write the above equations in the form

u1,1 = F (u, u1,0, u0,1) (1.1)

and
(u1)x = F (x, u, u1, ux) . (1.2)

We assume that FuFu1,0
Fu1,0

6= 0 for Eq. (1.1) and Fux 6= 0 for Eq. (1.2). These conditions
allows us to rewrite Eq. (1.1) in any of the following forms

u−1,−1 = F (u, u−1,0, u0,−1) , (1.3)

u1,−1 = F̂ (u, u1,0, u0,−1) , (1.4)

u−1,1 = F̃ (u, u−1,0, u0,1) , (1.5)

and Eq. (1.2) – in the form
(u−1)x = F̃ (x, u, u−1, ux) . (1.6)

Therefore, all “mixed shifts” um,n := ui+m,j+n (for both positive and negative non-zero n and
m) can be expressed in terms of dynamical variables uk,0, u0,l by virtue of Eqs. (1.1), (1.3)–(1.5).

Analogously, u
(n)
m := ∂nui+m/∂x

n for any non-zero m ∈ Z and n ∈ N can be expressed in terms
of x and dynamical variables ul := ui+l, u

(k) := ∂kui/∂x
kui by virtue of Eqs. (1.2), (1.6). The

1

http://arxiv.org/abs/1010.0361v1


notation g[u] means that the function g depends on a finite number of the dynamical variables
(and x if we consider Eq. (1.2)). The considerations in this paper are local (for example, we use
the local implicit function theorem to obtain (1.3)–(1.6)) and, for simplicity, all functions are
assumed to be locally analytical.

In addition to the point transformations v = g(u), some of the equations (1.1) and (1.2)
admit non-point transformations v = g[u] which are invertible in the sense of [15]. For example,
the differential substitutions

v =
ux − sinu

2
(1.7)

maps solutions of the differential-difference sine-Gordon equation [7, 13]

(u1)x − sinu1 = ux + sinu (1.8)

into solutions of the equation

(v1 − v)x
√

1− (v1 − v)2
= ±(v1 + v) , (1.9)

which is a semi-discrete version of the complex sine-Gordon equation. Here the sign of right-
hand side of Eq. (1.9) coincides with the sign of the cos u value1. Indeed, v1 = (ux + sinu)/2
follows from Eq. (1.8) and, together with (1.7), gives us

ux = v1 + v , sinu = v1 − v =⇒ (v1 − v)x = ux cosu = ±(v1 + v)
√

1− (v1 − v)2 .

The inverse transformation can be found in [11]: the formula u = π
2 ± (arcsin(v1 − v)− π

2 ) maps
any real solution of Eq. (1.9) into a solution of Eq. (1.8).

This example belongs to the following class of non-point invertible transformations introduced
in [16]. Let functions ϕ(x, y, z), ψ(x, y, z) satisfy the condition ϕyψz − ϕzψy 6= 0 and Eq. (1.2)
can be written in the form

ϕ(x, u1, (u1)x) = ψ(x, u, ux) . (1.10)

Then we rewrite (1.10) in the form of the system

v = ϕ(x, u, ux), v1 = ψ(x, u, ux) , (1.11)

express u, ux in terms of v, v1 from (1.11) and obtain

u = p(x, v, v1), ux = q(x, v, v1) . (1.12)

The system (1.12) is equivalent to the equation

Dx(p(x, v, v1)) = q(x, v, v1) , (1.13)

where Dx denotes the total derivative with respect to x. The substitution v = ϕ(x, u, ux) maps
solutions of (1.10) into solutions of (1.13) and the transformation u = p(x, v, v1) maps solutions
of (1.13) back into solutions of (1.10).

It is easy to see that the same scheme can be applied to the pure discrete equations of the
form

ϕ(u0,1, u1,1) = ψ(u, u1,0) , (1.14)

where ϕ(y, z) and ψ(y, z) are functionally independent. Indeed, expressing u and u1,0 from

v = ϕ(u, u1,0), v0,1 = ψ(u, u1,0) , (1.15)

1A local transformation of an equation may, generally speaking, generate different equations for different
domains of the “jet space”. It is true for both point and non-point local transformations.
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we obtain
u = p(v, v0,1), u1,0 = q(v, v0,1) (1.16)

and rewite (1.16) in the form of the equivalent equation

p(v1,0, v1,1) = q(v, v0,1) . (1.17)

Thus, the transformation v = ϕ(u, u1,0) maps solutions of (1.14) into solutions of (1.17) and
the inverse transformation u = p(v, v0,1) maps solutions of (1.17) back into solutions of (1.14).
The transformations (1.14)–(1.17) were, in fact, used in [17] without explicit formulation of the
above scheme.

