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Abstract

Mathematical results on some models describing the motion of a tracer particle
through a Bose-Einstein condensate are described. In the limit of a very dense,
very weakly interacting Bose gas and for a very large particle mass, the dynamics
of the coupled system is determined by classical non-linear Hamiltonian equations
of motion. The particle’s motion exhibits deceleration corresponding to friction
(with memory) caused by the emission of Cerenkov radiation of gapless modes
into the gas.

Precise results are stated and outlines of proofs are presented. Some technical
details are deferred to forthcoming papers.

1 Background from Physics

In this introductory section, we recall some results of an analysis presented in a
companion paper [3].

The physical system studied in this paper consists of a heavy, non-relativistic
tracer particle interacting with the non-relativistic atoms in a Bose gas. Our
purpose is to introduce some mathematical models describing this system and to
analyze their properties in the limiting regime where the density of the Bose gas
becomes very large, the interactions between atoms in the gas become very weak,
and the mass of the tracer particle is very large. This regime is commonly called
“mean-field limit”. In this limit, the dynamics of the system is determined by clas-
sical, nonlinear Hamiltonian equations of motion. If the gas exhibits Bose-Einstein
condensation these equations describe a process of emission of gapless modes into
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the gas by the tracer particle analogous to the Cerenkov radiation emitted by a fast
charged particle moving through an optically dense medium, [5, 6, 3]. The emission
of Cerenkov radiation causes a deceleration of the particle’s motion. Our models
thus describe a Hamiltonian mechanism of friction with memory. Our aim is to
describe mathematical results on the simplest model exhibiting this mechanism.

We start by considering a gas of n bosonic atoms confined to some cubical region,
Λ, of physical space R3. The pure states of this gas are unit rays in the Hilbert
space

H(n)
G = L2(Λ, d3x)⊗sn (1.1)

where ⊗s denotes the symmetric tensor product expressing our assumption that
the atoms obey Bose-Einstein statistics. The Hamiltonian of the gas is given by
the operator

H
(n)
G := −

n∑
k=1

1

2m
∆Λ
xk

+ λ
∑

1≤k≤l≤n

φ(xk − xl), (1.2)

where m is the mass of an atom, ∆Λ
x denotes the Laplacian on L2(Λ, d3x) with,

e.g., periodic boundary conditions at ∂Λ, λ ≥ 0 is a coupling constant, and φ is a
bounded two-body potential of positive type and of fast decay at infinity.

The state space of the tracer particle is given by

Hp := L2(Λ, d3x) (1.3)

and its Hamiltonian is chosen to be

Hp := − 1

2M
∆

(Λ)
X + V (X), (1.4)

where M is the mass and X ∈ Λ the position of the particle, and V (X) is the
potential of an external force. The interaction of the particle with the gas is given
by

HI := g
n∑
k=1

W (xk −X), (1.5)

where W is a bounded two-body potential of fast decay at infinity, and g is a
coupling constant.

The Hilbert space of the total system is

H(n) = Hp ⊗H(n)
G , (1.6)

and the total Hamiltonian is the operator

H̃(n) = Hp +H
(n)
G +HI , (1.7)
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where Hp stands for Hp ⊗ I|H(n)
G

and H
(n)
G for I|Hp ⊗H

(n)
G .

We will be interested in studying the properties of this system in the thermo-
dynamic limit

Λ↗ R3, with ρ :=
n

|Λ|
kept fixed, (1.8)

where |Λ| denotes the volume of Λ and ρ is the particle density of the gas. For
this purpose, it is convenient to describe our model in the formalism of second
quantization.

The bosonic Fock space of the Bose gas is the Hilbert space

FG := ⊕∞n=0H
(n)
G , (1.9)

the total Hilbert space is given by

H = Hp ⊗FG, (1.10)

and the Hamiltonian by
H̃ = ⊕∞n=0H̃

n|H(n) . (1.11)

In order to tune the density of the Bose gas in states of small total energy to a
desired value ≈ ρ, we replace the operator H̃ by

H := ⊕∞n=0(H̃(n) − µn)|Hn + constant. (1.12)

Note that, on states of a fixed number, n, of atoms, H differs from H̃ just by
the constant - µn + constant, and hence describes the same physics. Setting
µ := λφ̂(0)ρ − λ

2
φ(0), constant := −gŴ (0)ρ + λ

2
φ̂(0)ρ2|Λ|, where ˆ indicates

Fourier transformation, we find for H, in the formalism of second quantization,
the expression

H = − 1
2M

∆X + V (X) +
∫

1
2m

(∇a∗)(x)(∇a)(x) d3x

+g
∫
W (x−X)(a∗(x)a(x)− ρ) d3x

+λ
2

∫ ∫
(a∗(x)a(x)− ρ)φ(x− y)(a∗(y)a(y)− ρ) d3xd3y,

(1.13)

where reference to the integration domain Λ is omitted and where the operators
a∗(x) and a(x) are the usual creation- and annihilation operators on FG. They are
operator-valued distributions on FG satisfying the canonical commutation relations

