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ABSTRACT. We give a survey of the following six closely related topics:
(i) a general method for constructing a soliton hierarchy from a split-
ting of a loop algebra into positive and negative subalgebras, together
with a sequence of commuting positive elements, (ii) a method—based
on (i)—for constructing soliton hierarchies from a symmetric space, (iii)
the dressing action of the negative loop subgroup on the space of solu-
tions of the related soliton equation, (iv) classical Backlund, Christoffel,
Lie, and Ribaucour transformations for surfaces in three-space and their
relation to dressing actions, (v) methods for constructing a Lax pair
for the Gauss-Codazzi Equation of certain submanifolds that admit Lie
transforms, (vi) how soliton theory can be used to generalize classical
soliton surfaces to submanifolds of higher dimension and co-dimension.
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1. INTRODUCTION

Although it is difficult to give a formal definition of soliton equations,
it is generally agreed that a soliton equation is a non-linear wave equation
having the following properties (cf. [27, [3], 40, [54]):

Existence of explicit n-soliton solutions

A solitary wave is a traveling wave of the form u(x,t) = f(z — ct) for
some smooth function f that decays rapidly as |z| — oco. An n-soliton
solution is a solution that is asymptotic to a nontrivial sum of n solitary
waves y - fi(x — ¢it) as t — —oo and to the sum of the same waves
S file — ¢it + 1) with some nonzero phase shifts r; as ¢ — oo. In
other words, during nonlinear interaction, the individual solitary waves pass
through each other, keeping their velocities and shapes, but with phase
shifts.

ODE Backlund transformation

An ODE Bécklund transformation is a system of compatible ODEs asso-
ciated to a given solution of the soliton equation such that solutions of the
ODE system are again solutions of the soliton equation. If we apply these
transformations to the vacuum solutions repeatedly, then we get explicit
multi-soliton solutions.

Bi-Hamiltonian structure and commuting flows

A pair of Poisson structures ({, }o,{, }1) on M is called a bi-Hamiltonian
structure if co{, Yo + c1{, }1 is a Poisson structure for all constants cg,c;. A
soliton equation is an evolution equation on a function space. One important
property is that this function space admits a bi-Hamiltonian structure such
that the equation is Hamiltonian with respect to both Poisson structures.
Moreover, one can use these two Poisson structures to construct a hierarchy
of commuting Hamiltonian PDEs.

Lax pair and inverse scattering

A PDE for ¢ : R® — V is said to have a G-valued Lax pair or a zero
curvature formulation if there is a family of G-valued connection 1-forms )
on R™ written in terms of ¢ and derivatives of ¢ for A lies in an open subset
O of C such that the PDE for ¢ is given by the condition that 6, is flat for
all A\ € O, where G is a finite dimensional Lie algebra. The Lax pair gives
a linear system with a “spectral parameter” A. The scattering data of a
solution is the “singularity” of parallel frames of 8. The inverse scattering
reconstructs the solution from its scattering data (cf. [5] 54]).

The above properties will be discussed in more detail in later sections.
Soliton equations also have algebraic geometric solutions via the spectral
curve formulation (cf. [36]), a tau function and a Virasoro action (cf. [63,
61]).

Model soliton equations
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Below are some soliton equations found in 1960s and 70s: The Korteweg-
de Vries equation (KdV)

1
qt = Z(q:c:c:c + GQQS{:)7
the non-linear Schrédinger equation (NLS) [64]
i

5 (tae + 2|q|%q),

qt
the modified KdV (mKdV)

1
qt = Z(q:c:c:c + 6q2QJ:)7

the sine-Gordon equation (SGE)

qat = Sing,
and the 3-wave equation [65] for u = (u;;) € su(3) with u; = 0for 1 < ¢ < 3:
bi —b; b, — b; . -
(uij)e = ai — ajj (wij)z + - ajj UikUkj, 1 <4,j,k < 3 distinct,

where a1, a9, as are fixed distinct real numbers and by, b, b3 are fixed real
constants. Although KdV and SGE as soliton equations were discovered in
the 1960s and 1970s, they were already studied in the nineteen century.