The main result of this paper is the proof of the following statement: any invertible transfor-
mation of Eqs. (1.1), (1.2) is a composition of shifts, point transformations and transformations
(1.10)–(1.13), (1.14)–(1.17). Roughly speaking, Eqs. (1.1) and (1.2) have no non-point invertible
transformations other than (1.14)–(1.17) and (1.10)–(1.13), respectively. The proof is similar to
that was used in [15] for continuous equations (hyperbolic PDEs).

The invertible transformations allow us to obtain objects associated with integrability of
Eqs. (1.13), (1.17) (such as conservation laws and higher symmetries) from the corresponding
objects of Eqs. (1.10), (1.14) because we can express shifts and derivatives of u in terms of shifts
and derivatives of v. Therefore, the invertible transformations may be useful for constructing
new examples of integrable equations of the form (1.1), (1.2). To illustrate it, in section 4 we
construct Darboux integrable equations related via invertible transformations to difference and
differential-difference analogues of the Liouville equation. In addition, an example of construct-
ing an equation possessing the higher symmetries is contained at the end of section 2. In this
section we also demonstrate that the scheme (1.14)–(1.17) generates autotransformations of the
Hietarinta equation.

2 Invertible transformations of discrete equations

We let Ti and Tj denote the operators of the forward shifts in i and j by virtue of Eq. (1.1).
These operators are defined by the following rules: Ti(f(a, b, c, . . . )) = f(Ti(a), Ti(b), Ti(c), . . . )
and Tj(f(a, b, c, . . . )) = f(Tj(a), Tj(b), Tj(c), . . . ) for any function f ; Ti(um,0) = um+1,0 and
Tj(u0,n) = u0,n+1; Ti(u0,n) = T n−1

j (F ) for positive n and Ti(u0,n) = T n+1
j (F̂ ) for negative

n, Tj(um,0) = Tm−1
i (F ) for positive m and Tj(um,0) = Tm+1

i (F̃ ) for negative m (i.e. mixed
variables u1,n and um,1 are expressed in terms of the dynamical variables by virtue of Eqs. (1.1),
(1.4), (1.5)). The inverse (backward) shift operators T−1

i and T−1
j are defined in the similar

way.

Definition 1. We say that a transformation v = f [u] maps the equation (1.1) into an equation
v1,1 = G(v, v1,0, v0,1) if

TiTj(f) = G(f, Ti(f), Tj(f)) . (2.1)

Definition 2. A transformation v = f [u] of Eq. (1.1) is called invertible if any of the dynamical
variables u, uk,0, u0,l, k, l ∈ Z, can be expressed as a function of a finite subset of the variables

v := f , vr,0 := T r
i (f) , v0,s := T s

j (f) , r, s ∈ Z . (2.2)

We exclude all mixed variables vr,s, rs 6= 0, from (2.2) because we consider only the cases
when the transformation maps (1.1) into an equation of the form

v1,1 = G(v, v1,0, v0,1) , GvGv1,0Gv0,1 6= 0 (2.3)

and the mixed variables can be expressed in terms of (2.2) by virtue of this equation.
It is easy to see that any shift w = vr,s maps Eq. (2.3) into Eq. (2.3) again and the composition

of the shift and an invertible transformation v = f [u] is invertible too. This leads to the following
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Definition 3. Transformations v = f [u] and w = g[u] are called equivalent if there exist r, s ∈ Z

such that g = T s
i T

r
j (f).

Proposition 1. Let v = g[u] be an invertible transformation that maps Eq. (1.1) into Eq. (2.3).
Then this transformation is equivalent to either a transformation of the form

w = f(u, u1,0, u2,0, . . . , um,0) , (2.4)

or a transformation of the form

w = f(u, u0,1, u0,2, . . . , u0,n) . (2.5)

Proof. The transformation is equivalent to that of the form

v = h(u, u1,0, . . . , uk,0, u0,1, . . . , u0,l) (2.6)

because we can eliminate “negative” variables ur,0, u0,s, r, s < 0 from the transformation by
shifts of g. We can express u as

u = P (va,0, va+1,0, . . . , vb,0, v0,c, v0,c+1, . . . , v0,d) :=

:= P (T a
i (h), T

a+1
i (h), . . . , T b

i (h), T
c
j (h), T

c+1
j (h), . . . , T d

j (h)) (2.7)

if the transformation is invertible. Differentiating Eq. (2.7) with respect to uk+b,0, we obtain
Pvb,0T

b
i (huk,0

) = 0 ⇒ Pvb,0 = 0 if b, k > 0. The analogous reasoning gives Pv0,d = 0 if d, l > 0.
Thus, b, d ≤ 0 if kl 6= 0.

