OVERLOAD BEHAVIOR OF CONE SCHEDULES FOR PROCESSING SYSTEMS

Abstract

This note complements the analysis of [1] and [2] addressing the case where the traffic load is not within the stability region, that is, the system operates in overload. For the case where the cone schedule matrix [1] is diagonal, it is shown that the job backlog explodes on a particular ray, as opposed to various subsequences exploding on diverse ones. The context and model used here are those described in [1]. The analysis technique draws on and parallels closely those in [1] and [2].

1 Introduction

Consider the model of [1], where the PCS matrix B is now diagonal $\boldsymbol{\Delta}$ (and positive-definite, hence, all its diagonal elements are positive). The system operates in overload, in the sense that $\rho \notin \mathcal{P}$, where

$$
\begin{equation*}
\mathcal{P}=\left\{\rho \in \mathbb{R}_{+}^{Q}:\langle\rho, \Delta v\rangle \leq \max _{S \in \mathcal{S}}\langle S, \Delta v\rangle \text { for every } v \in \mathbb{R}^{Q}\right\}, \tag{1.1}
\end{equation*}
$$

as defined in [1]. We consider the limit defined below:

$$
\begin{equation*}
H=\limsup _{t \rightarrow \infty}\left\langle\frac{X(t)}{t}, \Delta \frac{X(t)}{t}\right\rangle \tag{1.2}
\end{equation*}
$$

and select a convergent increasing unbounded subsequence $\left\{t_{c}\right\}$ on which the 'limsup' is attained 4 - hence,

$$
\begin{equation*}
\lim _{c \rightarrow \infty} \frac{X\left(t_{c}\right)}{t_{c}}=\eta \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{c \rightarrow \infty}\left\langle\frac{X\left(t_{c}\right)}{t_{c}}, \Delta \frac{X\left(t_{c}\right)}{t_{c}}\right\rangle=\langle\eta, \Delta \eta\rangle=H . \tag{1.4}
\end{equation*}
$$

Lemma 1.1 We have

$$
\begin{equation*}
\rho \notin \mathcal{P} \Longrightarrow \eta \neq 0 \tag{1.5}
\end{equation*}
$$

Proof: See [2], Proposition 2.1. We have that
$\rho \notin \mathcal{P} \Longrightarrow \limsup _{t \rightarrow \infty} \frac{X_{q}(t)}{t}>0$ for some $q \in \mathcal{Q} \Longrightarrow \eta \neq 0$ and $\limsup _{t \rightarrow \infty}\left\langle\frac{X(t)}{t}, \Delta \frac{X(t)}{t}\right\rangle=\langle\eta, \Delta \eta\rangle=H>0$.

[^0]
2 Overload Regime: $\rho \notin \mathcal{P} \Longrightarrow \lim _{\mathbf{t} \rightarrow \infty} \frac{\mathbf{X}(\mathbf{t})}{\mathrm{t}}=\eta \neq 0$.

Theorem 2.1 When $\rho \notin \mathcal{P}$, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{X(t)}{t}=\eta \neq 0 \tag{2.1}
\end{equation*}
$$

That is, the workload explodes on the same non-zero ray η on any subsequence.

Proof:

From Section V of [1] on PCS cone geometry, recall that $\mathcal{C}_{S}=\left\{x \in \mathbb{R}^{Q}:\langle S, \boldsymbol{\Delta} x\rangle=\max _{S^{\prime} \in \mathcal{S}}\left\langle S^{\prime}, \boldsymbol{\Delta} x\right\rangle\right\}$ is a cone, and when $X(t) \in \mathcal{C}_{S}^{o}$ (the interior of \mathcal{C}_{S}) the PCS will choose $S(t)=S$. Moreover, the surrounding cone of any non-zero vector η is the cone

$$
\begin{equation*}
\mathcal{C}(\eta)=\bigcup_{S \in \mathcal{S}^{*}(\eta)-\mathcal{S}^{\dagger}} C_{S} \tag{2.2}
\end{equation*}
$$

where $S^{*}(\eta)=\operatorname{argmax}_{S \in \mathcal{S}}\langle S, \Delta \eta\rangle$ is the set of service vectors of that PCS would select for backlog η and $\mathcal{S} \dagger$ is the set of non-essential ones (see [1], end of Section IV). We have

$$
\begin{equation*}
X(t) \in \mathcal{C}^{o}(\eta) \Longrightarrow\langle S(t), \boldsymbol{\Delta} \eta\rangle=\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle \tag{2.3}
\end{equation*}
$$

where $\mathcal{C}^{o}(\eta)$ is the interior of $\mathcal{C}(\eta)$. Define now

$$
\begin{equation*}
\mathcal{K}(\eta)=\left\{x \in \mathbb{R}_{0+}^{Q}: x_{q}>\max _{S \in \mathcal{S}}\left\{S_{q}\right\} \text { for each } q \text { with } \eta_{q}>0\right\} \tag{2.4}
\end{equation*}
$$

