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Abstract—The capacity of a network in which a multiple In this paper, we consider an uplink model with inter-
access channel (MAC) generates interference to a single-ference, namely the multiple access-interference channel
user channel is studied. An achievable rate region based onAs with [2] and [3], we focus on the MAC with one-
superposition coding and joint decoding is established for gjqeq interference as is illustrated in Fig. 1. Mobile users

the discrete case. If the interference is strong, the capayi TX, andTX, belong to celll while TX; belongs to
region is obtained for both the discrete memoryless channel cell 2 and the transmissions GfX; and T'X, cause

and Gaussian channel. A boundary point of the capacity | .
region is determined for a subclass of Gaussian channelsinterference atikX,, the basestation at cell. The

with mixed interference. interference froml"'X3; to RX;, on the other hand, is
assumed to be negligible.

. INTRODUCTION

ignored as the co-channel cells are strategically placed

In a cellular system, co-channel interference is often !
so that interference is kept at a minimum. As such, '

the downlink transmission is typically modeled as a
broadcast channel (BC) while uplink transmission is
modeled as a multiple access channel (MAC), both free
of interference. This effectively isolates each cell frdin a
the other co-channel cells and allows application of the
capacity regions for the Gaussian BC and general MAC,
which have been completely determined (see [1]). Fig. 1. Two-cell uplink transmission.
However, as the need for spectrum reuse increases, . ]
various frequency reuse schemes have been proposed fid- [2 is an abstract model of the above network.

recent years and it is no longer realistic to ignore cgransmittersl and 2 and receiverl form a MAC.

channel interference in both dowlink and uplink transl"@nSmitter3 and receivee form a single-user channel

missions. Recently, the Gaussian broadcast-interfereR0dl receiver receives interference from transmittelrs
channel model has been studied il [2] afd [3] witAnd2- This channel model is specified below.
an err_ltphaS|s_ on ? one—S|detd |nterfe(rjenc|_ehrtrllod(-il. The Yi = X1+ Xo+ 7, (1)
capacity regions for very strong and sli stron _
intgrfergnce? and some boundar)? points or? thz capac%ty Y2 = VaXi+VbXs+Xs+ 2 2)
regions of moderate and weak interference were dehereX; andY; are the transmitted and received signals
termined. It was shown that the capacity is achieved transmitteri and receiveyj, respectively, foi = 1,2, 3
by fully decoding the interference when it is strongandj = 1,2. The channel coefficients andb are fixed
partially decoding the interference when it is moderatand known at both the transmitters and the receivers.
and treating the interference as noise when it is weaR\ithout loss of generality, we assumeb > 0, i.e., they
are strictly positive. For each, Z; is Gaussian noise

°This work was performed while Xiaohu Shang was at thwith zero mean and unit variance and we assume all
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1 (2nfa onkz onfs n) consists of3 encoders:

Xl(Wl) Yl(Wl,WQ) R
fl {1727"'72n 1}_>X1nv
f2 {172"”727LR2}_>X21’L’
f3 {1727"'72nR3}_>X{?7
a
X2(W2) ; and?2 decoders:
g1 y?%{1727”'a2nR]}X{1727"'72HR2}a
g2 ygb_>{1’2”2n33}
X3(Ws3) : Yo (W3) The error probability is defined as

Pe = Pr{g1(Y]") # (w1, w2), or ga(Y3") # w3
|[WiWoW3 = wiwows}.

Assumingy, Wy andWs are all uniformly distributed,

W1, Wy and W3 by R;, R, and Rs, respectively. The . : . : )

L W2 anc s by fi, fi2 8, fespecilvely. a rate triple( Ry, Ry, R3) is achievable if there exist a se-
channel defined here is referred to as a Multlple-Accessdence of codenfts, 2nf2 gnka ) for n sufficient
Z-Interference channel (MAZIC). Our goal is to obtair} ! ’ 7 " y

. . . large such that’. — 0 whenn — oo. Throughout this
capacity results for the strong and mixed interference . )
cases for the MAZIC paper, we make the assumption that all the transmitters