Let
(

T−1
i (h)

)

u
−1,0

(

T−1
j (h)

)

u0,−1

6= 0. Then (T a
i (h))ua,0

(

T c
j (h)

)

u0,c

6= 0 for any negative

a and c, and we obtain Pva,0 = Pv0,c = 0 by differentiating Eq. (2.7) with respect to ua,0
and u0,c. Therefore, either a = c = b = d = 0 (i.e. u = P (h) that is possible only

if k = l = 0) or
(

T−1
i (h)

)

u
−1,0

(

T−1
j (h)

)

u0,−1

= 0. The latter equality means that either

T−1
i (h) = h̃(u, u1,0, . . . , uk−1,0, u0,1, . . . , u0,l) or T

−1
j (h) = h̃(u, u1,0, . . . , uk,0, u0,1, . . . , u0,l−1), i.e.

any invertible transformation of the form (2.6) with kl 6= 0 is equivalent to a transformation
ṽ = h̃(u, u1,0, . . . , uk̃,0, u0,1, . . . , u0,l̃) such that k̃l̃ < kl. Applying this conclusion several times,
we obtain that (2.6) is equivalent to a transformation w = f(u, u1,0, . . . , um,0, u0,1, . . . , u0,n) with
mn = 0.

Definition 4. A transformation is called non-point if this transformation is not equivalent to
any point transformation of the form w = g(u).

Because the transformations v = f(um,0) and v = f(u0,n) are equivalent to the point trans-
formation w = f(u), a transformation of the form (2.4) or (2.5) is non-point only if f depends
on more than one variable. We use only this property of the non-point transformations in the
proof of the following

Theorem 1. Let a non-point invertible transformation of the form (2.4) map Eq. (1.1) into
Eq. (2.3). Then Eq. (1.1) can be written in the form ϕ(u0,1, u1,1) = ψ(u, u1,0), where ϕ(y, z) and
ψ(y, z) are functionally independent, and the transformation is equivalent to the composition
of the invertible transformation w = ϕ(u, u1,0) and an invertible transformation of the form
v = h(w,w1,0, w2,0, . . . , wm−1,0). In particular, any non-point invertible transformation of the
form v = f(u, u1,0) is equivalent to the composition of the transformation w = ϕ(u, u1,0) and a
point transformation v = h(w).
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Proof. If fur,0
= 0, r = 0, s− 1, fus,0

6= 0, then the equivalent transformation v = T−s
i (f [u])

depends on u. Therefore, we can, without loss of generality, assume that fu 6= 0. We also can
write

ul,0 = Pl(va,0, va+1,0, . . . , vb,0, v0,c, v0,c+1, . . . , v0,d) =

= Pl(T
a
i (f), T

a+1
i (f), . . . , T b

i (f), T
c
j (f), T

c+1
j (f), . . . , T d

j (f)) , l = 0,m

because the transformation is invertible. Differentiating these equalities with respect to ua,0, we
obtain (Pl)va,0T

a
i (fu) = 0 ⇒ (Pl)va,0 = 0 if a < 0. The similar reasoning gives (Pl)vb,0 = 0 if

b > 0. Thus,
ul,0 = Pl(T

c
j (f), T

c+1
j (f), . . . , T d

j (f)) , l = 0,m .

