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Abstract—The capacity of a network in which a multiple
access channel (MAC) generates interference to a single-
user channel is studied. An achievable rate region based on
superposition coding and joint decoding is established for
the discrete case. If the interference is strong, the capacity
region is obtained for both the discrete memoryless channel
and Gaussian channel. A boundary point of the capacity
region is determined for a subclass of Gaussian channels
with mixed interference.

I. INTRODUCTION

In a cellular system, co-channel interference is often
ignored as the co-channel cells are strategically placed
so that interference is kept at a minimum. As such,
the downlink transmission is typically modeled as a
broadcast channel (BC) while uplink transmission is
modeled as a multiple access channel (MAC), both free
of interference. This effectively isolates each cell from all
the other co-channel cells and allows application of the
capacity regions for the Gaussian BC and general MAC,
which have been completely determined (see [1]).

However, as the need for spectrum reuse increases,
various frequency reuse schemes have been proposed in
recent years and it is no longer realistic to ignore co-
channel interference in both dowlink and uplink trans-
missions. Recently, the Gaussian broadcast-interference
channel model has been studied in [2] and [3] with
an emphasis on a one-sided interference model. The
capacity regions for very strong and slightly strong
interference, and some boundary points on the capacity
regions of moderate and weak interference were de-
termined. It was shown that the capacity is achieved
by fully decoding the interference when it is strong,
partially decoding the interference when it is moderate,
and treating the interference as noise when it is weak.

0This work was performed while Xiaohu Shang was at the
Department of Electrical Engineering, Princeton University. It was
supported in part by the National Science Foundation under Grant
CCF-0546591, CCF-0905320, and CNS-09-05398, and in part by
the Air Force Office of Scientific Research under Grant FA9550-09-
01-0643.

In this paper, we consider an uplink model with inter-
ference, namely the multiple access-interference channel.
As with [2] and [3], we focus on the MAC with one-
sided interference as is illustrated in Fig. 1. Mobile users
TX1 andTX2 belong to cell1 while TX3 belongs to
cell 2 and the transmissions ofTX1 and TX2 cause
interference atRX2, the basestation at cell2. The
interference fromTX3 to RX1, on the other hand, is
assumed to be negligible.

Cell 1 Cell 2

Rx1

Rx2

Tx1

Tx2

Tx3

Fig. 1. Two-cell uplink transmission.

Fig. 2 is an abstract model of the above network.
Transmitters1 and 2 and receiver1 form a MAC.
Transmitter3 and receiver2 form a single-user channel
and receiver2 receives interference from transmitters1
and2. This channel model is specified below.

Y1 = X1 +X2 + Z1, (1)

Y2 =
√
aX1 +

√
bX2 +X3 + Z2, (2)

whereXi andYj are the transmitted and received signals
of transmitteri and receiverj, respectively, fori = 1, 2, 3
andj = 1, 2. The channel coefficientsa andb are fixed
and known at both the transmitters and the receivers.
Without loss of generality, we assumea, b > 0, i.e., they
are strictly positive. For eachj, Zj is Gaussian noise
with zero mean and unit variance and we assume all
the noise terms are independent of each other and over
time. For transmitteri, the user/channel input sequence
Xi1,Xi2, · · · ,Xin is subject to a block power constraint
∑n

k=1 Pik ≤ nPi. We denote the rates for messages
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Fig. 2. The Multiple-Access-Z-interference Channel model

W1, W2 andW3 by R1, R2 andR3, respectively. The
channel defined here is referred to as a Multiple-Access-
Z-Interference channel (MAZIC). Our goal is to obtain
capacity results for the strong and mixed interference
cases for the MAZIC.

The rest of the paper is organized as follows. We give
the problem formulation in Section II. Section III gives
an achievable rate region for the discrete memoryless
MAZIC and the result is extended to the Gaussian
case. Capacity results for strong interference and mixed
interference cases are derived in Section IV and V
respectively. Section VI concludes the paper.