[a#(x), a#(y)] = 0, [a(x), a∗(y)] = δ(x− y)I, (1.14)

a# := a or a∗.
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We are interested in analyzing the dynamics of the system described by Equa-
tions (1.10), (1.13) and (1.14) in the thermodynamic limit, Λ↗ R3. In particular,
we would like to determine the states of lowest total energy, i.e., the ground states
of H. This poses a formidable mathematical problem that is far from being under-
stood rigorously. In order to simplify matters, we propose to study the following
limiting regime (“mean-field limit”): Let N > 0 be a parameter that will eventually
be taken to ∞. We set

ρ = N
ρ0

g2
, λ = N−1λ0g

2, M = NM0, V (X) = NV0(X) (1.15)

where ρ0, g, λ0, M0 and V0(X) are fixed (i.e., N -independent). For physical moti-
vation underlying the choice (1.15), see [3]. We set

b#
N(x) := N−

1
2a#(x)−

√
ρ0

g2
. (1.16)

The operators b∗N(x) and bN(x) are creation- and annihilation operators satisfying
the commutation relations

[b#
N(x), b#

N(y)] = 0, [bN(x), b∗N(y)] = N−1δ(x− y)I. (1.17)

In the new variables the Hamiltonian H introduced in (1.13) is given by

H = NHN (1.18)

where

HN := − 1
2N2M0

∆X + V0(X) +
∫

1
2m

(∇b∗N)(x)(∇bN)(x) d3x

+g
∫
W (x−X){b∗N(x)bN(x) +

√
ρ0

g2 (b∗N(x) + b∗N(x))} d3x

+λ0g2

2

∫ ∫
[b∗N(x)bN(x) +

√
ρ0

g2 (b∗N(x) + b∗N(x))]φ(x− y) ×

[b∗N(y)bN(y) +
√

ρ0

g2 (b∗N(y) + b∗N(y))] d3xd3y.

(1.19)

The Schrödinger equation for the time evolution of states, Ψt, in the Hilbert space
H introduced in (1.10) has the form

i
∂

∂t
Ψt = HΨt ⇐⇒ iN−1 ∂

∂t
Ψt = HNΨt. (1.20)

Considering Equations (1.15), (1.17), (1.19) and (1.20), we see that N−1 plays
the role of Planck’s constant ~ and that the mean-field limit, N →∞, is equivalent
to a classical limit, (~ ↘ 0). From Equations (1.17) through (1.20) it is easy to
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heuristically derive the classical Hamiltonian dynamics emerging in the mean-field
limit.

The phase space of the limiting classical system is given by

Γ := R6 ×H1(R3), (1.21)

where H1(R3) is complex Sobolev space over R3.
We choose the usual position- and momentum coordinates (X,P ) on R6 and

complex coordinate functions (β(x), β̄(x)) on H1(R3). The standard symplectic
structure on Γ yields the Poisson brackets

{X i, Xj} = {Pi, Pj} = 0, {X i, Pj} = δij, (1.22)

i, j,= 1, 2, 3, and

{β(x), β(y)} = {β̄(x), β̄(y)} = 0, {β(x), β̄(y)} = iδ(x− y). (1.23)

Corresponding to the Hamiltonian HN we consider the Hamilton functional

H = H(X,P ; β, β̄)

:= P 2

2M0
+ V0(X) +

∫
1

2m
|∇β(x)|2 d3x

+g
∫
W (x−X){|β(x)|2 + 2

√
ρ0

g2Reβ(x)} d3x

+λ0g2

2

∫ ∫
[|β(x)|2 + 2

√
ρ0

g2Reβ(x)]φ(x− y)[|β(y)|2 + 2
√

ρ0

g2Reβ(y)] d3xd3y.

(1.24)

Setting α(x) = β(x) +
√

ρ0

g2 , the Hamilton functional H is seen to be given by

H = P 2

2M0
+ V0(X) + 1

2m

∫
|∇α(x)|2 d3x

+ g
∫
W (x−X)(|α(x)|2 − ρ0

g2 ) d3x

+ λ0g2

2

∫ ∫
(|α(x)|2 − ρ0

g2 )φ(x− y)(|α(y)|2 − ρ0

g2 ) d3xd3y,

(1.25)

and the equations of motion are found to be

Ẋt =
Pt
M
, Ṗt = −∇V (Xt) + g

∫
(∇W )(x−Xt)(|αt(x)|2 − ρ0

g2
) (1.26)

and

iα̇t(x) = (− 1

2m
∆ + gW (x−Xt))αt(x) + λ0g

2(φ ∗ (|αt(x)|2− ρ0

g2
))(x)αt(x), (1.27)

where ∗ indicates a convolution. Setting W ≡ 0, we find the explicit ground state
solutions

Ṗt = 0, Xt = X∗ : a minimum of V0(X),

αt = α∗ = eiθ
√

ρ0

g2 ,
(1.28)
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where θ is an arbitrary phase. These solutions show that, for ρ0 > 0, the continuous
gauge symmetry

α(x)→ eiθα(x), ᾱ(x)→ e−iθᾱ(x)

of the Hamilton functional (1.25) is spontaneously broken in the ground states,
which corresponds to Bose-Einstein condensation. One then expects that the Bose
gas exhibits gapless (Goldstone) modes at zero temperature. In [3], the ground
state solutions are constructed for W 6= 0.