Let c < 0 and s be the biggest negative integer such that (T s
j (f))u0,−1

6= 0. If s ≥ c, then
T c
j (f) depends on u0,c−s−1 and (Pl)u0,c−s−1

= (Pl)v0,c(T
c
j (f))u0,c−s−1

= 0 ⇒ (Pl)v0,c = 0. Hence
s < c, i.e. (T r

j (f))u0,−1
= 0 for all r ≥ c. This implies T c

j (f) = g(u, u1,0, . . . , um,0) and

ul,0 = Pl(g, Tj(g), . . . , T
d̃
j (g)) , l = 0,m . (2.8)

If c ≥ 0, then Eqs. (2.8) holds too, with g = f and d̃ = d.
Repeating the above argumentation, we prove that (T r

j (g))u0,1
= 0 for all r ≤ d̃. Let us

consider the operators X = T−1
j ∂u0,1

Tj (cp. [4]) and Y = [∂u0,−1
,X], where ∂z := ∂

∂z
. These

operators have the form

X = ∂u +

m
∑

l=1

ξl∂ul,0
, Y =

m
∑

l=1

νl∂ul,0

for functions of u, u1,0, . . . , um,0. According to Eq. (2.8), the set {g, Tj(g), . . . , T d̃
j (g)} must

contain m + 1 functionally independent functions because ul,0, l = 0,m, are functionally in-
dependent. Hence the system X(z) = 0, Y (z) = 0 has m functionally independent solutions
depending on u, u1,0, . . . , um,0 and the vectors (1, ξ1, . . . , ξm), (0, ν1, . . . , νm) must be collinear.
The latter is possible only if νl = 0 for all l = 0,m. In particular,

ν1 = [T−1
j (Fu0,1

)]u0,−1
= 0 ⇒ T−1

j (Fu0,1
)] = α(u, u1,0) ⇒ Fu0,1

= Tj(α) = α(u0,1, F ) ⇒

⇒ Fuu0,1
= αu1,0

(u0,1, F )Fu, Fu1,0u0,1
= αu1,0

(u0,1, F )Fu1,0
⇒ (ln(Fu1,0

)− ln(Fu))u0,1
= 0 ⇒

⇒ Fu1,0
− β(u, u1,0)Fu = 0 ⇒ F = E(ψ(u, u1,0), u0,1) ,

where ψ is a solution of the equation ψu1,0
−β(u, u1,0)ψu = 0. Thus, Eq. (1.1) can be written in

the form (1.14).
We can express g in terms of u, ϕ(u, u1,0), ϕ(u1,0, u2,0), . . . , ϕ(um−1,0, um,0):

g = h(u, ϕ(u, u1,0), ϕ(u1,0, u2,0), . . . , ϕ(um−1,0, um,0)) ,

It is proved above that X(g) = 0. Taking this fact into account, we obtain hu = 0 because
X(g) = X(h) = T−1

j [hu(u0,1, ψ(u, u1,0), . . . , ψ(um−1,0, um,0))] = hu. This means that the trans-
formation (2.4) is equivalent to the composition of the transformation w = ϕ(u, u1,0) and the
transformation v = h(w,w1,0, w2,0, . . . , wm−1,0). The latter transformation is invertible because

w = ϕ(P0, P1) = P̃0(g, Tj(g), . . . , T
d̃
j (g)) = P̃0(h, Tj(h), . . . , T

d̃
j (h))

by virtue of Eq. (2.8). The expressions for other dynamical variables can be obtained by the
formulas w0,r = T r

j (P̃0) and ws,0 = T s
i (P̃0).
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Let ϕ and ψ be functionally dependent. Then Eq. (1.14) has the form ϕ(u0,1, u1,1) =
E(ϕ(u,u1,0)) and all functions T r

j (g) can be expressed in terms of ϕ(u, u1,0), ϕ(u1,0, u2,0), . . . ,
ϕ(um−1,0, um,0) (Tj(g) = h(E(ϕ(u, u1,0)), . . . , E(ϕ(um−1,0, um,0)) and so on). Hence the set

{g, Tj(g), . . . , T d̃
j (g)} contains no more than m functionally independent functions. But we

prove above that this set must contain m+1 functionally independent functions if the transfor-
mation is invertible. Therefore, ϕ and ψ must be functionally independent if Eq. (1.14) admits
an invertible transformation of the form v = f(u, u1,0, u2,0, . . . , um,0).

It is not always easy to see whether Eq. (1.1) can be represented in the form (1.14). For
example, at first glance it seems that the equation

v1,1 =
v(v1,0 + 1)

v(v0,1 − v1,0) + v0,1 + 1
(2.9)

does not admit an invertible transformation of the form u = ϕ(v, v1,0). But in reality we can
rewrite this equation as

v1,1 + 1

v0,1v1,1 − 1
=

v + 1

v1,0v − 1

and relate it to the equation

(u1,1 − 1)(u0,1 + 1) = (u1,0 + 1)(u − 1) (2.10)

via the invertible transformation

u = −2
v1,0 + 1

vv1,0 − 1
− 1 , v =

u0,1 − 1

u+ 1
.