II. PRELIMINARIES

A discrete memoryless MAZIC is defined by
(X1,X2,X3, p,Y1,Y2), whereX1,X2 andX3 are finite
input alphabet sets;Y1 andY2 are finite output alpha-
bet sets; andp(y1y2|x1x2x3) is the channel transition
probability. As the receivers do not cooperate, the ca-
pacity depends only on the marginal channel transition
probabilities thus we can assume

p(y1y2|x1x2x3) = p(y1|x1x2)p(y2|x1x2x3). (3)

We consider only memoryless channels, so that the
channel transition probability satisfies

p(yn1 y
n
2 |xn1xn2xn3 ) =

n
∏

i=1

p(y1iy2i|x1ix2ix3i), (4)

where xni = [xi1, xi2, · · · , xin] and ynj =
[yj1, yj2, · · · , yjn], for i = 1, 2, and j = 1, 2, 3.
The messageWi for transmitter i is generated from
an integer set{1, 2, · · · , 2nRi}, i = 1, 2, 3. A code

(2nR1 , 2nR2 , 2nR3 , n) consists of3 encoders:

f1 : {1, 2, · · · , 2nR1} → X n
1 ,

f2 : {1, 2, · · · , 2nR2} → X n
2 ,

f3 : {1, 2, · · · , 2nR3} → X n
3 ,

and2 decoders:

g1 : Yn
1 → {1, 2, · · · , 2nR1} × {1, 2, · · · , 2nR2},

g2 : Yn
2 → {1, 2, · · · , 2nR3}.

The error probability is defined as

Pe = Pr{g1(Y n
1 ) 6= (w1, w2), or g2(Y

n
2 ) 6= w3

|W1W2W3 = w1w2w3}.
AssumingW1, W2 andW3 are all uniformly distributed,
a rate triple(R1, R2, R3) is achievable if there exist a se-
quence of codes(2nR1 , 2nR2 , 2nR3 , n) for n sufficiently
large such thatPe → 0 whenn → ∞. Throughout this
paper, we make the assumption that all the transmitters
implement deterministic encoders instead of stochastic
encoders as one can easily prove, following the same
approach as that of [4], that stochastic encoders do not
increase the capacity for a MAZIC. Before proceeding,
we introduce some notation which will be used through-
out the paper.

• pX(x) or p(x) is the probability mass function of a
discrete random variableX, or a probability density
function of a continuous random variableX.

• A
(n)
ǫ (X) denotes the set of length-n ǫ-typical se-

quences ofX.
• I(·; ·), H(·) andh(·) are respectively the mutual in-

formation, discrete entropy and differential entropy.
• φ denotes the empty set.
• x̄ = 1− x.
• x ∼ N (0,S) means thatx has a Gaussian distribu-

tion with zero mean and covariance matrixS.

III. A CHIEVABLE REGION FOR THEGENERAL

MAZIC

We use superposition coding and joint decoding to de-
rive an achievable rate region. Consider the independent
messagesW1 andW2 generated by transmitters1 and2
respectively. We split them into

W1 = [W1c,W1p],

W2 = [W2c,W2p],

whereW1c andW2c denote the common messages that
are to be decoded at receiver2; and whereW1p andW2p

represent the private messages that are to be decoded at
receiver1.



We first introduce the auxiliary random variablesQ,
U1, andU2, whereQ is a time-sharing random variable,
U1 andU2 contain the informationW1c andW2c respec-
tively. The input distribution is

p(qu1u2x1x2x3)
= p(q)p(u1|q)p(x1|u1, q)p(u2|q)p(x2|u2, q)p(x3|q). (5)

We can obtain the following achievable rate region.

Theorem 1: For a discrete memoryless MAZIC, an
achievable rate region is given by the set of all non-
negative rate triples(R1, R2, R3) that satisfy

R1 ≤ I(X1;Y1|X2Q), (6)

R2 ≤ I(X2;Y1|X1Q), (7)

R3 ≤ I(X3;Y2|U1U2Q), (8)

R1 +R2 ≤ I(X1X2;Y1|Q), (9)

R1 +R3 ≤ I(X1;Y1|U1X2Q) + I(U1X3;Y2|U2Q),

(10)

R2 +R3 ≤ I(X2;Y1|U2X1Q) + I(U2X3;Y2|U1Q),

(11)

R1 +R2 +R3 ≤ I(X1X2;Y1|U1U2Q)

+I(U1U2X3;Y2|Q), (12)

R1 +R2 +R3 ≤ I(X1X2;Y1|U1Q) + I(U1X3;Y2|U2Q),

(13)

