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OVERLOAD BEHAVIOR OF CONE SCHEDULES
FOR PROCESSING SYSTEMS
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Abstract

This note complements the analysis [of [1] ahd [2] addrestiegcase where the traffic load ri®t within
the stability region, that is, the system operatesverload For the case where the cone schedule maftrix [1]
is diagonal, it is shown that the job backlog explodes on &iqadar ray, as opposed to various subsequences
exploding on diverse ones. The context and model used herhase described ihl[1]. The analysis technique
draws on and parallels closely thoselin [1] anid [2].

1 Introduction

Consider the model of [1], where the PCS maiBixs now diagonalA (and positive-definite, hence, all its diagonal
elements are positive). The system operates in overloddeisense that ¢ P, where

P = {p eRY : (p, Av) < max (S, Av) for everyv € RQ} , (1.1)
€
as defined in[i1]. We consider the limit defined below:
H:limsup<&,A&> (1.2)
t—o0 t t
and select a convergent increasing unbounded subseq{ienam which the ‘limsup’ is attainﬂi— hence,
o X(te)
cll{go te =N (13)
and X X
lim sup <E,A (tc)> = (n,An) = H. a.4)
Cc— 00 tc tc
Lemmal.l We have
pEP = n#0 (1.5)

Proof: See[[2], Proposition 2.1. We have that

X, (t
p¢ P = limsup o) > (0 forsomeq € Q — n#Oandlimsup<¥,A&> =(n,An) =H > 0.

t—o0 t—o00
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S - X(t) _
2 Overload Regime: p ¢ P = limg_,oc =t~ =10 # 0.
Theorem 2.1 Whenp ¢ P, we have
lim @ =n#0. (2.1)
That is, the workload explodes on the same non-zerg i@y any subsequence.
Proof:
From Section V of[[1] on PCS cone geometry, recall that= {z € R? : (S, Ax) = maxgcs (S', Az)}is a

cone, and wheiX (¢) € C% (the interior ofCs) the PCS will choose&(t) = S. Moreover, thesurrounding coneof
any non-zero vectay is the cone

cop= |J Cs (2.2)

SeS*(n)—St
whereS*(n) = argmaxgcs (S, An) is the set of service vectors of that PCS would select for logck and St is
the set olhon-essentiabnes (see [1], end of Section IV). We have

X(t) €C°(n) = (S(t), An) = max (S, An) (2.3)
whereC°(n) is the interior ofC(n). Define now
Kn) ={z¢€ Réﬁ txg > Igleiié({sq} for eachg with 7, > 0}, (2.4)

which is upward-scalable; indeedc K(n) impliesax € K(n) for any scalarx > 1. Note that whenX (¢) € K(n)
we haveX,(t) > maxges{S,} fromallg € Q with 5, > 0, s0D,(t) = min{X,(t), S4(t)} = S,(t). Therefore,

X(t) € K(n) = Dy(t) = S,4(t) forall ¢ € Q with i, > 0. (2.5)

that is, all service capacity allocated at sidb queueg with n, > 0 is used; there is no idling in that time slot.
Consider now the set

V(n) = Kn) () (2.6)

and note that it is upward-scalable, thatiss V(n) impliesax € V(n) for any scalan > 1. Thus, the seV(n) is
‘cone-like’ for large backlog vectors.

2.1 Structural Properties

Lemma 2.1 For every sequencg.} such that! < ¢, and

X(t) e V(n) forevery X(t) € (t.,t.] (2.7)
for everyce, we have
te—1
X(te) — X(t) sy A
<T’A" =\ T An) T max (S, An). (2.8)



Proof: We write (using similar arguments like in equations of A.@2t27 of [1]),

te—1 te—1
(X(te) = X(t,), An) = <Z A(t)ﬁAn> - <Z D(t)7A77>

t=t/, t=t/,
te—1 te—1
= <Z A(t)v A77> - Z (D(t)v A77>
t=t/, t=t/,
te—1 te—1 [
= <Z A(t), A77> - Z Z Dy(t) Agqng + Z Dq(t) Agqig
t=t, t=t, | q:mg>0 q:ng=0
te—1 te—1 [
= <Z A(t),An> - Z Z Sq(t)Aggng + Z Sq(t) 0
t=t/, t=t, _q:nq>0 q:mqg=0
te—1 te—1
= <Z A(t)vAn> - ) (S(@t),An)
t=t/, t=t/,
te—1
= <Z Alt), An> — max (S(t), An) (tc — tc), (2.9)
€
t=t!