Therefore, it is useful to reformulate our result in the following form.

Corollary 1. The equation (1.1) admits a non-point invertible transformation of the form (2.4)
into an equation of the form (2.3) if and only if both the conditions

(

Fu1,0

Fu

)

u0,1

= 0 , Fu + Fu1,0
T−1
j (Fu0,1

) 6= 0

are satisfied.

Proof. If Eq. (1.1) is represented in the form (1.14), then the right-hand side F of (1.1) is
determined as an implicit function from the identity

ϕ(u0,1, F ) = ψ(u, u1,0) . (2.11)

Differentiating this identity with respect to u and u1,0, we obtain

Tj(ϕu1,0
(u, u1,0))Fu = ψu(u, u1,0) , Tj(ϕu1,0

(u, u1,0))Fu1,0
= ψu1,0

(u, u1,0) . (2.12)

Therefore, Fu1,0
/Fu does not depend on u0,1. Conversely, if Fu1,0

/Fu = β(u, u1,0), then F =
E(ψ(u, u1,0), u0,1) and (1.1) can be rewritten in the form (1.14).

Differentiating (2.11) with respect to u0,1, we obtain Fu0,1
= −Tj

(

ϕu/ϕu1,0

)

. This expression
and Eq. (2.12) allow us to rewrite the functional independence condition for ϕ, ψ in the following
way

ϕu1,0
(u, u1,0)ψu(u, u1,0)− ϕu(u, u1,0)ψu1,0

(u, u1,0) = ϕu1,0
(ψu + T−1

j (Fu0,1
)ψu1,0

) =

= Tj(ϕu1,0
)ϕu1,0

(Fu + T−1
j (Fu0,1

)Fu1,0
) 6= 0 .
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Naturally, the propositions analogous to Theorem 1 and Corollary 1 are valid for invertible
transformations of the form v = f(u, u0,1, u0,2, . . . , u0,n) too.

Returning to Eqs. (2.9)–(2.10), we note that Eq. (2.10) was introduced in [12] in a slightly
different form. This equation has also been used in [10] as an example of an equation which is
inconsistent around the cube (in the sense of [1]) but possesses the higher symmetries. Therefore,
we can obtain symmetries of Eq. (2.9) from symmetries of Eq. (2.10).

Indeed, if a transformation v = f(u, u0,1) maps Eq. (1.1) into Eq. (2.3), then differentiation
of (2.1) with respect to τ by virtue a symmetry uτ = ξ[u] of Eq. (1.1) gives us

LG

(

(fu0,1
Tj + fu)(ξ[u])

)

= (λ[u]Tj + µ[u]) (LF (ξ[u])) ,

where

LG = TiTj +Gv1,0Ti +Gv0,1Tj +Gv , LF = TiTj + Fu1,0
Ti + Fu0,1

Tj + Fu .

Because LF (ξ[u]) = 0 by definition of symmetry, we see that vτ = fu0,1
Tj(ξ[u]) + fuξ[u] (after

rewriting in terms of v and its shifts) is a symmetry of Eq. (2.3). Applying this, for example, to
the three-point symmetries

uτ = (u2 − 1)(u1,0 − u−1,0) , uτ = (u2 − 1)

(

1

u0,1 + u
− 1

u+ u0,−1

)

of Eq. (2.10), we obtain the symmetries

vτ = (v + 1)2
(

1

vv1,0 − 1
− 1

vv−1,0 − 1

)

, vτ = v

(

1

v0,1 + 1
− 1

v0,−1 + 1

)

of Eq. (2.9).
The Hietarinta [6] equation2

u1,1(u+ β)(u0,1 + α) = u0,1(u+ α)(u1,0 + β) (2.13)

is another interesting example. The invertible transformations

v =
u1,0(u+ α)

u
− α , w =

βu0,1
β + u− u0,1

map this equation into Eq. (2.13) again. In addition, the Hietarinta equation is linearizable [14].
We note that the above properties of Eq. (2.13) are similar to those of the continuous equation

uxy = (α(x, y)eu)x + (β(x, y)e−u)y + γ(x, y)

which was considered in [15].