R1 +R2 +R3 ≤ I(X1X2;Y1|U2Q) + I(U2X3;Y2|U1Q),

(14)

R1 + 2R2 +R3 ≤ I(X2;Y1|U2X1Q) + I(X1X2;Y1|U1Q)

+I(U1U2X3;Y2|Q), (15)

2R1 +R2 +R3 ≤ I(X1;Y1|U1X2Q) + I(X1X2;Y1|U2Q)

+I(U1U2X3;Y2|Q), (16)

where the input distribution factors as (5). Furthermore,
the region remains the same if we impose the constraints
‖Q‖ ≤ 12, ‖U1‖ ≤ ‖X1‖+ 5, ‖U2‖ ≤ ‖X2‖+ 5.

The proof of Theorem 1 is omitted due to space limita-
tions. The MAC and the Z-interference channel (ZIC) are
two special cases of a MAZIC. On settingX3U1U2 = φ,
we obtain the capacity region for the MAC:

R1 ≤ I(X1;Y1|X2Q),

R2 ≤ I(X2;Y1|X1Q),

R1 +R2 ≤ I(X1X2;Y1|Q).

Alternatively, on settingU2X2 = φ, we obtain Han and
Kobayashi’s achievable rate region for the ZIC [5] [6]

[7]:

R1 ≤ I(X1;Y1|Q),

R3 ≤ I(X3;Y2|U1Q),

R1 +R3 ≤ I(X1;Y1|U1Q) + I(U1X3;Y2|Q).

Theorem 1 allows us to obtain a computable achievable
region for Gaussian MAZICs.

Corollary 1: For any nonnegative pair[α, β] ∈ [0, 1],
the nonnegative rate triples(R1, R2, R3) satisfying the
conditions (17)-(27)(see the top of the next page) are
achievable for a Gaussian MAZIC.

Proof: Corollary 1 follows directly from Theorem 1
by choosing‖Q‖ = 1, X1 ∼ N (0, P1), X2 ∼ N (0, P2),
and X1 = U1 + V1, X2 = U2 + V2, whereU1, U2,
V1 andV2 are independent random variables withU1 ∼
N (0, αP1), U2 ∼ N (0, βP2), V1 ∼ N (0, ᾱP1) andV2 ∼
N (0, β̄P2).
In the following, we discuss capacity results for different
interference regimes for MAZICs.

IV. MAZIC S WITH STRONG INTERFERENCE

A. Discrete Case

Similar to [8], the discrete MAZIC with strong in-
terference is defined as a discrete memoryless MAZIC
satisfying

I(X1;Y1|X2) ≤ I(X1;Y2|X2X3), (28)

I(X2;Y1|X1) ≤ I(X2;Y2|X1X3), (29)

I(X1X2;Y1) ≤ I(X1X2;Y2|X3), (30)

for all product distributions onX1 × X2 × X3.
The above single letter conditions imply multi-letter

conditions as stated below.
Lemma 1: For a discrete memoryless interference

channel, if (28)-(30) are satisfied for all product proba-
bility distributions onX1 × X2 × X3, then

I(X1;Y1|X2) ≤ I(X1;Y2|X2X3), (31)

I(X2;Y1|X1) ≤ I(X2;Y2|X1X3), (32)

I(X1X2;Y1) ≤ I(X1X2;Y2|X3). (33)

Proof: From the channel model,

I(X1;Y1|X2X3) = I(X1;Y1|X2),

I(X2;Y1|X1X3) = I(X2;Y1|X1),

I(X1X2;Y1|X3) = I(X1X2;Y1).

The rest of the proof can be established using similar
techniques as those in [8].



R1 ≤ 1

2
log(1 + P1), (17)

R2 ≤ 1

2
log(1 + P2), (18)

R3 ≤ 1

2
log

(

1 +
P3

1 + aαP1 + bβP2

)

, (19)

R1 +R2 ≤ 1

2
log (1 + P1 + P2) , (20)

R1 +R3 ≤ 1

2
log (1 + αP1) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1 + bβP2

)

, (21)

R2 +R3 ≤ 1

2
log (1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (22)

R1 +R2 +R3 ≤ 1

2
log (1 + αP1 + βP2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (23)

R1 +R2 +R3 ≤ 1

2
log (1 + αP1 + P2) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1 + bβP2

)

, (24)

R1 +R2 +R3 ≤ 1

2
log (1 + P1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (25)

R1 + 2R2 +R3 ≤ 1

2
log (1 + βP2) +

1

2
log (1 + αP1 + P2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (26)

2R1 +R2 +R3 ≤ 1

2
log (1 + αP1) +

1

2
log (1 + P1 + βP2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

. (27)

The above lemma leads to the following theorem.