It has been shown in [4] that, in a finite periodic box (torus) Λ, the dynamics
of the quantum system with initial conditions given by a “coherent state” in H
is given by evolving the coherent state along a solution of (1.26), (1.27), with
harmonic quantum fluctuations of amplitude O( 1√

N
) around the classical solution,

as N → ∞. The spectrum of these fluctuations is found by linearizing Equations
(1.26), (1.27) around a given classical solution. For W ≡ 0, and choosing the
classical solutions to be given by a ground state (1.28), the frequency spectrum
of the harmonic quantum fluctuations of the Bose gas can be found by passing to
the “Bogoliubov limit” g → 0. One then finds the dispersion law

ω(k) = |k|
√

k2

4m2
+
λ0ρ0

m
φ̂(k) ≈ v∗|k|, as |k| → 0, (1.29)

where k ∈ Λ∗ is the wave vector of a normal mode and v∗ =
√

λ0ρ0

m
φ̂(0) is the speed

of sound in the Bose gas; see [1, 3], and [7] for a somewhat different approach.
It is a challenging open problem to find out whether the mean-field limit N →∞

and the thermodynamic limit Λ ↗ R3 can be interchanged. (It is not surprising
that this problem is difficult, because there is no mathematically rigorous under-
standing of Bose-Einstein condensation in an interacting Bose gas, in the thermo-
dynamic limit.) However, for an ideal Bose gas (λ0 = 0) and in the Bogoliubov
limit (g = 0), this problem is understood, [4].

From now on, we suppose that we first pass to the mean-field limit and then to
the thermodynamic limit or that we consider models in the Bogoliubov limit.

Our analysis shows that, for vanishing potentialsW and V0, the energy-momentum
spectrum of the linear quantum fluctuations of the system is as indicated in Figure
1.
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|P |

E
P 2

2M

P? = Mv?

We observe that, for |P | > P∗ = Mv∗, the energy, P 2

2M
, of a tracer particle with

momentum P is embedded in the continuous energy spectrum. Standard ideas of
resonance theory suggest that if the interactions between the tracer particle and the
atoms in the Bose gas are turned on, i.e., for W 6= 0, a state of the tracer particle
corresponding to steady motion at a velocity v = P

M
, with |v| ≥ v∗, is unstable and

decays into states of smaller velocity by emission of gapless modes into the Bose
gas (Cerenkov radiation); i.e., the particle motion undergoes deceleration until the
speed of the particle has dropped to a value below v∗, see [6, 3]. Spectral results
that go in the direction of confirming this picture have been established in [2]. To
summarize, we note that, apparently, the motion of a tracer particle interacting
with the atoms of a condensed Bose gas exhibits friction by emission of Cerenkov
radiation until the speed of the particle is below the speed of sound of the Bose
gas.

In this paper, we present mathematical results confirming this picture for the
simplest models corresponding to λ0 = 0, i.e., for an ideal Bose gas, in the mean-
field limit. In these models, the speed of sound vanishes, i.e. v∗ = 0, and the
friction mechanism is at work until the particle comes to rest. In the variables
(X,P, β, β̄), the equations of motion are given by

Ẋt = Pt
M0
,

Ṗt = −∇V0(X) + g
∫

(∇WXt)(x)(|βt(x)|2 + 2
√

ρ0

g2Reβt(x)) d3x

and
iβ̇t(x) = (hXt)βt(x) +

√
ρ0W

Xt(x), (1.30)
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where WX(x) := W (x−X) and

hX := − 1

2m
∆ + gWX . (1.31)

In order to simplify our notations, we set m = 1 and
√
ρ0 =: κ. We assume that

V0 is smooth and W is smooth, spherically symmetric, of rapid decay at infinity,
and such that

∫
W (x) d3x = Ŵ (0) 6= 0. Moreover, for reasons of stability of the

system, we choose g to be so small that hX does not have any bound states and
zero-energy resonances.

It is reasonable to expect that

Pt → 0, Xt → X∞, (1.32)

where X∞ is a (local) minimum of V0, and

β̇t → 0, i.e., βt → −κ(hX∞)−1WX∞ , (1.33)

as time t tends to ∞. We are interested in establishing (1.32) and (1.33) and to
find out how |Pt| tends to 0, as t → 0, for a physically reasonable class of initial
conditions and sufficiently small values of g.