3 Invertible transformations of differential-difference equations

We let T denote the operator of the forward shift in i by virtue of Eq. (1.2). This operator
is defined by the following rules: T (f(a, b, c, . . . )) = f(T (a), T (b), T (c), . . . ) for any function

f ; T (um) = um+1; T (u
(n)) = Dn−1

x (F ) (mixed variables u
(n)
1 are expressed in terms of the

dynamical variables by virtue of Eq. (1.2)). Here

Dx =
∂

∂x
+ u(1)

∂

∂u
+

∞
∑

k=1

(

u(k+1) ∂

∂u(k)
+ T (k−1)(F )

∂

∂uk
+ T (1−k)(F̃ )

∂

∂u
−k

)

,

i.e. Dx is total derivative with respect to x by virtue of Eqs. (1.2), (1.6). The inverse (backward)
shift operator T−1 is defined in the similar way.

2We write this equation in the form used in [14]
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Definition 5. We say that a transformation v = f [u] maps Eq. (1.2) into an equation

(v1)x = G(x, v, v1, vx) , Gvx 6= 0 (3.1)

if DxT (f) = G(x, f, T (f),Dx(f)).

Definition 6. A transformation v = f [u] of Eq. (1.2) is called invertible if any of the dynamical
variables u, uk, k ∈ Z, u(l), l ∈ N can be expressed as a function of a finite subset of the variables

x, v := f , vr := T r(f) , v(s) := Ds
x(f) , r ∈ Z , s ∈ N .

Definition 7. Transformations v = f [u] and w = g[u] are called equivalent if there exists r ∈ Z

such that g = T r(f).

Proposition 2. Let a transformation of the form v = g[u] be invertible and map Eq. (1.2) into
Eq. (3.1). Then this transformation is equivalent to either a transformation of the form

w = f(x, u, u1, u2, . . . , um) , (3.2)

or a transformations of the form

w = f(x, u, u(1), u(2), . . . , u(n)) . (3.3)

Definition 8. A transformation is called non-point if this transformation is not equivalent to
any point transformation of the form w = g(x, u).

It is easy to see that a transformation of the form (3.2) or (3.3) is non-point only if f depends
on more than one of the variables u, u1, . . . , um or on at least one of the variables u(1), . . . ,
u(n), respectively.

Theorem 2. Let a non-point invertible transformation of the form (3.3) map Eq. (1.2) into
Eq. (3.1). Then Eq. (1.2) can be written in the form ϕ(x, u1, (u1)x) = ψ(x, u, ux), where
ϕ(x, y, z) and ψ(x, y, z) satisfy the condition ϕyψz −ϕzψy 6= 0, and the transformation is equiv-
alent to the composition of the invertible transformation w = ϕ(x, u, ux) and an invertible trans-
formation of the form v = h(x,w,w(1) , w(2), . . . , w(n−1)). In particular, any non-point invertible
transformation of the form v = f(x, u, ux) is equivalent to the composition of the transformation
w = ϕ(x, u, ux) and a point transformation v = h(x,w).

Corollary 2. The equation (1.2) admits a non-point invertible transformation of the form (3.3)
into an equation of the form (3.1) if and only if both the conditions

FuFuxu1
− Fuu1

Fux = 0 , Fu + FuxT
−1(Fu1

) 6= 0

are satisfied.

Theorem 3. Let a non-point invertible transformation of the form (3.2) map Eq. (1.2) into
Eq. (3.1). Then Eq. (1.2) can be written in the form Dx(p(x, u, u1)) = q(x, u, u1), where
p(x, y, z) and q(x, y, z) satisfy the condition pyqz − pzqy 6= 0, and the transformation is the
composition of the transformation w = p(x, u, u1) and an invertible transformation of the form
v = h(x,w,w1, . . . , wm−1). In particular, any non-point invertible transformation of the form
v = f(x, u, u1) is the composition of the transformation w = p(x, u, u1) and a point transforma-
tion v = h(x,w).

Corollary 3. The equation (1.2) admits a non-point invertible transformation of the form (3.2)
into an equation of the form (3.1) if and only if Eq. (1.2) has the form

(u1)x = a(x, u, u1)ux + b(x, u, u1) ,

where a and b satisfy the condition ax + au1
b− abu1

− bu 6= 0.