.implement deterministic encoders instead of stochastic

The rest of the Paper1s organ_lzed as folk_)ws. We_ 9%hcoders as one can easily prove, following the same
the problem formulation in Sectidn Il Sectignl Il glVesapproach as that of [4], that stochastic encoders do not

an achievable rate region for the discrete memoryl.eiﬁ%rease the capacity for a MAZIC. Before proceeding,

MAZIC and the result is extended to the Gaussww introduce some notation which will be used through-

case. Capacity results for strong interference and mix8 t the paper

Irgf;;egt?\?;; 22?:325? cc(l)ircl\lljc(ijesmthieggszgr. v and V. px(x) or p(z) is the probability mass function of a
discrete random variabl&, or a probability density
function of a continuous random variahlé.
AE") (X) denotes the set of length-e-typical se-
quences ofX.
e I(+;-), H(-) andh(-) are respectively the mutual in-
formation, discrete entropy and differential entropy.

Fig. 2. The Multiple-Access-Z-interference Channel model

[I. PRELIMINARIES .

A discrete memoryless MAZIC is defined by
(X1, Xa, X, p, V1, V), Where X1, X, and A5 are finite

input alphabet sets)y; and ), are finite output alpha-
bet sets; and(y1y2|r1z2x3) IS the channel transition .
probability. As the receivers do not cooperate, the ca-,
pacity depends only on the marginal channel transition

« ¢ denotes the empty set.

r=1-—x.
x ~ N (0,S) means thak has a Gaussian distribu-
tion with zero mean and covariance matfix

probabilities thus we can assume
[Il. ACHIEVABLE REGION FOR THEGENERAL

MAZIC

We use superposition coding and joint decoding to de-
We consider only memoryless channels, so that thige an achievable rate region. Consider the independent
channel transition probability satisfies message$l; and W, generated by transmittetsand 2
respectively. We split them into

p(y1y2|961$2$3) = p(yl|$1$2)p(yz|$1$2$3)- 3

n

p(@/?l/?@%%?):Hp(yuy2i|$1i$2i$3i)> 4) Wi = [Wie, W),
=1 Wy = [Wae, Wap),
where =z = [Ti1, T2, -+, 2] and yy = whereW;. and W5, denote the common messages that
Wi, Y2, -, Yjn), for i = 1,2, and j = 1,2,3. areto be decoded at receigrand wherel;,, andWy,

The messagdV; for transmitter: is generated from represent the private messages that are to be decoded at
an integer set{1,2,---,2"%} i = 1,2,3. A code receiverl.



We first introduce the auxiliary random variabl€s

[71:

Uy, andU,, where( is a time-sharing random variable,

: . : < :
U; andU; contain the informatioiV;. and W, respec- R < I(Xyn|Q),
tively. The input distribution is Ry < I(X5:Y2|UhQ),
Ri+ Ry < I(X;1|UhQ) + I(U1 X3;Y2|Q).

p(quiusxiz2x3)

= p()p(un|q)p(zs w1, )p(uslq)p(@s|uz, ¢)p(z (S57heorentl allows us to obtain a computable achievable

region for Gaussian MAZICs.

3/q)-

We can obtain the following achievable rate region. Corollary 1: For any nonnegative pajty, 8] € [0, 1],

Theorem 1: For a discrete memoryless MAZIC, arf€ nonnegative rate triple§;, Ry, R3) satisfying the
achievable rate region is given by the set of all nogonditions [IV)i(27)(see the top of the next page) are
negative rate triple$R;, R, R3) that satisfy achievable for a Gaussian MAZIC.

Ry < I(X1:Y1]X2Q), (6) Proof: Corollary[1 follows directly from Theorefn 1
Ry < I(X2:Y11X:Q), @ by choosing| Q|| =1, X1 ~ N (0, P1), Xo ~ N (0, P,),
Ry < [(X3; V| U1 U5Q), (®) and X; = Uy .—|- Vi, Xo = Uy 4+ Vs, V\(here Ui, Us,
V1 andV, are independent random variables wifh ~
By + Rp < I(X1 X2 11]Q), ©)  A(0,aP)), Us ~ N(0, BPy), Vi ~ N(0,aP;) and Vs ~
Ry + R3 < I(X1; 1|01 X0Q) + I(U1 X3 Y2|U2Q),  N(0, BR). [
(10) In the following, we discuss capacity results for different
Ry + Ry < I(X2; 1 |U2X1Q) + I(Us X5 Y|U1Q),  interference regimes for MAZICs.
(11) IV. MAZIC S WITH STRONG INTERFERENCE
R+ Ry + Rs < (X1 Xo; Y1{U1U2Q) A. Discrete Case
+I(U1U2X3; Y2|Q), (12)