Theorem 2: For a discrete memoryless MAZIC with
conditions (28)-(30) for all product probability distribu-
tions onX1 × X2 × X3, the capacity region is given by
the set of all the nonnegative rate triples(R1, R2, R3)
that satisfy

R1 ≤ I(X1;Y1|X2Q), (34)

R2 ≤ I(X2;Y1|X1Q), (35)

R3 ≤ I(X3;Y2|X1X2Q), (36)

R1 +R2 ≤ I(X1X2;Y1|Q), (37)

R2 +R3 ≤ I(X2X3;Y2|X1Q), (38)

R1 +R3 ≤ I(X1X3;Y2|X2Q), (39)

R1 +R2 +R3 ≤ I(X1X2X3;Y2|Q), (40)

where the input distribution factors as

p(qx1x2x3) = p(q)p(x1|q)p(x2|q)p(x3|q). (41)

Furthermore, the region remains invariant if we impose
the constraints‖Q‖ ≤ 8.

B. Gaussian Case

For a one-sided Gaussian interference channel, the
strong interference defined in (28)-(30) impliesa ≥ 1
and b ≥ 1. While Theorem 1 still applies, a better
rate splitting strategy can be devised for this case. If
(R1, R2, R3) is an achievable rate triple, then receiver2
can reliably recoverX1 andX2 at these rates. Therefore,
receiver2 can decode whatever receiver1 can decode.
Thus, if we choose the private message sets for user1
and 2 to be empty, i.e.,α = β = 0, we can obtain
the following achievable rate region, which is indeed
the capacity region for Gaussian MAZIC with strong
interference.

Corollary 2: For a Gaussian MAZIC with conditions
a, b ≥ 1, the capacity region is given by the set of all
the nonnegative rate triples(R1, R2, R3) that satisfy

R1 ≤ 1

2
log (1 + P1) , (42)

R2 ≤ 1

2
log (1 + P2) , (43)

R3 ≤ 1

2
log (1 + P3) , (44)

R1 +R2 ≤ 1

2
log (1 + P1 + P2) , (45)



R2 +R3 ≤ 1

2
log (1 + bP2 + P3) , (46)

R1 +R3 ≤ 1

2
log (1 + aP1 + P3) , (47)

R1 +R2 +R3 ≤ 1

2
log (1 + aP1 + bP2 + P3) .(48)

One can immediately see that when the interference is
strong, the capacity region is achieved by fully decoding
the interference.

V. GAUSSIAN MAZIC S WITH MIXED INTERFERENCE

The mixed interference case corresponds to the con-
dition a ≤ 1, b ≥ 1 or a ≥ 1, b ≤ 1. In the following,
we consider a subclass of Gaussian MAZICs with mixed
interference, and we determine some boundary points of
the capacity region.

Lemma 2: For a Gaussian MAZIC with conditions
a ≤ 1, b ≥ 1 + aP1 + P3, an achievable rate re-
gion is given by the set of all nonnegative rate triples
(R1, R2, R3) that satisfy

R1 ≤
1

2
log (1 + P1) , (49)

R2 ≤
1

2
log (1 + P2) , (50)

R3 ≤
1

2
log

(

1 +
P3

1 + aαP1

)

, (51)

R1 +R2 ≤
1

2
log (1 + P1 + P2) , (52)

R1 +R3 ≤
1

2
log (1 + αP1)

+
1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1

)

, (53)

R1 +R2 +R3 ≤
1

2
log (1 + αP1 + P2) (54)

+
1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1

)

, (55)

for α ∈ [0, 1].

Proof: If b ≥ 1+aP1+P3, we know that receiver2
can decode user 2’s message by treating its own signal as
well as the interference from user1 as noise. Therefore,
there is no need to do rate splitting for user2, i.e,β = 0.
On applying Corollary 1 and remove all the redundant
inequalities, we get Lemma 2.