For brevity, we omit the proofs of the above propositions because they are very similar to
the proofs for discrete equations.
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4 Examples: the transformations of Liouville equation analogues

A special class of integrable equations of the form

uxy = F (x, y, u, ux, uy) (4.1)

consists of equations for which there exist both a differential substitution of the form v =
X(x, y, ux, uxx, . . . ) and a substitution of the form w = Y (x, y, uy , uyy, . . . ) that map (4.1) into
the equations vy = 0 and wx = 0, respectively. Such equations are called Darboux integrable
or equations of the Liouville type. They not only are C-integrable (in accordance with the
term of [3]) but also possess infinitely many symmetries of arbitrary high order [18, 19]. The
complete classification of the Darboux integrable equations (4.1) has been performed in [19].
Equations with the analogous properties exist among equations of the form (1.1) and (1.2) too,
but the classification of such equations is completed for a special case of Eq. (1.2) only [5].
Therefore, deriving new examples of discrete and semi-discrete Darboux integrable equations
from already known equations may be useful (for example, to check the completeness of a future
classification).

4.1 Discrete equations

The first example is the discrete Liouville equation

u1,1 =
(u1,0 − 1)(u0,1 − 1)

u
(4.2)

from [9]. According to [2], this equation has the integrals

I[u] =

(

u2,0
u1,0 − 1

+ 1

)(

u− 1

u1,0
+ 1

)

, J [u] =

(

u0,2
u0,1 − 1

+ 1

)(

u− 1

u0,1
+ 1

)

, (4.3)

i.e. functions I[u], J [u] such that Tj(I[u]) = I[u], Ti(J [u]) = J [u]. In addition, Eq. (4.2) is
linearizable: the substitution

u =
z0,1z1,0

(z1,0 − z)(z0,1 − z)
(4.4)

maps solutions of the equation
z1,1 = z1,0 + z0,1 − z (4.5)

into solutions of (4.2).
It is easy to see that (4.2) can be written in the form Tj(ϕ(u, u1,0)) = ψ(u, u1,0) and the

scheme (1.14)–(1.17) is applicable to this equation:

v = ϕ =
u1,0
u− 1

, v0,1 = ψ =
u1,0 − 1

u
;

u = p =
v + 1

v − v0,1
, u1,0 = q = v

v0,1 + 1

v − v0,1
;

v1,0 + 1

v1,0 − v1,1
=
v0,1 + 1

v − v0,1
v .

Thus, we obtain the equation

v
v1,1 − v1,0
v0,1 − v

=
v1,0 + 1

v0,1 + 1
(4.6)
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that is related to the discrete Liouville equation via the invertible transformation v = u1,0/(u−1).
Substituting the expressions of u, u0,1, u1,0, . . . in terms of v, v0,1, v1,0, . . . into (4.3), we obtain
the integrals of Eq. (4.6):

I[v] = v1,0 +
v1,0 + 1

v
, J [v] =

(v0,3 − v0,1)(v0,2 − v)

(v0,3 − v0,2)(v0,1 − v)
.

The composition

v =
z0,2(z1,0 − z)

z(z2,0 − z1,0)

of the transformation v = u1,0/(u− 1) and (4.4) allows us to construct the solution

v =
(αi+2 + βj)(αi+1 − αi)

(αi + βj)(αj+2 − αi+1)

of Eq. (4.6) from the general solution z = αi + βj of (4.5), where αi and βj are arbitrary.
Equation (4.6) can be written in the form Tj(ϕ) = ψ but ϕ and ψ are functionally dependent

(ϕ = ψ = I[v]). According to Theorem 1, this fact implies that (4.6) has no non-point invertible
transformation of the form ṽ = f(v, v1,0, . . . , vn,0) and hence Eq. (4.2) admits, up to equivalence,
only the first order invertible transformations (v = f(u1,0/(u−1)) and w = g(u0,1/(u−1)) only).

Applying Corollary 1, we see that the other discrete version [8] of the Liouville equation

v1,1 =
v1,0v0,1 − 1

v

does not admit a non-point invertible transformation. This equation is mapped into (4.2) via
the non-invertible transformation u = v1,0v0,1 and has the integrals

I[v] =

(

v3,0
v1,0

+ 1

)(

v

v2,0
+ 1

)

, J [v] =

(

v0,3
v0,1

+ 1

)(

v

v0,2
+ 1

)

.