In order to develop some intuition into the behavior of |Pt| for large times t, we
consider a steady motion of the tracer particle under the influence of a constant
external force, i.e. for V0(x) = −F ·X, in the limit where g → 0; (the “B-model”
in the classification of [3]). Such a motion is a solution of the following equations:

Ẋt = v, 0 = Ṗt = F + 2κ

∫
(∇WX0+vt)(x)Reβt(x) d3x, (1.34)

where (X0, P0 = M0v) are the initial conditions for the tracer particle, and

βt(x) = γ(x−X0 − vt),
where γ solves the equation

− iv · (∇γ)(x) = −1

2
(∆γ)(x) + κW (x). (1.35)

The Fourier transformation, γ̂(k), of the solution of (1.35) is given by

γ̂(k) = −2κ
Ŵ (k)

(k − v)2 − v2 − i0
. (1.36)

Note that γ̂ is singular on the sphere {k||k − v| = |v|}. Changing variables, p :=
k − v, and plugging (1.36) into (1.34), we find that

F = −Re4κ
∫
i(p+ v) |Ŵ (p+v)|2

p2−v2−i0 d3p

= 8κπ
∫

(p+ v)|Ŵ (p+ v)|2δ(p2 − v2) d3p.
(1.37)
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(1.37) can be viewed as an instance of Fermi’s Golden Rule; see [3]. If W is of
short range and |F | is small, so that |v| will turn out to be small, too, we may

replace |Ŵ (p+ v)|2 by |Ŵ (0)|2 on the right hand side of (1.37). Then

F ≈ (4π)2κŴ (0)v2v̂, (1.38)

where v̂ is the unit vector in the direction of v. Not surprisingly, it follows that F
and v are parallel.

Let us now assume that F is taken to 0, but that, at large times when |Ṗt| is
very small, with Pt

M
≈ v = constant, the state of the Bose gas is close to βt(x) =

γ(x−X0−vt), where γ is the solution of (1.35) just constructed. Then the motion
of the tracer particle can be found by solving the equations of motion

M0v̇ = −(4π)2κŴ (0)v2v̂. (1.39)

Choosing initial conditions P0 = M0u0~ez (where ~ez is the unit vector in the z-
direction), we find that Pt = M0ut~ez, where

u̇t = −Cu2
t , (C = (4π)2κM−1

0 Ŵ (0))

so that

ut = (Ct+
1

u0

)−1.

Thus

|Pt| = O(
1

t
), as t→∞, (1.40)

and it follows that

|Xt| =
∫ t

0

ut dt→∞, (1.41)

as t→∞.
This heuristic analysis also shows that if |Ŵ (k)| = O(|k|−ε), ε > 0, or for a

particle in a confining external potential V0 with non-degenerate minima, or for a
two-dimensional system with Ŵ (0) 6= 0, but V0 ≡ 0, Xt is predicted to converge
to a finite point X∞, as t→∞.

The problem with these arguments is that the initial condition of the Bose gas,
β0(x) = γ(x−X0), with γ as in (1.35), (1.36), is highly singular and has infinite
energy, and this is unnatural, physically. We propose to analyze the motion of the
particle with initial conditions given by

(Xt=0, Pt=0) = (X0,M0v), |v| small, βt=0 = β0

where β0 is small and of reasonably fast decay at infinity. Then the effective
equations of motion for the particle exhibit memory effects, and it becomes more
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subtle to find out how |Pt| decays to 0, as t → ∞. This is the problem we wish
to solve in this paper for the simplest model with λ0 = 0 and g → 0. We hope to
treat models with λ0 > 0 in the “Bogoliubov limit”, g → 0, in future work.

2 Mathematical Results on Friction in an Ideal Bose Gas,
and Strategy of Proofs

We set the coupling constant λ0 to 0 and assume that the potential W

(A1) is smooth;

(A2) decays to 0 exponentially at ∞;

(A3) is spherically symmetric; and

(A4) has the property that Ŵ (0) 6= 0.

We state our results for the so-called B-model, λ0 = 0, g → 0, V0 ≡ 0. The
equations of motion then have the following form (see (1.30), (1.31)):

Ẋt = Pt
M0
, Ṗt = 2κ

∫
(∇WXt) Reβt

iβ̇t = −1
2
∆βt + κWXt ,

(2.1)

with κ =
√
ρ0, WX(x) = W (x−X).

Our main result is the following theorem.

Theorem 2.1. For an arbitrary δ ∈ (0, δ∗), where δ∗ > 0 is some constant, there
exists an ε = ε(δ) > 0 such that if

‖〈x〉3β0‖2 ≤ ε, |P0| ≤ ε, (2.2)

with 〈x〉 =
√

1 + |x|2, then

|Pt| ≤ const t−
1
2
−δ, as t→∞, (2.3)

and
lim
t→∞
‖βt − 2κ(∆)−1WXt‖∞ = 0. (2.4)

Remarks.