To see the above steps, recall the following. Fistt) € V(n) for everyt € (t.,t.] and anyc, by assumption.
Therefore X (t) € K(n), hence, from[(2]5) we gdd,(t) = S,(t) for ¢ € Q with , > 0, for everyt € (¢, t.] and
any c. Moreover,X (t) € C(n) , hence, from[(Z]I3) we get5(t), An) = maxgses (S, An), forall t € (t.,t.] and
anyc. |

Lemma 2.2 For any increasing unbounded time sequenggg and {¢, }, we have

tn—1
ty — 1! L A®t

n—00 ty, — t;L

nh_)rr;o P =p (2.10)

Proof: Note thatt/, < t¢,, eventually (for any large), expand the terms as follows:

n—1 _ /o _ _
ity Al SETTAM) SEG AW SRt AM) e SEgtAM) i

= - = 2.11
ty —t t —t!, t —t! tn tp —t!, t ty —t!’ (211)
and observe that letting—oc we get
tn—1
2 At 1 1
. t=t,, o L L o
HILH;OW—PX P(X 1) = p, (2.12)
; . Siso A ;
sincelim,, o, =*=F— = p. This completes the proof of the lemma. [ |
Lemma 2.3 For any increasing unbounded subsequeficg} with lim,, o Xt(fnm) = u, we have
(s, Am) 2 {p, Am) — max (S, Aa) (2.13)



Proof: We write
tm—1 tm—1

X(tm)= > A(t)— Y _ D(t) (2.14)
t=0

t=0
and observe thab,(t) = min{.S,(t), X,(t)} < S,(t) for everyq € Q, hence—D,(t) > —S,(t). Therefore, since
A is diagonal (with positive elements), we haveD(t), An) > (S(t), An) > —maxges (S, An). Projecting on

An we get
t'm_l

(X(tm), An) = < > A, A77> — max (S, A7) (tm) (2.15)
t=0

Dividing by t,,, and lettingm— oo, we get

(s, An) = {p, An) — 1pax (S, An) > 0 (2.16)
This completes the proof of the lemma. [ |
Lemma 2.4 For any increasing unbounded subsequefig} with lim,,, #7:) = u, we have
(ns An) > (n, An) = p=n (2.17)
Proof: Indeed (recalling thaA\ is positive-definite), we have
0<(u—nA(p—mn) = (u A —2{u An) + (n, An)
< (w,Ap) —2(n, An) + (n, An) = (u, Ap) — (n, An), (2.18)
i — T X(t) AX(1) _
so (u, Au) > (n, An). But since(n, An) = limsup t—oo <T,AT>, we must haveu, Ap) = (n, An),
therefore,(u — n, A(x —n)) = 0, which impliesy, = 7. This completes the proof of the lemma. [ |
Lemma25 For everye € (0,1) we have
€ 1
= | {p, An) — max (S, An>] — +n,Anp) —— = (n,An) (2.19)
€S 1—e¢ 1—e¢

Proof: Rewrite the inequality as- [(p, An) — maxgses (S, An)] e + (n, An) > (1 —€) (n, An), sincel —e > 0.
This is equivalent (since > 0) to

(n, An) > (p, An) — 1 (S, An) (2.20)

ax
€S
But this is true by Lemm@ 2.3 applied to the sequeficé with lim,._, . @ = 7. This complete the proof of the
lemma. |

2.2 Uniqueness of limit lim;_, @ on an individual arrival trace

Proposition 2.1 There is no subsequenée, } with lim,_, %&-) -



Arguing by contradiction, assume that there is some otherargent subsequené& (¢,)} such thatim,_, . %ﬁ‘l) =

1 # n. We shall show that this is impossible. Note thiat < oo for all g. This is easy to see sineg, =
limg oo 2452 < Timg o 222 = 5 < 0. Define first

Se =max{ty 1ty < t.} <t (2.21)

Lemma2.6 We have that
. . tc — S¢
lim inf =
CcC— 00

€ (0,1) (2.22)

C

Proof: A) We first show that > 0. We start by showing that there is no increasing unboundbdesencd,}

of {t.} such thatim; tbt‘bsb = 0, wheres, = max{t, < t,}. Note that this also implies théitn;_, - j—: = 1.