which is upward-scalable; indeed, $x \in \mathcal{K}(\eta)$ implies $\alpha x \in \mathcal{K}(\eta)$ for any scalar $\alpha>1$. Note that when $X(t) \in \mathcal{K}(\eta)$ we have $X_{q}(t)>\max _{S \in \mathcal{S}}\left\{S_{q}\right\}$ from all $q \in \mathcal{Q}$ with $\eta_{q}>0$, so $D_{q}(t)=\min \left\{X_{q}(t), S_{q}(t)\right\}=S_{q}(t)$. Therefore,

$$
\begin{equation*}
X(t) \in \mathcal{K}(\eta) \Longrightarrow D_{q}(t)=S_{q}(t) \text { for all } q \in \mathcal{Q} \text { with } \eta_{q}>0 \tag{2.5}
\end{equation*}
$$

that is, all service capacity allocated at slot t to queue q with $\eta_{q}>0$ is used; there is no idling in that time slot. Consider now the set

$$
\begin{equation*}
\mathcal{V}(\eta)=\mathcal{K}(\eta) \bigcap \mathcal{C}^{o}(\eta) \tag{2.6}
\end{equation*}
$$

and note that it is upward-scalable, that is, $x \in \mathcal{V}(\eta)$ implies $\alpha x \in \mathcal{V}(\eta)$ for any scalar $\alpha>1$. Thus, the set $\mathcal{V}(\eta)$ is 'cone-like' for large backlog vectors.

2.1 Structural Properties

Lemma 2.1 For every sequence $\left\{t_{c}^{\prime}\right\}$ such that $t_{c}^{\prime}<t_{c}$ and

$$
\begin{equation*}
X(t) \in \mathcal{V}(\eta) \text { for every } X(t) \in\left(t_{c}^{\prime}, t_{c}\right] \tag{2.7}
\end{equation*}
$$

for every c, we have

$$
\begin{equation*}
\left\langle\frac{X\left(t_{c}\right)-X\left(t_{c}^{\prime}\right)}{t_{c}-t_{c}^{\prime}}, \Delta \eta\right\rangle=\left\langle\frac{\sum_{t=t_{c}^{\prime}}^{t_{c}-1} A(t)}{t_{c}-t_{c}^{\prime}}, \Delta \eta\right\rangle-\max _{S \in \mathcal{S}}\langle S(t), \Delta \eta\rangle . \tag{2.8}
\end{equation*}
$$

Proof: We write (using similar arguments like in equations of A. 22 to A. 27 of [1]),

$$
\begin{align*}
\left\langle X\left(t_{c}\right)-X\left(t_{c}^{\prime}\right), \Delta \eta\right\rangle & =\left\langle\sum_{t=t_{c}^{\prime}}^{t_{c}-1} A(t), \Delta \eta\right\rangle-\left\langle\sum_{t=t_{c}^{\prime}}^{t_{c}-1} D(t), \Delta \eta\right\rangle \\
& =\left\langle\sum_{t=t_{c}^{\prime}}^{t_{c}-1} A(t), \Delta \eta\right\rangle-\sum_{t=t_{c}^{\prime}}^{t_{c}-1}\langle D(t), \Delta \eta\rangle \\
& =\left\langle\sum_{t=t_{c}^{\prime}}^{t_{c}-1} A(t), \Delta \eta\right\rangle-\sum_{t=t_{c}^{\prime}}^{t_{c}-1}\left[\sum_{q: \eta_{q}>0} D_{q}(t) \Delta_{q q} \eta_{q}+\sum_{q: \eta_{q}=0} D_{q}(t) \Delta_{q q} \eta_{q}\right] \\
& =\left\langle\sum_{t=t_{c}^{\prime}}^{t_{c}-1} A(t), \Delta \eta\right\rangle-\sum_{t=t_{c}^{\prime}}^{t_{c}-1}\left[\sum_{q: \eta_{q}>0} S_{q}(t) \Delta_{q q} \eta_{q}+\sum_{q: \eta_{q}=0} S_{q}(t) 0\right] \\
& =\left\langle\sum_{t=t_{c}^{\prime}}^{t_{c}-1} A(t), \Delta \eta\right\rangle-\sum_{t=t_{c}^{\prime}}^{t_{c}-1}\langle S(t), \Delta \eta\rangle \\
& =\left\langle\sum_{t=t_{c}^{\prime}}^{t_{c}-1} A(t), \Delta \eta\right\rangle-\max _{S \in \mathcal{S}}\langle S(t), \Delta \eta\rangle\left(t_{c}-t_{c}^{\prime}\right), \tag{2.9}
\end{align*}
$$

To see the above steps, recall the following. First, $X(t) \in \mathcal{V}(\eta)$ for every $t \in\left(t_{c}^{\prime}, t_{c}\right]$ and any c, by assumption. Therefore, $X(t) \in \mathcal{K}(\eta)$, hence, from (2.5) we get $D_{q}(t)=S_{q}(t)$ for $q \in \mathcal{Q}$ with $\eta_{q}>0$, for every $t \in\left(t_{c}^{\prime}, t_{c}\right]$ and any c. Moreover, $X(t) \in \mathcal{C}(\eta)$, hence, from (2.3) we get $\langle S(t), \Delta \eta\rangle=\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle$, for all $t \in\left(t_{c}^{\prime}, t_{c}\right]$ and any c.