4.2 Differential-difference equations

Let us consider the following analogue of the Liouville equation:

(u1)x = u1

(

u1 +
ux
u

+ u
)

. (4.7)

This equation has the integrals

X[u] = 2
uxx
u

− 3
u2x
u2

− u2 , I[u] =

(

1 +
u1
u2

)

(

1 +
u1
u

)

,

i.e. functions X[u], I[u] such that T (X) = X, Dx(I) = 0. Like the discrete and continuous
Liouville equations, Eq. (4.7) is linearizable: the substitution

u =
(z1 − z)zx

z1z
(4.8)

maps solutions of the equation
(z1)x = zx (4.9)

into solutions of (4.7). The above information and some other details about Eq. (4.7) can be
found in [2].

Eq. (4.7) can be written as
(u1)x
u1

− u1 =
ux
u

+ u .
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Applying the scheme (1.10)–(1.13), we obtain

v =
1

2

(ux
u

− u
)

, v1 =
1

2

(ux
u

+ u
)

;

u = v1 − v , ux = v21 − v2 ;

(v1 − v)x = v21 − v2 . (4.10)

Thus, the invertible transformation v = (ux/u − u)/2 maps Eq. (4.7) into the sequence of the
coupled Riccati equations (4.10). Expressing X[u] and I[u] in terms of v, v1, vx, . . . , we obtain
the integrals

X[v] = vx − v2 , I[v] =
(v3 − v1)(v2 − v)

(v3 − v2)(v1 − v)
.

of Eq. (4.10). The composition

v =
zxx
2zx

− zx
z

of the invertible transformation and (4.8) generates the solution

v =
βxx
2βx

− βx
αi + β

(4.11)

of Eq. (4.10) from the general solution z = αi + β(x) of (4.9), where αi and β(x) are arbi-
trary. Eq. (4.10) was used in [2] as an example of an equation admitting the integrals and the
solution (4.11) was constructed in this article by another method (directly form the equation
X[v] = ξ(x)).

Moreover, Eq. (4.7) can be represented in the form (1.13) too. Applying the scheme (1.10)–
(1.13) in the reverse order, we get

w = p =
u1
u
, wx = q =

u21
u

+ u1 ;

u =
wx

(w + 1)w
, u1 =

wx

w + 1
;

(w1)x
(w1 + 1)w1

=
wx

w + 1

and see that the invertible transformation w = u1/u maps (4.7) into the equation

(w1)x = wxw1
w1 + 1

w + 1
. (4.12)

As above, we construct the integrals

X[w] = 2
wxxx

wx
− 3

w2
xx

w2
x

, I[w] =
(w1 + 1)(w + 1)

w1
.

of Eq. (4.12) by expressing X[u] and I[u] in terms of w, w1, wx, . . . , and obtain its solution

w =
(αi+2 − αi+1)(αi + β(x))

(αi+1 − αi)(αi+2 + β(x))

with arbitrary αi and β(x) by applying the composition

w =
(z2 − z1)z

(z1 − z)z2
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of the transformations w = u1/u and (4.8) to the general solution z = αi + β(x) of Eq. (4.9).
The semi-discrete Liouville equation (4.7) is a special case of the Darboux integrable equation

(u1)x = ux +
√

Ce2u1 +Be(u1+u) + Ce2u . (4.13)

that was introduced in [5]. Indeed, replacing u in (4.7) by exp(u), we obtain Eq. (4.13) with
C = 1, B = 2. Without loss of generality, we can assume that the constant C in Eq. (4.13) equals
1 or 0 because C can be scaled via the point transformation u = ũ + γ. Applying Corollary 2,
we see that Eq. (4.13) admits an invertible transformation of the form v = f(x, u, ux) only if
B = 2C. The invertible transformations

w = eu1−u , eu =
wx

w
√
Cw2 +Bw + C

relate (4.13) to the equation

(w1)x = w1wx

√

Cw2
1 +Bw1 + C

Cw2 +Bw + C
. (4.14)

The later equation has the integrals

X[w] = 2
wxxx

wx

− 3

(

wxx

wx

)2

+
3w2

x(B
2 − 4C2)

4(Cw2 +Bw + C)
,

I[w] =

∫ w1 ds

s
√
Cs2 +Bs+ C

−
∫ w ds√

Cs2 +Bs+ C

and can not be reduced to Eq. (4.12) via a point transformation because Eq. (4.14), in contrast
to Eq. (4.12), does not admit an invertible transformation of the form v = f(x,w,wx, wxx) if
B 6= 2C.
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