Remark: 1
2 log (1 + αP1 + P2)+

1
2 log

(

1 + aᾱP1+P3

1+aαP1

)

is an increasing function ofα if a(1+P2) ≤ 1. Thus, the
maximal achievable sum rate for the above achievable
rate region is attained whenα = 1, which equalsRs =

1
2 log(1 + P1 + P2) +

1
2 log

(

1 + P3

1+aP1

)

. However, it is
easy to see that, if one simply uses time-sharing, the
maximum achievable sum rate will be larger thanRs.

Nevertheless, we can still determine a boundary point
of the capacity region via outer bounding the capacity
region.

Theorem 3: For a Gaussian MAZIC with conditions
a ≤ 1, b ≥ 1+ aP1 +P3, an outer bound to the capacity
region is given by the set of all nonnegative rate triples
(R1, R2, R3) that satisfy

R1 ≤ 1

2
log(1 + P1), (56)

R2 ≤ 1

2
log(1 + P2), (57)

R3 ≤ 1

2
log(1 + P3), (58)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (59)

R1 +R3 ≤ 1

2
log(1 + P1) +

1

2
log(1 +

P3

1 + aP1

). (60)

Proof: (56), (57) and (59) form an outer bound to
the capacity region of a MAC, and (58) is a natural bound
on R3. Therefore, we only need to prove (60). We have

n(R1 +R3)

= H(W1) +H(W3)
(a)

≤ I(Xn
1 ;Y

n
1 ) + I(Xn

3 ;Y
n
2 ) + nǫ

(b)

≤ I(Xn
1 ;Y

n
1 |Xn

2 ) + I(Xn
3 ;Y

n
2 |Xn

2 ) + nǫ

=I(Xn
1 ;X

n
1 + Zn

1 ) + I(Xn
3 ;

√
aXn

1 +Xn
3 + Zn

2 ) + nǫ,

where(a) is from Fano’s Inequality; and(b) is because
of the mutual independence amongXn

1 , Xn
2 and Xn

3 .
From the last line, it is easy to see that the sum of
the first two terms is bounded by the sum rate capacity
of a two-user one-sided interference channel with weak
interference (a ≤ 1), where the outputs of the channel
take the form:

Ỹ1 = X1 + Z1,

Ỹ2 =
√
aX1 +X3 + Z2.

Thus we can obtain (60), where the right hand side is
the sum rate capacity of the above interference channel.

From Lemma 2 and Theorem 3, we can directly get a
boundary point on the capacity region.

Corollary 3: For a Gaussian MAZIC witha ≤ 1 and
b ≥ 1 + aP1 + P3, the rate triple(R∗

1, R
∗

2, R
∗

3) is on the



boundary of the capacity region, where

R∗

1 =
1

2
log(1 + P1), (61)

R∗

2 =
1

2
log

(

1 +
P2

1 + P1

)

, (62)

R∗

3 =
1

2
log

(

1 +
P3

1 + aP1

)

. (63)

It is easy to see that this boundary point is achieved by
fully decoding the interference from transmitter 2 and
treating the interference from transmitter 1 as noise.

VI. CONCLUSION

In this paper we have studied the capacity of an uplink
network with co-channel interference. By modeling such
networks using a multiple access interference channel
with one-sided interference, we have obtained an inner
bound on the capacity region for both the discrete
memoryless case and the Gaussian case. The capacity
region for such channel models with strong interference
has been established and we have also determined a
boundary point of the capacity region for a subclass with
mixed interference. Furthermore, the result can be easily
extended to the multi-user case.

APPENDIX

A. Proof of Theorem 2

The achievability part follows directly from Theorem
1 by settingU1 = U2 = φ. For the converse, (34), (35)
and (37) form an outer bound on the capacity region
of a MAC. Moreover, (36) is a natural bound onR3.
Therefore, we need to prove only (38)-(40). First,

n(R2 +R3)

= H(W2) +H(W3)
(a)

≤ I(Xn
2 ;Y

n
1 ) + I(Xn

3 ;Y
n
2 ) + nǫ

(b)

≤ I(Xn
2 ;Y

n
1 |Xn

1 ) + I(Xn
3 ;Y

n
2 |Xn

1 ) + nǫ

(c)

≤ I(Xn
2 ;Y

n
2 |Xn

1X
n
3 ) + I(Xn

3 ;Y
n
2 |Xn

1 )