Lemma 2.2 For any increasing unbounded time sequences $\left\{t_{n}\right\}$ and $\left\{t_{n}^{\prime}\right\}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{t_{n}-t_{n}^{\prime}}{t_{n}}=\chi \in(0,1] \Longrightarrow \lim _{n \rightarrow \infty} \frac{\sum_{t=t_{n}^{\prime}}^{t_{n}-1} A(t)}{t_{n}-t_{n}^{\prime}}=\rho \tag{2.10}
\end{equation*}
$$

Proof: Note that $t_{n}^{\prime}<t_{n}$ eventually (for any large n), expand the terms as follows:

$$
\begin{equation*}
\frac{\sum_{t=t_{n}^{\prime}}^{t_{n}-1} A(t)}{t_{n}-t_{n}^{\prime}}=\frac{\sum_{t=0}^{t_{n}-1} A(t)}{t_{n}-t_{n}^{\prime}}-\frac{\sum_{t=0}^{t_{n}^{\prime}-1} A(t)}{t_{n}-t_{n}^{\prime}}=\frac{\sum_{t=0}^{t_{n}-1} A(t)}{t_{n}} \frac{t_{n}}{t_{n}-t_{n}^{\prime}}-\frac{\sum_{t=0}^{t_{n}-1} A(t)}{t_{n}^{\prime}} \frac{t_{n}^{\prime}}{t_{n}-t_{n}^{\prime}}, \tag{2.11}
\end{equation*}
$$

and observe that letting $n \rightarrow \infty$ we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{t=t_{n}^{\prime}}^{t_{n}-1} A(t)}{t_{n}-t_{n}^{\prime}}=\rho \frac{1}{\chi}-\rho\left(\frac{1}{\chi}-1\right)=\rho, \tag{2.12}
\end{equation*}
$$

since $\lim _{n \rightarrow \infty} \frac{\sum_{t=0}^{T} A(t)}{T}=\rho$. This completes the proof of the lemma.
Lemma 2.3 For any increasing unbounded subsequence $\left\{t_{m}\right\}$ with $\lim _{m \rightarrow \infty} \frac{X\left(t_{m}\right)}{t_{m}}=\mu$, we have

$$
\begin{equation*}
\langle\mu, \Delta \eta\rangle \geq\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle \tag{2.13}
\end{equation*}
$$

Proof: We write

$$
\begin{equation*}
X\left(t_{m}\right)=\sum_{t=0}^{t_{m}-1} A(t)-\sum_{t=0}^{t_{m}-1} D(t) \tag{2.14}
\end{equation*}
$$

and observe that $D_{q}(t)=\min \left\{S_{q}(t), X_{q}(t)\right\} \leq S_{q}(t)$ for every $q \in \mathcal{Q}$, hence, $-D_{q}(t) \geq-S_{q}(t)$. Therefore, since $\boldsymbol{\Delta}$ is diagonal (with positive elements), we have $-\langle D(t), \boldsymbol{\Delta} \eta\rangle \geq\langle S(t), \Delta \eta\rangle \geq-\max _{S \in \mathcal{S}}\langle S, \boldsymbol{\Delta} \eta\rangle$. Projecting on $\Delta \eta$ we get

$$
\begin{equation*}
\left\langle X\left(t_{m}\right), \boldsymbol{\Delta} \eta\right\rangle \geq\left\langle\sum_{t=0}^{t_{m}-1} A(t), \boldsymbol{\Delta} \eta\right\rangle-\max _{S \in \mathcal{S}}\langle S, \boldsymbol{\Delta} \eta\rangle\left(t_{m}\right) \tag{2.15}
\end{equation*}
$$

Dividing by t_{m} and letting $m \rightarrow \infty$, we get

$$
\begin{equation*}
\langle\mu, \boldsymbol{\Delta} \eta\rangle \geq\langle\rho, \boldsymbol{\Delta} \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \boldsymbol{\Delta} \eta\rangle>0 \tag{2.16}
\end{equation*}
$$

This completes the proof of the lemma.
Lemma 2.4 For any increasing unbounded subsequence $\left\{t_{m}\right\}$ with $\lim _{m \rightarrow \infty} \frac{X\left(t_{m}\right)}{t_{m}}=\mu$, we have

$$
\begin{equation*}
\langle\mu, \boldsymbol{\Delta} \eta\rangle \geq\langle\eta, \boldsymbol{\Delta} \eta\rangle \Longrightarrow \mu=\eta \tag{2.17}
\end{equation*}
$$