(1) We do not have a simple explicit formula for the exponent δ, and it is not clear
whether it is universal (independent of initial conditions).

(2) Assumption (A4), which plays a critical role in our analysis, implies that
∆−1WX 6∈ L2(R3, d3x). In contrast, if λ0 is positive we expect that βt remains
uniformly square-integrable, as t→∞.
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Next, we outline the strategy of the proofs of our main results: The equations
of motion (2.1) are a system of semilinear integro-differential equations. We solve
the equation for β·, given the particle trajectory X·, and plug the result into the
equation for P·. We derive, in Subsection 3.1 below, an effective integro-differential
equation for P· of the form

Ṗt = L1(P·)(t) + L2(P·)(t) +N(P·)(t), (2.5)

where L1 and L2 are linear operators from the space Υ[0,t] := {Ps ∈ R3|0 ≤ s ≤ t}
of momentum trajectories to R3, and N is a non-linear operator from Υ[0,t] to R3.
The operator L1 is of convolution type, i.e.,

L1(P·)(t) = −
∫ t

0

ds f(t− s)Ps, (2.6)

where
f(s) = ZRe〈W, ei

∆s
2 W 〉, (2.7)

with 〈·, ·〉 the scalar product on L2(R3, d3x) and Z some positive constant. The
operator L2 is given by

L2(P·)(t) = f(t)

∫ t

0

Ps ds. (2.8)

Let Kt ∈ R, t ∈ [0,∞), be the solution of the linear equation

K̇t = L1(K·)(t) = −
∫ t

0
ds f(t− s)Ks,

K0 = 1.
(2.9)

By Duhamel’s principle, Eq. (2.5) can then be converted into the integral equation

Pt = KtP0 +

∫ t

0

ds Kt−sL2(P·)(s) +

∫ t

0

ds Kt−sN(P·)(s). (2.10)

It is easy to derive from the properties of the function f that Kt = O(t−
1
2 ), as

t → ∞ (see (3.11) below). From this we infer that the terms on the right hand

side of (2.10) do not decay faster than t−
1
2 , as t → ∞. This is disappointing,

and we propose to show that the leading terms on the right hand side of (2.10)

cancel each other to yield a decay of O(t−
1
2
−δ), as t → ∞, for some δ > 0. This

cancellation is exhibited as follows: We integrate (2.5) over time to find that

Pt = P0 +

∫ t

0

ds L1(P·)(s) +

∫ t

0

ds L2(P·)(s) +

∫ t

0

ds N(P·)(s).
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Multiplying this equation byKt and subtracting the resulting equation from (2.10),
we obtain

Pt(1−Kt) = −Kt

∫ t
0
ds L1(P·)(s) +

∫ t
0
ds (Kt−s −Kt)L2(P·)(s)

+
∫ t

0
ds (Kt−s −Kt)N(P·)(s).

(2.11)

The first term on the right hand side of (2.11) does not have an improved decay
in time, yet. We rewrite the second term so as to cancel the leading contribution
to the first term. Using (2.8), we find

−
∫ t

0
ds (Kt−s −Kt)f(s)

∫ s
0
du Pu

=
∫ t

0
ds (Kt−s −Kt)f(s)

∫ t
s
du Pu −

∫ t
0
ds (Kt−s −Kt)f(s)

∫ t
0
du Pu

=
∫ t

0
ds (Kt−s −Kt)f(s)

∫ t
s
du Pu −

∫ t
0
ds Kt−sf(s)

∫ t
0
du Pu

+Kt

∫ t
0
ds f(s)

∫ t
0
du Pu.

(2.12)

Using expression (2.7) for f(s), the last term on the right hand side of (2.12) is
found to be given by

2KtRe〈W, (i∆)−1ei
∆t
2 W 〉

∫ t

0

du Pu, (2.13)

where we have used that Re〈W, (i∆)−1W 〉 = 0. The first term on the right hand
side of (2.11) is rewritten as follows

−Kt

∫ t
0
ds L1(P·)(s) = −Kt

∫ t
0
ds

∫ s
0
du f(s− u)Pu

= −Kt

∫ t
0
ds

∫ s
0
du Re〈W, ei

∆(s−u)
2 W 〉Pu

= −2KtRe〈W, (i∆)−1
∫ t

0
du ei

∆(t−u)
2 W 〉Pu,

(2.14)

where we have used integration by parts and Re〈W, (i∆)−1W 〉 = 0. Combining
(2.12) and (2.14) we find that

Pt(1−Kt) = 2ZKtRe〈W, (i∆)−1
∫ t

0
ds [ei

∆(t−s)
2 − ei∆t

2 ]W 〉Ps

+Z
∫ t

0
ds (Kt−s −Kt)Re〈W, ei

∆s
2 W 〉

∫ t
s
du Pu

−Z
∫ t

0
ds Kt−sRe〈W, ei

∆s
2 W 〉

∫ t
0
du Pu

+
∫ t

0
ds (Kt−s −Kt)N(P·)(s).