R+ Ry + R3

< I(X1 X9 Y1 |U1Q) + 1(Ur X3; Y2 |U2Q),

Similar to [8], the discrete MAZIC with strong in-
terference is defined as a discrete memoryless MAZIC

(13) satisfying
Ry + Ry + R3 < I(X1X9; Y1|U2Q) + (U2 X3; Y2 |U1Q), I(X1: V1| X2) < I(X1; Ya| X2 X3) (28)
14 B ’ ’
(a4 I(X5:Yi|X1) < T(Xo: V3| X1 X), (29)
R1 + 2R2 + R3 S I(XQ,Y1|U2X1Q) + I(XlXQ,Y1|U1Q)
I(X1X9; Y1) < I(X:1 X2; Ya| X3), (30)

2Ry + R2 + R3

where the input distribution factors dd (5). Furthermore

+1(U1U2X3;Y2|Q), (15)
< I( X1 YU X2Q) + 1(X1 X2 Y1{U2Q)
+I(U1U2X3;Y2|Q), (16)

for all product distributions ot} x X5 x AXj.

The above single letter conditions imply multi-letter
conditions as stated below.
Lemma 1. For a discrete memoryless interference

the region remains the same if we impose the constraiffi@nnel. if (2B)(3D) are satisfied for all product proba-

bility distributions onX’; x X5 x X3, then

1QIl < 12, U]l < I X1l + 5, |U2]] < [[ Xzl + 5.

I(X1;Y1|X2) < I(Xy: Ya|X2X3), 31
The proof of Theorerhll is omitted due to space limita- [(XI.YHXZ) < I(XI'Y2|X2X3) (32)
tions. The MAC and the Z-interference channel (ZIC) are (X2;Y1[Xq) < 1(X2; Y2[X1X3), (32)
two special cases of a MAZIC. On settidgy U, Us = ¢, I(X1X2; Y1) < I(X1X2; Y2[X3). (33)

we obtain the capacity region for the MAC:

Proof: From the channel model,

< .
< .
R2 = I(XQaY1|X1Q)7 I(X27Y1’X1X3) — I(Xz;YﬂXl),
< ; .
Rl +R2 >~ I(X1X27Y1|Q) I(X1X27Y1|X3) — I(X1X27Y1)

Alternatively, on setting/> X» = ¢, we obtain Han and The rest of the proof can be established using similar
Kobayashi's achievable rate region for the ZIC [5] [6lechniques as those inl[8]. ]



Ry < %log(l + Py), (17)

Ry < glog(l+P), (18)

s < %bg <1 T aa]];f—i- b5P2> ’ (19)

Ri+ R < %log(l—i-Pl—FPg), (20)

Ri+ Ry < %log (1+aP)+ %log (1 + 1 fjapz:lqi?@&) , (21)
Ro+Ry < %log(l L8P + %log (1 1 fff;li%&) , 22)
Ri+Ry+ Ry < %log(l 4 aP, + 8P + %log (1 + “f‘fla;r;ffb;s’) , 23)
Ri+Ro+ Ry < %log (1+aP + P) + %log <1 + 1 f;‘;ﬁig’ﬁ&) : (24)
Ri+Ro+Ry < %log(l + P+ BPy) + %log <1 + +bff;1+f§’ﬁpz> , (25)
Ri+2Ry+ Ry < %log (14 BPy) + %log (14 aP + Py) + %log <1 + “f‘f;;ﬁff;g) . (26)
2Ri+ Ra+Rs < % log (1+ aPy)+ % log (1+ P + BP) + % log <1 + afflajy_ﬁf-?b;}]’?) .27