Proof: Indeed (recalling that $\boldsymbol{\Delta}$ is positive-definite), we have

$$
\begin{align*}
0 \leq\langle\mu-\eta, \boldsymbol{\Delta}(\mu-\eta)\rangle & =\langle\mu, \boldsymbol{\Delta} \mu\rangle-2\langle\mu, \boldsymbol{\Delta} \eta\rangle+\langle\eta, \boldsymbol{\Delta} \eta\rangle \\
& \leq\langle\mu, \boldsymbol{\Delta} \mu\rangle-2\langle\eta, \boldsymbol{\Delta} \eta\rangle+\langle\eta, \boldsymbol{\Delta} \eta\rangle=\langle\mu, \boldsymbol{\Delta} \mu\rangle-\langle\eta, \boldsymbol{\Delta} \eta\rangle \tag{2.18}
\end{align*}
$$

so $\langle\mu, \boldsymbol{\Delta} \mu\rangle \geq\langle\eta, \boldsymbol{\Delta} \eta\rangle$. But since $\langle\eta, \boldsymbol{\Delta} \eta\rangle=\limsup t \rightarrow \infty\left\langle\frac{X(t)}{t}, \Delta \frac{X(t)}{t}\right\rangle$, we must have $\langle\mu, \boldsymbol{\Delta} \mu\rangle=\langle\eta, \boldsymbol{\Delta} \eta\rangle$, therefore, $\langle\mu-\eta, \boldsymbol{\Delta}(\mu-\eta)\rangle=0$, which implies $\mu=\eta$. This completes the proof of the lemma.

Lemma 2.5 For every $\epsilon \in(0,1)$ we have

$$
\begin{equation*}
-\left[\langle\rho, \boldsymbol{\Delta} \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \boldsymbol{\Delta} \eta\rangle\right] \frac{\epsilon}{1-\epsilon}+\langle\eta, \boldsymbol{\Delta} \eta\rangle \frac{1}{1-\epsilon} \geq\langle\eta, \boldsymbol{\Delta} \eta\rangle \tag{2.19}
\end{equation*}
$$

Proof: Rewrite the inequality as $-\left[\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle\right] \epsilon+\langle\eta, \Delta \eta\rangle \geq(1-\epsilon)\langle\eta, \Delta \eta\rangle$, since $1-\epsilon>0$. This is equivalent (since $\epsilon>0$) to

$$
\begin{equation*}
\langle\eta, \Delta \eta\rangle \geq\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle \tag{2.20}
\end{equation*}
$$

But this is true by Lemma 2.3 applied to the sequence $\left\{t_{c}\right\}$ with $\lim _{c \rightarrow \infty} \frac{X\left(t_{c}\right)}{t_{c}}=\eta$. This complete the proof of the lemma.

2.2 Uniqueness of limit $\lim _{t \rightarrow \infty} \frac{X(t)}{t}$ on an individual arrival trace

Proposition 2.1 There is no subsequence $\left\{\mathbf{t}_{\mathbf{a}}\right\}$ with $\lim _{\mathbf{a} \rightarrow \infty} \frac{\mathbf{X}\left(\mathbf{t}_{\mathbf{a}}\right)}{\mathbf{t}_{\mathbf{a}}}=\psi \neq \eta$.

Arguing by contradiction, assume that there is some other convergent subsequence $\left\{X\left(t_{a}\right)\right\}$ such that $\lim _{a \rightarrow \infty} \frac{X\left(t_{a}\right)}{t_{a}}=$ $\psi \neq \eta$. We shall show that this is impossible. Note that $\psi_{q}<\infty$ for all q. This is easy to see since $\psi_{q}=$ $\lim _{a \rightarrow \infty} \frac{X_{q}\left(t_{a}\right)}{t_{a}} \leq \lim _{a \rightarrow \infty} \frac{A_{q}\left(t_{a}\right)}{t_{a}}=\rho_{q}<\infty$. Define first

$$
\begin{equation*}
s_{c}=\max \left\{t_{a}: t_{a}<t_{c}\right\}<t_{c} \tag{2.21}
\end{equation*}
$$

Lemma 2.6 We have that

$$
\begin{equation*}
\liminf _{c \rightarrow \infty} \frac{t_{c}-s_{c}}{t_{c}}=\epsilon \in(0,1) \tag{2.22}
\end{equation*}
$$

Proof: A) We first show that $\epsilon>0$. We start by showing that there is no increasing unbounded subsequence $\left\{t_{b}\right\}$ of $\left\{t_{c}\right\}$ such that $\lim _{b \rightarrow \infty} \frac{t_{b}-s_{b}}{t_{b}}=0$, where $s_{b}=\max \left\{t_{a}<t_{b}\right\}$. Note that this also implies that $\lim _{b \rightarrow \infty} \frac{s_{b}}{t_{b}}=1$. Arguing by contradiction, suppose it exists. Observe that for every $q \in \mathcal{Q}$ we have

$$
\begin{equation*}
-\bar{S}_{q}\left(t_{b}-s_{b}\right) \leq X_{q}\left(t_{b}\right)-X_{q}\left(s_{b}\right) \leq \bar{A}_{q}\left(t_{b}-s_{b}\right) \tag{2.23}
\end{equation*}
$$