(2.15)
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Among the terms on the right hand side of (2.15), the third term looks trouble-

some. In order to show that it has the desired decay, O(t−
1
2
−δ), with δ > 0, we

recall that

Z
∫ t

0
ds Kt−sRe〈W, ei

∆s
2 W 〉 =

∫ t
0
ds Kt−sf(s) = L1(K·)(t) = K̇t. (2.16)

Since Kt = O(t−
1
2 ), we may expect that K̇t = O(t−

3
2 ), and this is indeed the case.

Making the self-consistent assumption that Pt = O(t−
1
2
−δ), for some δ > 0, we

find that all the terms on the right hand side of (2.15) have the appropriate decay
in t. In order to extract the decay of Pt in t from (2.15) in a rigorous manner,
we would like to convert (2.15) into an integral equation for Pt by dividing both
sides by 1 − Kt. Since Kt → 1, as t → 0, some care is needed for small values
of t. Since we know that Kt → 0, as t → ∞, it suffices to “wait long enough”
before dividing by 1 − Kt. This amounts to dividing the time axis [0,∞) into
two subintervals, [0, T ] and [T,∞), where T is chosen so large that Kt ≤ ε, for
t ≥ T , with ε small enough. On the interval [0, T ], we use standard existence and
uniqueness theorems to solve Eq. (2.10), and, on the interval [T,∞), Eq. (2.11) is
rewritten appropriately with an inhomogenous part depending on {Ps}0≤s≤T . The
resulting equation is interpreted as an equation on a Banach space

Bδ,T := {P·| |t
1
2

+δ||Pt| uniformly bounded for t ∈ [T,∞)}

with the norm
‖P·‖δ,T := ‖χ[T,∞)t

1
2

+δP‖∞
where χI denotes the characteristic function of the interval I ⊂ R. The idea is then
to show that, for an appropriate choice of δ > 0, the equation can be solved in Bδ,T
by a standard fixed-point theorem.

We will discuss some key elements in applying the fixed-point theorem in Sub-
section 3.2.

3 Some Technical Details of the Proof

In this section we explain two elements of our proof: one is to derive Eq. (2.5), the
second one is to show how to make a fixed-point theorem applicable. For a more
detailed presentation we refer to a forthcoming paper.
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3.1 Derivation of (2.5)

We begin by recasting equations (2.1) in a more convenient form. We define a
function δt by

βt =: −2κ(−∆)−1WXt + δt .

The equation for βt implies one for δt, and using Duhamel’s principle, we find that

δt = eı ∆t
2 β0 + 2κeı ∆t

2 (−∆)−1WX0 − 2κ

M0

∫ t

0

ds eı
∆(t−s)

2 (−∆)−1Ps · ∇xW
Xs .

Plugging this equation into the equation for Ṗt we obtain, after some manipulation,

Ṗt = 2κRe 〈∇xW
Xt , eı ∆t

2 β0〉+ 4κ2Re 〈∇xW , eı ∆t
2 (−∆)−1WX0−Xt〉

− 4κ2

M0
Re 〈∇xW ,

∫ t
0
ds eı

∆(t−s)
2 (−∆)−1Ps · ∇xW

Xs−Xt〉 .
(3.1)

Remark: Here we have used the spherical symmetry of W to cancel terms of the
form 〈∇xW ,S〉, where S is spherically symmetric. The fact that such terms vanish
will be used repeatedly.

Next, we isolate the terms linear in P .

Re 〈∇xW , eı ∆t
2 (−∆)−1WX0−Xt〉 = Re 〈∇xW , eı ∆t

2 (−∆)−1(WX0−Xt −W )〉

=
1

M0

Re 〈∇xW , eı ∆t
2 (−∆)−1

∫ t

0

ds Ps · ∇xW 〉

+
1

M0

Re 〈∇xW , eı ∆t
2 (−∆)−1

∫ t

0

ds Ps · ∇x[W
X0−Xs −W ]〉 .

Proceeding with the other term in (3.1) in a similar way, we arrive at the equation

Ṗt = −4κ2

M0
Re 〈∇xW ,

∫ t
0
ds eı

∆(t−s)
2 (−∆)−1Ps · ∇xW 〉

+4κ2

M0
Re 〈∇xW , eı ∆t

2 (−∆)−1
∫ t

0
ds Ps · ∇xW 〉

+N(P )(t) ,

(3.2)

where

N(P )(t) := 2κRe 〈∇xW
Xt , eı ∆t

2 β0〉
+4κ2

M0
Re 〈∇xW , eı ∆t

2 (−∆)−1
∫ t

0
ds Ps · ∇x[W

X0−Xs −W ]〉
−4κ2

M0
Re 〈∇xW ,

∫ t
0
ds eı

∆(t−s)
2 (−∆)−1Ps · ∇x[W

Xs−Xt −W ]〉
= 2κRe 〈∇xW

Xt , eı ∆t
2 β0〉

+4κ2

M2
0
Re 〈∇xW , eı ∆t

2 (−∆)−1
∫ t

0
ds Ps · ∇x

∫ s
0
ds1 Ps1 · ∇xW

X0−Xs1 〉
+4κ2

M2
0
Re 〈∇xW ,

∫ t
0
ds eı

∆(t−s)
2 (−∆)−1Ps · ∇x

∫ t
s
ds1 Ps1 · ∇xW

Xs1−Xt〉.
(3.3)
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Using that W is spherically symmetric, we have, for k = 1, 2, 3,