The above lemma leads to the following theorem.  B. Gaussian Case

Th > E di | MAZIC with For a one-sided Gaussian interference channel, the
eorem 2: For a discrete memoryless MAZIC wit strong interference defined if_(28)-{30) implies> 1
conditions [(Z8){(30) for all product probability distribu |4, > 1. While Theorem(lL still applies, a better
t|r?ns on)? TlXﬁ x &3, the c_apacny rggllon IS given byrate splitting strategy can be devised for this case. If
the set of all the nonnegative rate tripleBs, Rz, 13) (R1, Ro, R3) is an achievable rate triple, then receiger

that satisfy can reliably recoveX; and X, at these rates. Therefore,
receiver2 can decode whatever receivercan decode.
R < I(X1;7[X2Q), (34) Thus, if we choose the private message sets for Liser
Ry < I(X9:Y71X:1Q), (35) and2 to be empty, i.e.c« = 5 = 0, we can obtain
Ry < I(Xs3:Y3|X1X2Q), (36) the following achievable rate region, which is indeed
_ the capacity region for Gaussian MAZIC with stron
Ri+Ry < I(X1Xpni|Q),  (@7) [ FoPacty 188 J
interference.
Ry + Ry < I(X2X3;Y2|X1Q), (38)
Ri+ Ry < I(X1X3YX0Q), (39) Corollary 2: For a Gaussian MAZIC with conditions
P a,b > 1, the capacity region is given by the set of all
< : . : )
RBit Ryt By < I(NXX510(Q),  (40) o nonnegative rate triplgsk;, Ry, R3) that satisfy
where the input distribution factors as R, < %log(l +P), (42)
1
plazizows) = p(q)p(z1lg)p(z2la)p(zslg).  (41) Ry < Slog(1+P), (43)
1
Furthermore, the region remains invariant if we impose Ry < glog(l1+Fs), (44)
the constraintg| Q|| < 8. 1
Ri+Ry < —log(1+P1+P2), (45)

[\



Ry+ R3 < %log (14 bP; + P3), (46) $log(l+ P+ )+ 1log (1 + %;’R). However, it is
1 easy to see that, if one simply uses time-sharing, the
Ri+Rs < ;log (1+aP; + P3), (47) maximum achievable sum rate will be larger thA&n
1 Nevertheless, we can still determine a boundary point
Ry+ Ry + Rs < S log (1+aP +bP,+ P3).(48)  of the capacity region via outer bounding the capacity
region.
One can |mmed|§1tely see f[hat W_hen the mterferenc_e Srheorem 3: For a Gaussian MAZIC with conditions
strong, the capacity region is achieved by fully decodlncg;é 1,b>1+aP, + P,

_ an outer bound to the capacity
the interference.

region is given by the set of all nonnegative rate triples

V. GAUSSIAN MAZIC S WITH MIXED INTERFERENCE (R1, Rz, Rs) that satisfy

The mixed interference case corresponds to the con- R, < llog(l + P, (56)
dition @ < 1,b > 1 ora > 1,b < 1. In the following, %
we consider a subclass of Gaussian MAZICs with mixed Ry < 3 log(1 + Py), (57)
interference, and we determine some boundary points of 1
the capacity region. Ry < 5 log(1+ P3), (58)
1
Lemma 2: For a Gaussian MAZIC with conditions £+ f2 < 5log(1+ Py + Py), (59)
a < 1,b > 1+ aPy + P3, an achievable rate re- 1 1 Ps
L= = ’ . . Ri+ Rs < —log(1 + P; —log(1 . (60
gion is given by the set of all nonnegative rate triples 1S g og(1+F1) + 2 og(1 + 1+aP1) (60)

(R1, Ry, R3) that satisfy Proof: (56), (57) and[(59) form an outer bound to

1 the capacity region of a MAC, and (58) is a natural bound
R < —log(1+ P 49 ,
=9 og (1+ 1), (49) on R3. Therefore, we only need to prove {60). We have

1
< =
Ry < Jlog(1+ By), (50) n(Ry+ Ra)
! B = H(W,) + H(W3)
<c P E— 1 3
1 < I(XP;YP) + T(X3; YS) + ne
R1+R2§§10g(1—|—P1—|—P2)7 (52) o ( 1 1) ( 3 2)
<