where $\bar{A}_{q}<\infty$ is the maximum workload that can arrive in queue q in any time slot (see model in [1] for assumption of boundedness) and $\bar{S}_{q}=\max _{S \in \mathcal{S}}\left\{S_{q}\right\}<\infty$ is the maximum workload that can be removed from queue q in any time slot. Dividing by t_{b}, letting $b \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \frac{X\left(t_{b}\right)-X\left(s_{b}\right)}{t_{b}}=0=\lim _{b \rightarrow \infty}\left[\frac{X\left(t_{b}\right)}{t_{b}}-\frac{X\left(s_{b}\right)}{s_{b}} \frac{s_{b}}{t_{b}}\right]=\eta-\psi \tag{2.24}
\end{equation*}
$$

which implies that $\eta=\psi$ and establishes the desired contradiction.
$B)$ We still need to show that $\epsilon \neq 1$ (note that $\frac{t_{c}-s_{c}}{t_{c}} \leq 1$). Arguing by contradiction, suppose there exists a subsequence $\left\{t_{i}\right\}$ of $\left\{t_{c}\right\}$ (and corresponding subsequence $\left\{s_{i}\right\}$ of $\left\{s_{c}\right\}$) such that $\lim _{i \rightarrow \infty} \frac{t_{i}-s_{i}}{t_{i}}=1$, hence, $\lim _{i \rightarrow \infty} \frac{s_{i}}{t_{i}}=0$. Applying Lemmas 2.1 and 2.2 with $\left\{t_{i}^{\prime}\right\}=\left\{s_{i}\right\}$

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\langle\frac{X\left(t_{i}\right)-X\left(s_{i}\right)}{t_{i}-s_{i}}, \Delta \eta\right\rangle=\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S(t), \Delta \eta\rangle \tag{2.25}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\langle\eta, \boldsymbol{\Delta} \eta\rangle & =\lim _{i \rightarrow \infty}\left\langle\frac{X\left(t_{i}\right)}{t_{i}}, \boldsymbol{\Delta} \eta\right\rangle \\
& =\lim _{i \rightarrow \infty}\left\langle\frac{X\left(t_{i}\right)-X\left(s_{i}\right)}{t_{i}-s_{i}} \frac{t_{i}-s_{i}}{t_{i}}+\frac{X\left(s_{i}\right)}{s_{i}} \frac{s_{i}}{t_{i}}, \Delta \eta\right\rangle \\
& =\lim _{i \rightarrow \infty}\left\langle\frac{X\left(t_{i}\right)-X\left(s_{i}\right)}{t_{i}-s_{i}}, \Delta \eta\right\rangle \frac{t_{i}-s_{i}}{t_{i}}+\left\langle\frac{X\left(s_{i}\right)}{s_{i}}, \Delta \eta\right\rangle \frac{s_{i}}{t_{i}} \\
& =\left[\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S(t), \Delta \eta\rangle\right] \cdot 1+\langle\psi, \Delta \eta\rangle \cdot 0 \\
& =\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S(t), \Delta \eta\rangle \tag{2.26}
\end{align*}
$$

Now applying Lemma 2.3 on the subsequence $\left\{s_{i}\right\}$ with $\lim _{s_{i} \rightarrow \infty} \frac{X\left(s_{i}\right)}{s_{i}}=\psi$ we get

$$
\begin{equation*}
\langle\psi, \Delta \eta\rangle \geq\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle=\langle\eta, \Delta \eta\rangle \tag{2.27}
\end{equation*}
$$

using (2.26). Hence, $\langle\psi, \Delta \eta\rangle \geq\langle\eta, \Delta \eta\rangle$, which implies $\psi=\eta$ by Lemma 2.4 But this is impossible since by definition of subsequence $\left\{s_{c}\right\}, \psi \neq \eta$, which completes the proof of the lemma.

Select now a subsequence of $\left\{t_{c}\right\}$ on which this 'liminf' is attained, but keep the same indexing c of the original one for notational simplicity, hence,

$$
\begin{equation*}
\lim _{c \rightarrow \infty} \frac{t_{c}-s_{c}}{t_{c}}=\epsilon \in(0,1) . \tag{2.28}
\end{equation*}
$$

Therefore, $\lim _{c \rightarrow \infty} \frac{t_{c}}{s_{c}}=\frac{1}{1-\epsilon}$ and $\lim _{c \rightarrow \infty} \frac{t_{c}-s_{c}}{s_{c}}=\frac{\epsilon}{1-\epsilon}$.
Again, applying Lemmas 2.1 and 2.2 with $\left\{t_{c}^{\prime}\right\}=\left\{s_{c}\right\}$, dividing by $t_{c}-s_{c}$ and letting $c \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{c \rightarrow \infty}\left\langle\frac{X\left(t_{c}\right)-X\left(s_{c}\right)}{t_{c}-s_{c}}, \Delta \eta\right\rangle=\langle\rho, \boldsymbol{\Delta} \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle . \tag{2.29}
\end{equation*}
$$