〈∂xkW , eı ∆t
2 (−∆)−1Ps · ∇xW 〉 =

1

3
P (k)
s 〈W , eı ∆t

2 W 〉 , (3.4)

where P (k) is the kth component of P, and (3.2) is thus found to have the form
(2.5).

3.2 A Fixed Point Theorem

To render the analysis after Eq. (2.15) rigorous, we reformulate (2.15) in the
following form:

Pt = 1
1−KtL(P·)(t) + 1

1−Kt

∫ t
0
ds (Kt−s −Kt)N(P·)(s)

= 1
1−KtL(χ[T,∞)P·)(t) + 1

1−Kt

∫ t
0
ds (Kt−s −Kt)[N(P·)(s)−N(χ[0,T )P·)(s)]

+ 1
1−KtL(χ[0,T )P·)(t) + 1

1−Kt

∫ t
0
ds (Kt−s −Kt)N(χ[0,T )P·)(s)

= Ã(χ[T,∞)P·)(t) + F̃ (χ[0,T )P·)(t)
(3.5)

where L is the linear part on the right hand side of (2.15), and the terms on the
last line are defined to be the first and the second lines after the second equality
sign.

To meet the criteria of applicability of a standard fixed-point theorem, we need
to establish the following results: (1) The term F̃ (χ[0,T )P·) is small in the Banach
space Bδ,T , for some δ > 0 and T > 0. This will be shown in (3.7), below. (2)

For some δ ∈ (0, 1
2
), the map Ã(χ[T,∞)·) : Bδ,T → Bδ,T is a contraction if restricted

to a sufficiently small neighborhood of 0. This is verified in (3.9), below. These
two facts, together with the observation that Ã(χ[T,∞)0) ≡ 0, obviously make a
standard fixed-point theorem applicable and hence imply global existence of a
solution in the space Bδ,T .

In what follows we sketch proofs of (1) and (2).
In order to see that F̃ (χ[0,T )P·) is small, for a suitable choice of initial conditions,

we observe that it is defined in terms of χ[0,T )P· and the initial condition β0;

moreover if P0 = 0 and β0 ≡ 0 then P· ≡ 0, which implies that F̃ ≡ 0. From
a simple proof of local existence of solutions we infer the following proposition.

Proposition 3.1. For any T > 0, there exists some ε = ε(T ) > 0 such that if
‖〈x〉−3β0‖2, |P0| ≤ ε then

|Pt| ≤ T−2, for any t ≤ T. (3.6)
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Moreover, for any δ ≤ 3
4
, there is an ε̃(T ) > 0 satisfying lim

T→∞
ε̃(T ) = 0 such that

‖F̃ (χ[0,T )P·)‖Bδ,T ≤ ε̃(T ). (3.7)

Now we turn to our sketch of the proof of (2). Define a function Ω : [0, 1
2
)→ R+

by

Ω(δ) :=
1

π

∫ 1

0

dr
1

1 + (1− r) 1
2

(1− r)−
1
2 [

1

1− 2δ
(r−

1
2 − r−δ) + r

1
2
−δ]. (3.8)

It is easy to find, by direct computation, that the set {δ|δ > 0, Ω(δ) < 1} is not
empty. One of our key results is the following theorem.

Theorem 3.2. If we restrict the domain of definition of Ã(χ[T,∞)·) to a ball in
the space Bδ,T around P· ≡ 0 of sufficiently small radius ε0, for some δ > 0, then

Ã(χ[T,∞)·) is a contractive map. Specifically if ‖P·‖Bδ,T , ‖Q·‖Bδ,T ≤ ε0 then

‖Ã(χ[T,∞)P·)− Ã(χ[T,∞)Q·)‖Bδ,T ≤ [Ω(δ) + ε]‖P· −Q·‖Bδ,T (3.9)

where ε = ε(|P0|, ‖〈x〉−3β0‖2, T ) has the property that ε(0, 0,∞) = 0.

In what follows we show how to derive (3.9). We focus our attention on two
terms on the right hand side of (2.15), namely

Γ1(χ[T,∞)q·)(t) := −Z
∫ t

0

ds [K(t− s)−K(s)]Re 〈W , eı ∆s
2 W 〉

∫ t

s

ds1 qs1χ[T,∞) ,

and

Γ2(χ[T,∞)q·)(t) := 2ZKt Re〈W, (i∆)−1

∫ t

0

ds [ei
∆(t−s)

2 − ei
∆t
2 ]W 〉χ[T,∞)qs,

where we write q for an arbitrary component of the vector P . By direct compu-
tation, and using observation (2.16), one can show that all the other terms in Ã
can be bounded by a small constant ε, (see (3.9)).