Arguing by contradiction, suppose it exists. Observe thatferyqg € O we have

— Sg(ty — s1) < Xy(ts) — Xg(sp) < Aglty — sp), (2.23)

whereA, < oo is the maximum workload that can arrive in quegia any time slot (see model in|[1] for assumption
of boundedness) anfl, = maxges{S,} < oo is the maximum workload that can be removed from qugireany
time slot. Dividing byt,, letting b— o0, we get

M 0= lim [M — X(s0) ﬁ] =n—1 (2.24)

lim
b—00 ty b—00 tp sy tp

which implies that) = ) and establishes the desired contradiction.

B) We still need to show that # 1 (note thattct‘% < 1). Arguing by contradiction, suppose there exists
a subsequencét;} of {t.} (and corresponding subsequeng} of {s.}) such thatlim; tit‘z_si = 1, hence,
lim; oo 3+ = 0. Applying Lemmag 2]1 arld 2.2 witft;} = {s;}

X () — X(s4) _ B
leglo <ﬁa An ) = (p, An) %gg (5(t), An) (2.25)
It follows that
(n,An) = lim <X(ti) : An>
1—»00 t;
— lim <X(ti) — X(si) ti—si  X(s;) ﬁ,A >
1—»00 t; — s; t; Si t;
_ hm <X(tl)_X(sz),A77> tl_sl+<X(sl),A77> ﬁ
1—00 ti — S; ti S; ti
= {(p, An) — max {S(¢), An>} 14 (¢, An) -0
= (p,An) —max (5(t), An) (2.26)
Now applying Lemm&2]3 on the subsequefieg with lim, Xl 1 we get
(¥, An) = (p, An) —max (S, An) = (n, An), (2.27)



using [2.26). Hencey), An) > (n, An), which impliesy) = n by Lemma2Z4. But this is impossible since by
definition of subsequencgs.}, ¥ # n, which completes the proof of the lemma. [ |
Select now a subsequence{of} on which this ‘liminf’ is attained, but keep the same indexinof the original

one for notational simplicity, hence,
te — Se

lim
Cc— 00

€ (0,1). (2.28)

c

Therefore lim,_, o ﬁ_ = = andlim,_,« tcs‘jc ==

Again, applying Lemmd&s 2.1 and 2.2 wifH.} = {s.}, dividing byt. — s. and lettingc—oo, we get

te — Sc¢

lim <M,An> (p, An) — max (S, An). (2.29)

Cc— 00

Then, we can write

W,An) = lim <X(SC),An>

c—00 Se
- <_X(tc) — X(s¢) te— sc N X (t.) t—c,An>
c—00 te — Se Se te  Se
€
— A An)| —— A
[<p, n) — max (5, 77>] T (s An) T
> (n,An) (2.30)

The last equality is due to LemrhaR.5. Therefdre, An) > (n, An), which impliesy) = n from Lemmd2.4. But

this contradicts the assumption thatZ n. This establishes the sought after contradiction. So foh éadividual

arrival trace, there exists a unique lirhitn; & = 7, which concludes the proof of the proposition. Moreover,

sincelim;_, @ = 7€ this implies that there exists < oo such thatX (¢) is in V() for all ¢t > ¢,. It remains to
show that the limity, is independent of the particular arrival trace.

2.3 Characterizing thelimit n

The purpose of this section is to charactenizm terms ofp and service vector§ to establish the independence
of n on the individual arrival trace. Knowing th&im; .. @ = n, we now turn to identifying a couple of the
characteristic properties gf

Lemma 2.7 Every limitis a fixed point. That is,

n = lim X— = [ Z Qm m]+ (2.31)

for somew,,, > 0, ", o, = 1. Furthermore,a,,, > 0 implies thaty € Csg,,
Proof: Consider a subsequenég, } such that for eacim:

tn—1
oy — lim 2=t=0_HSO=Sn)

n—o00 tn

(2.32)



Note that by definitionn,,, € [0,1] and) ", «,, < 1. Further, because ¢ P, there exisyy andT" < oo, such that
X,4(t) > 0forall t > T, hence, PCS will never idle far> T"and) . oy, = 1.
We have forg such that;, > 0:

. Xy(tn
R
n_l
o S A0 - D)
n—00 tn
C i el o) + 2 [Ag(t) = 32,0 Smglis@=5.})
n—00 tn
= pg— D 0mSmg (2.33)

Wheret, < oo such that for alt > ¢,, X (t) € V(n). It's existence is given by PropositiGn 2.1. kpsuch that
nq = 0, we have:

Xq(ty
0=mn, = lim a(tn)

n—o00 tn

o 20 [Ag(t) = Dy(0)]

n—o00 tn

i Xalto) + 5 [Ag(t) = 3 min{ Xy (8), Smq}ys=si)]

n—o00 tn

tn—1
> lim ( )+Zt to [ ()_Zm Sm,ql{S(t)zsm}]

n—o00 tn

= p— > amSmg (2.34)

Which means that, — >, @, Sm, < 0and

0=mny= [pq — Z ozmSm,q] +, (2.35)

which gives us thag = [p — 3, amSm] .