Then, we can write

$$
\begin{align*}
\langle\psi, \boldsymbol{\Delta} \eta\rangle & =\lim _{c \rightarrow \infty}\left\langle\frac{X\left(s_{c}\right)}{s_{c}}, \Delta \eta\right\rangle \\
& =\lim _{c \rightarrow \infty}\left\langle-\frac{X\left(t_{c}\right)-X\left(s_{c}\right)}{t_{c}-s_{c}} \frac{t_{c}-s_{c}}{s_{c}}+\frac{X\left(t_{c}\right)}{t_{c}} \frac{t_{c}}{s_{c}}, \Delta \eta\right\rangle \\
& =-\left[\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle\right] \frac{\epsilon}{1-\epsilon}+\langle\eta, \Delta \eta\rangle \frac{1}{1-\epsilon} \\
& \geq\langle\eta, \boldsymbol{\Delta} \eta\rangle \tag{2.30}
\end{align*}
$$

The last equality is due to Lemma 2.5. Therefore, $\langle\psi, \Delta \eta\rangle \geq\langle\eta, \Delta \eta\rangle$, which implies $\psi=\eta$ from Lemma 2.4. But this contradicts the assumption that $\psi \neq \eta$. This establishes the sought after contradiction. So for each individual arrival trace, there exists a unique limit $\lim _{t \rightarrow \infty} \frac{X(t)}{t}=\eta$, which concludes the proof of the proposition. Moreover, since $\lim _{t \rightarrow \infty} \frac{X(t)}{t}=\eta$ this implies that there exists $t_{o}<\infty$ such that $X(t)$ is in $\mathcal{V}(\eta)$ for all $t>t_{o}$. It remains to show that the limit, η, is independent of the particular arrival trace.

2.3 Characterizing the limit η

The purpose of this section is to characterize η in terms of ρ and service vectors \mathcal{S} to establish the independence of η on the individual arrival trace. Knowing that $\lim _{t \rightarrow \infty} \frac{X(t)}{t}=\eta$, we now turn to identifying a couple of the characteristic properties of η.

Lemma 2.7 Every limit is a fixed point. That is,

$$
\begin{equation*}
\eta=\lim _{t \rightarrow \infty} \frac{X(t)}{t}=\left[\rho-\sum_{m=1}^{N} \alpha_{m} S_{m}\right]^{+} \tag{2.31}
\end{equation*}
$$

for some $\alpha_{m} \geq 0, \sum_{m} \alpha_{m}=1$. Furthermore, $\alpha_{m}>0$ implies that $\eta \in C_{S_{m}}$
Proof: Consider a subsequence $\left\{t_{n}\right\}$ such that for each m :

$$
\begin{equation*}
\alpha_{m}=\lim _{n \rightarrow \infty} \frac{\sum_{t=0}^{t_{n}-1} \mathbf{1}_{\left\{S(t)=S_{m}\right\}}}{t_{n}} \tag{2.32}
\end{equation*}
$$

Note that by definition: $\alpha_{m} \in[0,1]$ and $\sum_{m} \alpha_{m} \leq 1$. Further, because $\rho \notin \mathcal{P}$, there exist q and $T<\infty$, such that $X_{q}(t)>0$ for all $t>T$; hence, PCS will never idle for $t>T$ and $\sum_{m} \alpha_{m}=1$.

We have for q such that $\eta_{q}>0$:

$$
\begin{align*}
\eta_{q} & =\lim _{n \rightarrow \infty} \frac{X_{q}\left(t_{n}\right)}{t_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\sum_{t=0}^{t_{n}-1}\left[A_{q}(t)-D_{q}(t)\right]}{t_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{X_{q}\left(t_{o}\right)+\sum_{t=t_{o}}^{t_{n}-1}\left[A_{q}(t)-\sum_{m} S_{m, q} \mathbf{1}_{\left\{S(t)=S_{m}\right\}}\right]}{t_{n}} \\
& =\rho_{q}-\sum_{m} \alpha_{m} S_{m, q} \tag{2.33}
\end{align*}
$$

Where $t_{o}<\infty$ such that for all $t>t_{o}, X(t) \in \mathcal{V}(\eta)$. It's existence is given by Proposition 2.1 For q such that $\eta_{q}=0$, we have:

$$
\begin{align*}
0=\eta_{q} & =\lim _{n \rightarrow \infty} \frac{X_{q}\left(t_{n}\right)}{t_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\sum_{t=0}^{t_{n}-1}\left[A_{q}(t)-D_{q}(t)\right]}{t_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{X_{q}\left(t_{o}\right)+\sum_{t=t_{o}}^{t_{n}-1}\left[A_{q}(t)-\sum_{m} \min \left\{X_{q}(t), S_{m, q}\right\} \mathbf{1}_{\left\{S(t)=S_{m}\right\}}\right]}{t_{n}} \\
& \geq \lim _{n \rightarrow \infty} \frac{X_{q}\left(t_{o}\right)+\sum_{t=t_{o}}^{t_{n}-1}\left[A_{q}(t)-\sum_{m} S_{m, q} \mathbf{1}_{\left\{S(t)=S_{m}\right\}}\right]}{t_{n}} \\
& =\rho-\sum_{m} \alpha_{m} S_{m, q} \tag{2.34}
\end{align*}
$$