)
1 I(XT5 Y X)) + T(X55 Yo' [ X)) + ne
R1—|—R3§§10g(1—|—aP1) (

=[( X5 X7+ Z27) + I(XE;VaX] + X5 + Z5) + ne,

1 aa P, + Ps
+§ log { 1+ 1+ aal;, ,(53) where(a) is frqm Fano’s Inequality; an¢b) is because
1 of the mutual independence amonqy’, X7 and X37.
Ri+Ry+R3< 510?;(1 +aP + P) (54) From the last line, it is easy to see that the sum of
aa Py, + P3> (55) the first two terms is bounded by the sum rate capacity

1
+§ log (1 + of a two-user one-sided interference channel with weak

1 P .
+aah interference ¢ < 1), where the outputs of the channel
for a € [0, 1]. take the form:
Proof: If b > 1+aPy + P3, we know that receive2 Yi = X1+ 72,

can decode user 2's message by treating its own signal as
well as the interference from useéras noise. Therefore,

there is no need to do rate splitting for uget.e,3 = 0. Thus we can obtaif {60), where the right hand side is

On applying Corollary 11 and remove all the redundage sum rate capacity of the above interference channel.

inequalities, we get Lemnid 2. [ | n
Remark: 3 log (1 4+ aP; + P2)+ 3 log (1 + %) From LemmdXR and Theorelm 3, we can directly get a

is an increasing function af if a(1+ P) < 1. Thus, the boundary point on the capacity region.

maximal achievable sum rate for the above achievableCorollary 3: For a Gaussian MAZIC witlu < 1 and

rate region is attained whem = 1, which equalskR; = b > 1+ aP; + Ps, the rate triple(R}, R3, R3) is on the

YQ = \/EXl + X3+ Zs.



boundary of the capacity region, where where (a) is from Fano’s inequality{b) is because of
the mutual independence amoid’, X3 and X3'; (c)

is due to [(3R); andd) uses the fact that conditioning
Py ) 62) reduces entropy and the memoryless property. Similarly,

1

.1
R’y = 51083 <1 T Y we can prove the bound oR; + R3. We further have

n(R1 + Ry + R3)
H(Wy, Wy) + H(W3)

.1 P
R3:§10g(1+1+zpl>. (63)

It is easy to see that this boundary point is achieved by
fully decoding the interference from transmitter 2 and
treating the interference from transmitter 1 as noise.

INg

I(XTX55 V") + I(X55Y5') + ne

—
INS

T(XT X5 Y") + 1(X3 Y5' [ X7 X5) + ne
VI. CONCLUSION

In this paper we have studied the capacity of an uplink I(XT XS5 Yo' | X5) + 1(X5,; Yo' | X7 X))

network with co-channel interference. By modeling such +ne

networks using a multiple access interference channel — I(XPXTXE YT + ne

with one-sided interference, we have obtained an inner _ n nivn YR yn

bound on the capacity region for both the discrete Ii(Yz )~ HOF|XT XY X5) + me

memoryless case and the Gaussian case. The capacity_ Z {H(Y%W;—l) _ H(Yéi|y2z_1X{lX§X§L)}

region for such channel models with strong interference 1

has been established and we have also determined a  +ne

boundary point of the capacity region for a subclass with (¢)

mixed interference. Furthermore, the result can be easily = Z {H(Yai — H(Yail X1 X2 X3:)) } + ne

extended to the multi-user case. =1

—
IN

= I(X1i X2 X35 o) + ne.

APPENDIX By introducing a time-sharing random varialleas in
yi uci Ime-shari var I
A. Proof of Theorem[2 the proof of the converse of the capacity region of a
The achievability part follows directly from TheoremvAC [i] Pg. 402], we obtain Theoref 2. The cardinality

by settingU; = Uz = ¢. For the converse[ (84)._(B5)of Q can be verified using Caratheodory theorem.
and [37) form an outer bound on the capacity region

of a MAC. Moreover, [(3B) is a natural bound dgy. REFERENCES
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