Finally, we have to show that i,, > 0, thenn € Cg, . We have seen thai,, is the proportion of time that
service vectorS,, is used under PCS onceé(t) € V(n) for all t > t,. By Propositior 211, we know thaj} exists.
By contradiction, suppose thatZ Cs, . This implies that there exisig’ # m such that(n, AS,,/) > (n, AS,,).
Sinceq,,, > 0, we must use5,,, for somet > t,. This contradicts the definition af(n), which by [2.3) says that
PCS would use,,s rather thans,,, which would imply that,,, = 0. Hence, ifa,,, > 0, € Cg,,. [ |

Lemma 2.8 We have
(n, An) = (p, An) — max (S, An) (2.36)



Proof: This follows from Lemm&Z2l7. Replacing= [p — Zﬁx:l amSm]T we have

N +
(n, An) = <[p—zam5m] ,An>

m=1
N N N
- Z P= Z O‘msm] Agqlg + Z [P - Z amsm] Agqlq
q:1g>0 m=1 q:1g=0 m=1
N N
— Z [p — Z ozmSm] Aygng + Z [p — Z ozmSm] A0
q:1¢>0 m=1 q:1g=0 m=1 a
N
— <p > S, An>
m=1
N
= {(p,An) = > {0mSm, An)
m=1
= An) — A 2.37
{p; Am) — max (S, An) (2.37)
where the last equality follows from the fact thpis a fixed point. [ |

Lemma 2.9 The vectom = lim;_. @ is the uniqueminimizer of

,An) =  min ! Ay 2.38
(n, An) n,@(p’s)@? ) (2.38)
where

U(p,S)={n 0 =(p—r)" withr € P} (2.39)

and P is the stability region given bg. Therefore, = > ¢ s asS with Y g sags < 1 andags > 0 for each
S € S, whereS is the set of service vectors.

Proof: From Lemmd 217, we have thate ¥(p, S). Arbitrarily choose any vector
+
= <p -y a55> ,with 3" as < 1, andas > 0,5 € S. (2.40)
ses ses

Projecting onAn we get

(m,An) = <{p—za55r,An>

Ses

> <p — > ags, An>

Ses

= {(p,An) = > ag (S, An)
SeSs
> (p,An) — max (S, An) = (n, An) (2.41)



The first inequality comes from the fact that,, > 0 andn, > 0. The last equality comes from Lemrhal2.8.
Therefore(n, An) > (n, An). This implies (recalling thaA is positive-definite) that

0 < M—nA@{m—n))
= (1, An) — 2(7, An) + (n, An)
< (0, An) —2(n, An) + (n, An)
G

) — (n, An), (2.42)

so (7, A7) > (n, An) andn is the minimizer of(r/, An/).

We still need to prove that the minimizeris unique. This is done by showing that(k) An) is strictly convex
in n and 2) the se(p,S) is convex—uniqueness will follow from convex programmihgdry. 1) It is trivial to
show that(n, An) is strictly convex inn since A > 0 is a positive definite matrix. 2) We now show that the set
U = U(p,S) is convex. First, we see that for amye P and corresponding = (p — )™ € ¥, there exists
z=p—7t=(p—r)t =z with7 € P. Let7y, = min(pg, %) < r. Sincer < r € P, thenz € ¥. Now, consider
two vectorse, 2’ € ¥ with corresponding-, 7’ € P such thatr = (p — r)™ andz’ = (p — 7/)*. What remains to
be shown is that for any € [0, 1], az + (1 — a)2’ € V. Indeed, we have:

ar+ (1 —a)r’ = az+ (1 —a)7’
= a(p—7)+1—a)(p—7)
= p—(af+ (1 —a)) (2.43)

By the convexity ofP, we know that7+ (1 —a)7 € P and subsequently,— (a7 + (1 —a)7) € W. This concludes
the proof. [ |

We have just shown that on all arrival traces with system jaddn; ., @ = 7, is unique. Furthermore, the
limit, 7, is identical across all such traces. This concludes thefmforheoreni Z.11..
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