Which means that $\rho_{q}-\sum_{m} \alpha_{m} S_{m, q} \leq 0$ and

$$
\begin{equation*}
0=\eta_{q}=\left[\rho_{q}-\sum_{m} \alpha_{m} S_{m, q}\right]^{+} \tag{2.35}
\end{equation*}
$$

which gives us that $\eta=\left[\rho-\sum_{m} \alpha_{m} S_{m}\right]^{+}$.
Finally, we have to show that if $\alpha_{m}>0$, then $\eta \in C_{S_{m}}$. We have seen that α_{m} is the proportion of time that service vector S_{m} is used under PCS once $X(t) \in \mathcal{V}(\eta)$ for all $t>t_{o}$. By Proposition 2.1, we know that t_{o} exists. By contradiction, suppose that $\eta \notin C_{S_{m}}$. This implies that there exists $m^{\prime} \neq m$ such that $\left\langle\eta, \boldsymbol{\Delta} S_{m^{\prime}}\right\rangle>\left\langle\eta, \boldsymbol{\Delta} S_{m}\right\rangle$. Since $\alpha_{m}>0$, we must use S_{m} for some $t>t_{o}$. This contradicts the definition of $\mathcal{V}(\eta)$, which by (2.3) says that PCS would use $S_{m^{\prime}}$ rather than S_{m} which would imply that $\alpha_{m}=0$. Hence, if $\alpha_{m}>0, \eta \in C_{S_{m}}$.

Lemma 2.8 We have

$$
\begin{equation*}
\langle\eta, \Delta \eta\rangle=\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle \tag{2.36}
\end{equation*}
$$

Proof: This follows from Lemma 2.7 Replacing $\eta=\left[\rho-\sum_{m=1}^{N} \alpha_{m} S_{m}\right]^{+}$we have

$$
\begin{align*}
\langle\eta, \boldsymbol{\Delta} \eta\rangle & =\left\langle\left[\rho-\sum_{m=1}^{N} \alpha_{m} S_{m}\right]^{+}, \boldsymbol{\Delta} \eta\right\rangle \\
& =\sum_{q: \eta_{q}>0}\left[\rho-\sum_{m=1}^{N} \alpha_{m} S_{m}\right]_{q} \boldsymbol{\Delta}_{q q} \eta_{q}+\sum_{q: \eta_{q}=0}\left[\rho-\sum_{m=1}^{N} \alpha_{m} S_{m}\right]_{q}^{+} \boldsymbol{\Delta}_{q q} \eta_{q} \\
& =\sum_{q: \eta_{q}>0}\left[\rho-\sum_{m=1}^{N} \alpha_{m} S_{m}\right]_{q} \boldsymbol{\Delta}_{q q} \eta_{q}+\sum_{q: \eta_{q}=0}\left[\rho-\sum_{m=1}^{N} \alpha_{m} S_{m}\right]_{q} \boldsymbol{\Delta}_{q q} 0 \\
& =\left\langle\rho-\sum_{m=1}^{N} \alpha_{m} S_{m}, \boldsymbol{\Delta} \eta\right\rangle \\
& =\langle\rho, \boldsymbol{\Delta} \eta\rangle-\sum_{m=1}^{N}\left\langle\alpha_{m} S_{m}, \boldsymbol{\Delta} \eta\right\rangle \\
& =\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \boldsymbol{\Delta} \eta\rangle \tag{2.37}
\end{align*}
$$

where the last equality follows from the fact that η is a fixed point.
Lemma 2.9 The vector $\eta=\lim _{t \rightarrow \infty} \frac{X(t)}{t}$ is the unique minimizer of

$$
\begin{equation*}
\langle\eta, \Delta \eta\rangle=\min _{\eta^{\prime} \in \Psi(\rho, \mathcal{S})}\left\langle\eta^{\prime}, \Delta \eta^{\prime}\right\rangle \tag{2.38}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(\rho, \mathcal{S})=\left\{\eta^{\prime}: \eta^{\prime}=(\rho-r)^{+} \text {with } r \in \mathcal{P}\right\} \tag{2.39}
\end{equation*}
$$

and \mathcal{P} is the stability region given by \mathcal{S}. Therefore, $r=\sum_{S \in \mathcal{S}} \alpha_{S} S$ with $\sum_{S \in \mathcal{S}} \alpha_{S} \leq 1$ and $\alpha_{S} \geq 0$ for each $S \in \mathcal{S}$, where \mathcal{S} is the set of service vectors.

Proof: From Lemma 2.7, we have that $\eta \in \Psi(\rho, \mathcal{S})$. Arbitrarily choose any vector

$$
\begin{equation*}
\bar{\eta}=\left(\rho-\sum_{S \in \mathcal{S}} \alpha_{S} S\right)^{+}, \text {with } \sum_{S \in \mathcal{S}} \alpha_{S} \leq 1, \text { and } \alpha_{S} \geq 0, S \in \mathcal{S} . \tag{2.40}
\end{equation*}
$$