+nǫ

= I(Xn
2 X

n
3 ;Y

n
2 |Xn

1 ) + nǫ

= H(Y n
2 |Xn

1 )−H(Y n
2 |Xn

1 X
n
2X

n
3 ) + nǫ

=

n
∑

i=1

{

H(Y2i|Y i−1
2 Xn

1 )−H(Y2i|Y i−1
2 Xn

1X
n
2 X

n
3 )
}

+nǫ
(d)

≤
n
∑

i=1

{H(Y2i|X1i)−H(Y2i|X1iX2iX3i)}+ nǫ

= I(X2iX3i;Y2i|X1i) + nǫ,

where (a) is from Fano’s inequality;(b) is because of
the mutual independence amongXn

1 , Xn
2 andXn

3 ; (c)
is due to (32); and(d) uses the fact that conditioning
reduces entropy and the memoryless property. Similarly,
we can prove the bound onR1 +R3. We further have

n(R1 +R2 +R3)

= H(W1,W2) +H(W3)
(a)

≤ I(Xn
1X

n
2 ;Y

n
1 ) + I(Xn

3 ;Y
n
2 ) + nǫ

(b)

≤ I(Xn
1X

n
2 ;Y

n
1 ) + I(Xn

3 ;Y
n
2 |Xn

1 X
n
2 ) + nǫ

(c)

≤ I(Xn
1X

n
2 ;Y

n
2 |Xn

3 ) + I(Xn
3 ;Y

n
2 |Xn

1X
n
2 )

+nǫ

= I(Xn
1X

n
2 X

n
3 ;Y

n
2 ) + nǫ

= H(Y n
2 )−H(Y n

2 |Xn
1 X

n
2 X

n
3 ) + nǫ

=

n
∑

i=1

{

H(Y2i|Y i−1
2 )−H(Y2i|Y i−1

2 Xn
1X

n
2X

n
3 )
}

+nǫ
(d)

≤
n
∑

i=1

{H(Y2i −H(Y2i|X1iX2iX3i))}+ nǫ

= I(X1iX2iX3i;Y2i) + nǫ.

By introducing a time-sharing random variableQ as in
the proof of the converse of the capacity region of a
MAC [1, Pg. 402], we obtain Theorem 2. The cardinality
of Q can be verified using Caratheodory theorem.

REFERENCES

[1] T. M. Cover and J. A. Thomas,Elements of Information Theory,
Wiley, New York, 1991.

[2] X. Shang and H. V. Poor, “On the Weighted Sum-Rate
Capacity of Broadcast Channels That Generate Interference,”
in Proc. IEEE International Symposium on Information Theory
(ISIT’10), Austin, TX, Jul. 2010.

[3] X. Shang and H. V. Poor, “On the capacity of type I broadcast-
z-interference channels,”submitted to IEEE Trans. Inf. Theory,
Apr. 2010.

[4] F. Willems and E. van der Meulen, “The discrete memorless
multiple access channel with cribbing encoders,”IEEE Trans.
Inf. Theory, vol. 31, pp. 313–327, May 1985.

[5] T. S. Han and K. Kobayashi, “A new achievable rate region
for the interference channel,”IEEE Trans. Inf. Theory, vol. 27,
pp. 49–60, Jan. 1981.

[6] H. K. Garg H. F. Chong, M. Motani and H. El Gamal, “On
the Han-Kobayashi region for the interference channel,”IEEE
Trans. Inf. Theory, vol. 53, pp. 3188–3195, Jul. 2008.

[7] G. Kramer, “Review of rate regions for interference channels,”
in Proc. International Zurich Seminar, Zurich, Switzerland, Feb.
2006, pp. 162–165.

[8] M. H. M. Costa and A. El Gamal, “The capacity region
of the discrete memoryless interference channel with strong
interference,” IEEE Trans. Inf. Theory, vol. 33, pp. 710–711,
Sep. 1987.


	I Introduction
	II Preliminaries
	III Achievable Region for the General MAZIC
	IV MAZICs with Strong Interference
	IV-A Discrete Case
	IV-B Gaussian Case

	V Gaussian MAZICs with mixed interference
	VI Conclusion
	Appendix
	A Proof of Theorem ??

	References