We define two functions Ω1, Ω2 : (0, 1
2
)→ R+ by

Ω1(δ) :=
1

(1− 2δ)π

∫ 1

0

dr
1

1 + (1− r) 1
2

(1− r)−
1
2 [r−

1
2 − r−δ] .

and

Ω2(δ) :=
1

π

∫ 1

0

dr
1

1 + (1− r) 1
2

(1− r)−
1
2 r

1
2
−δ .

Obviously
Ω(δ) = Ω1(δ) + Ω2(δ).

A key estimate is given in the following lemma.
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Lemma 3.3. There exists some ε(T ) > 0, with lim
T→∞

ε(T ) = 0, such that

‖Γk(χ[T,∞)q·)‖Bδ,T ≤ [Ωk + ε(T )]‖q‖Bδ,T , k = 1, 2. (3.10)

Proof. We focus on estimating Γ1; (the estimate on Γ2 can be derived in an almost
identical way and hence is omitted).

Using Eq. (2.9) and Fourier transformation we find, after some manipulations,
that there exists a constant CK ∈ R such that

ZK(t) =
1

4|Ŵ (0)|2
π−

5
2 t−

1
2 + CKt

−1 +O(t−
3
2 ). (3.11)

By standard techniques

Re 〈W , eı ∆t
2 W 〉 = −2π

3
2 t−

3
2 |Ŵ (0)|2 +O(t−

5
2 ) .

We define K̃, M̃ , Γ̃1 to approximate these functions,

ZK̃(t) :=
1

4|Ŵ (0)|2
π−

5
2 t−

1
2

M̃ := −2|Ŵ (0)|2π
3
2 t−

3
2

Γ̃1 := −Z
∫ t

0

ds [K̃(t− s)− K̃(s)]M̃(s)

∫ t

s

ds1 qs1 [1− χT (s1)] .

We then find that

|Γ̃1| ≤
1

2π

∫ t

0

ds [(t− s)−
1
2 − t−

1
2 ]s−

3
2

∫ t

s

ds1 |qs1|

≤ 1

(1− 2δ)π

∫ t

0

ds [(t− s)−
1
2 − t−

1
2 ]s−

3
2 (t

1
2
−δ − s

1
2
−δ)‖q·‖δ,T

=
1

(1− 2δ)π

∫ t

0

ds (t− s)−
1
2 t−

1
2

1

(t− s) 1
2 + t

1
2

s−
1
2 (t

1
2
−δ − s

1
2
−δ) ‖q·‖δ,T ,

Changing variables, s = rt, we obtain

|Γ̃1| ≤ t−
1
2
−δΩ1(δ)‖q·‖δ,T . (3.12)

In the following we estimate the remainder |Γ1 − Γ̃1|. Observe that K̃ and M̃

are good approximations of K and Re〈W, ei∆t
2 W 〉 only when t is sufficiently large.

Hence to estimate |Γ1− Γ̃1| we divide the integration domain [0, t] into three parts,
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[0, T
1
3 ], [T

1
3 , t−T 1

3 ], and [t−T 1
3 , t]. As the estimates on different intervals are very

similar, we only consider the first interval.

I1 :=Z

∫ T
1
3

0

ds [K(t− s)−K(s)]Re 〈W , eı ∆s
2 W 〉

∫ t

s

ds1 qs1 [1− χT (s1)]

−Z
∫ T

1
3

0

ds [K̃(t− s)− K̃(s)]M̃(s)

∫ t

s

ds1 qs1 [1− χT (s1)] .

By (3.11) we have that

|K(t− s)−K(t)| .t−
1
2 (t− s)−

1
2

s

t
1
2 + (t− s 1

2 )
+ (t− s)−1 − t−1 + t−

3
2

.t−
3
2 (1 + s),

because s ≤ T
1
3 , and t ≥ T . This, together with the fact that |K̃(t− s)− K̃(t)| .

t−
3
2 s, implies

|K(t− s)−K(t)||Re 〈W , eı ∆s
2 W 〉|+ |K̃(t− s)− K̃(t)||M̃(s)| . t−

3
2 s−

1
2 .

Plugging this into I1 we obtain that

|I1| . t−1−δ
∫ T

1
3

0

ds s−
1
2‖q·‖δ,T = t−1−δ2T

1
6‖q·‖δ,T . t−

1
2
−δT−

1
3‖q·‖δ,T .

All together, we conclude that

|Γ1| . t−
1
2
−δ[Ω1(δ) + ε(T )]‖q·‖δ,T ,

where ε(T )→ 0, as T →∞.

This completes the outline of our proof.
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