Projecting on $\Delta \eta$ we get

$$
\begin{align*}
\langle\bar{\eta}, \Delta \eta\rangle & =\left\langle\left[\rho-\sum_{S \in \mathcal{S}} \alpha_{S} S\right]^{+}, \Delta \eta\right\rangle \\
& \geq\left\langle\rho-\sum_{S \in \mathcal{S}} \alpha_{S} S, \Delta \eta\right\rangle \\
& =\langle\rho, \Delta \eta\rangle-\sum_{S \in \mathcal{S}} \alpha_{S}\langle S, \Delta \eta\rangle \\
& \geq\langle\rho, \Delta \eta\rangle-\max _{S \in \mathcal{S}}\langle S, \Delta \eta\rangle=\langle\eta, \Delta \eta\rangle \tag{2.41}
\end{align*}
$$

The first inequality comes from the fact that $\boldsymbol{\Delta}_{q q}>0$ and $\eta_{q} \geq 0$. The last equality comes from Lemma 2.8 Therefore, $\langle\bar{\eta}, \Delta \eta\rangle \geq\langle\eta, \Delta \eta\rangle$. This implies (recalling that $\boldsymbol{\Delta}$ is positive-definite) that

$$
\begin{align*}
0 & \leq\langle\bar{\eta}-\eta, \boldsymbol{\Delta}(\bar{\eta}-\eta)\rangle \\
& =\langle\bar{\eta}, \boldsymbol{\Delta} \bar{\eta}\rangle-2\langle\bar{\eta}, \boldsymbol{\Delta} \eta\rangle+\langle\eta, \boldsymbol{\Delta} \eta\rangle \\
& \leq\langle\bar{\eta}, \boldsymbol{\Delta} \bar{\eta}\rangle-2\langle\eta, \boldsymbol{\Delta} \eta\rangle+\langle\eta, \boldsymbol{\Delta} \eta\rangle \\
& =\langle\bar{\eta}, \boldsymbol{\Delta} \bar{\eta}\rangle-\langle\eta, \boldsymbol{\Delta} \eta\rangle, \tag{2.42}
\end{align*}
$$

so $\langle\bar{\eta}, \boldsymbol{\Delta} \bar{\eta}\rangle \geq\langle\eta, \boldsymbol{\Delta} \eta\rangle$ and η is the minimizer of $\left\langle\eta^{\prime}, \boldsymbol{\Delta} \eta^{\prime}\right\rangle$.
We still need to prove that the minimizer η is unique. This is done by showing that 1) $\langle\eta, \Delta \eta\rangle$ is strictly convex in η and 2) the set $\Psi(\rho, \mathcal{S})$ is convex-uniqueness will follow from convex programming theory. 1) It is trivial to show that $\langle\eta, \Delta \eta\rangle$ is strictly convex in η since $\boldsymbol{\Delta}>0$ is a positive definite matrix. 2) We now show that the set $\Psi \equiv \Psi(\rho, \mathcal{S})$ is convex. First, we see that for any $r \in \mathcal{P}$ and corresponding $x=(\rho-r)^{+} \in \Psi$, there exists $\bar{x}=\rho-\bar{r}=(\rho-r)^{+}=x$ with $\bar{r} \in \mathcal{P}$. Let $\bar{r}_{k}=\min \left(\rho_{k}, r_{k}\right) \leq r_{k}$. Since $\bar{r} \leq r \in \mathcal{P}$, then $\bar{x} \in \Psi$. Now, consider two vectors $x, x^{\prime} \in \Psi$ with corresponding $r, r^{\prime} \in \mathcal{P}$ such that $x=(\rho-r)^{+}$and $x^{\prime}=\left(\rho-r^{\prime}\right)^{+}$. What remains to be shown is that for any $a \in[0,1]$, $a x+(1-a) x^{\prime} \in \Psi$. Indeed, we have:

$$
\begin{align*}
a x+(1-a) x^{\prime} & =a \bar{x}+(1-a) \bar{x}^{\prime} \\
& =a(\rho-\bar{r})+(1-a)\left(\rho-\bar{r}^{\prime}\right) \\
& =\rho-\left(a \bar{r}+(1-a) \bar{r}^{\prime}\right) \tag{2.43}
\end{align*}
$$

By the convexity of \mathcal{P}, we know that $a \bar{r}+(1-a) \bar{r}^{\prime} \in \mathcal{P}$ and subsequently, $\rho-\left(a \bar{r}+(1-a) \bar{r}^{\prime}\right) \in \Psi$. This concludes the proof.

We have just shown that on all arrival traces with system load $\rho, \lim _{t \rightarrow \infty} \frac{X(t)}{t}=\eta$, is unique. Furthermore, the limit, η, is identical across all such traces. This concludes the proof of Theorem 2.1

References

[1] K. Ross and N. Bambos. Projective Cone Schedules (PCS) Algorithms for Packet Switches of Maximal Throughput. IEEE/ACM Transactions on Networking, 17(3):976-989, 2009.
[2] M. Armony and N. Bambos. Queueing dynamics and maximal throughput scheduling in switched processing systems. Queueing Systems, 44(3):209-252, 2003.

[^0]: ${ }^{1}$ cwchan@columbia.edu; Columbia Business School
 ${ }^{2}$ marmony@stern.nyu.edu; Stern Business School, NYU
 ${ }^{3}$ bambos@stanford.edu; Stanford University
 ${ }^{4}$ See footnote 12 of [1] concerning why such a subsequence exists