Construction of soliton hierarchy from splittings of Lie algebras

Zakharov-Shabat found a sl(2)-valued Lax pair for NLS in [64], Ablowitz-
Kaup-Newell-Segur [I] found sl(2)-valued Lax pairs for KdV, mKdV, and
SGE, Zakharov-Shabat [65] considered equations admitting a zero curva-
ture formulation depending rationally on A, Adler [4] derived KdV from a
splitting of the Lie algebra of pseudo-differential operators on the real line,
Kupershmidt-Wilson [37] found a n x n generalization of mKdV, Drinfeld-
Sokolov [27] and Wilson [63] constructed soliton hierarchies from splitting
of loop algebras. These works led to a general method to construct soli-
ton equations from a splitting of Lie algebras. Many properties of soliton
equations can be derived in a unifying way from Lie algebra splittings (cf.
127, 63, 57]).
Soliton hierarchy associated to symmetric spaces

Given a symmetric space %, there is a natural Lie subalgebra L of the
Lie algebra of loops in 4 ® C and a splitting of £, where U/ is the Lie
algebra of U. We call the soliton hierarchy constructed from this splitting

the %—hierarchy. For example, the SU(2)-hierarchy contains NLS, the gggg—
hierarchy contains the mKdV, and the SU(3)-hierarchy contains the 3-wave
equation. If the rank of % is n, then the first n flows in the %—hierarchy
are PDEs of first order similar to the 3-wave equation. We put these first

n flows together to construct the %—system in [51]. It turns out that many

%-systems are Gauss-Codazzi equations for special classes of submanifolds

admitting geometric transforms.
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Soliton equations in classical differential geometry

Soliton equations were also found in classical differential geometry. The
SGE arose first through the theory of surfaces of constant Gauss curvature
K = —1in R3, and the reduced 3-wave equation can be found in Darboux’s
work [23] on triply orthogonal coordinate systems of R3. In 1906, da Rios,
a student of Levi-Civita, wrote a master’s thesis, in which he modeled the
movement of a thin vortex by the motion of a curve propagating in R?
along its binormal with curvature as speed. It was much later, in 1971,
that Hasimoto showed the equivalence of this system with the NLS. These
equations were rediscovered independently of their geometric history. The
main contribution of the classical geometers lies in their methods for con-
structing explicit solutions of these equations from geometric transforms.
For example:

K = —1 surfaces in R3, SGE, and Bécklund transforms [2§]

There is a Tchebyshef line of curvature coordinate system on surfaces
in R3 with K = —1 such that the Gauss-Codazzi equation written in this
coordinate system is the SGE. Given a surface M with K = —1 in R?, there
is a one parameter family of new surfaces of curvature —1 related to M by
Bécklund transformations (a special type of line congruence, see section [3)).
Moreover, this family of new K = —1 surfaces can be constructed from a
system of ODEs and infinitely many families of explicit solutions of SGE
are constructed.

Isothermic surfaces in R? and Ribaucour transforms [22]

A surface in R? is called isothermic if it is parametrized by a conformal
line of curvature coordinate system. The Gauss-Codazzi equation written
as a first order system is a soliton equation. Given an isothermic surface M
in R3, there is a family of isothermic surfaces related to M by Ribaucour
transforms (a special type of sphere congruence, see section @l). Moreover,
this family of new isothermic surfaces can be constructed by solving a system
of compatible ODEs.

Higher dimension generalizations via differential geometry

In late 1970s, S. S. Chern suggested to Tenenblat and the author that the
Gauss-Codazzi Equation of n-submanifolds in R?"~! with negative constant
sectional curvature might be a new soliton equation in more than two vari-
ables. We found a good coordinate system to write down the Gauss-Codazzi
equations in terms of a map from R” to O(n) (the generalized sine-Gordon
equation GSGE), constructed Bécklund transformations, a permutability
formula, and explicit mutli-soliton solutions for GSGE in [49, 50]. Ablowitz,
Beals, and Tenenblat [2] constructed a Lax pair for GSGE and used the
inverse scattering method to solve the Cauchy problem for GSGE for small
rapidly decaying initial data on a non-characteristic line. Although GSGE
is a PDE in n variables, it is really a system of n commuting determined
hyperbolic systems in one space and one time variables. Tenenblat gener-
alized Bécklund theory to other space forms in [47]. Dajczer and Tojeiro
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constructed Ribaucour transforms for flat Lagrangian submanifolds in C™
and CP™ in [19], 20]. It turns out that all these geometric equations arise
naturally as %—Systems or twisted %-systems in soliton theory.

R-action and associated family

One reason why many soliton equations arise in submanifold geometry can
be seen from the method of moving frames: A local orthonormal frame g =
(e1,...,enqy) for a submanifold M™ in R"** is called adapted if ey, ..., en
are tangent to M. The Gauss-Codazzi equation (GCE) for M is given by
the flatness for the Maurer-Cartan form 6 = ¢g~!dg. Consider a class of
n-submanifolds in R"** satisfying a certain geometric condition. Suppose

(a) we can use this geometric condition to find a “good” coordinate
system on these submanifolds such that its Maurer-Cartan form 6
and hence the GCE has specially “simple” form,

(b) there is an R-action on solutions of the GCE, and we call an orbit
of the induced R-action on this class of submanifolds an associated
family.

Then the induced R-action on the Maurer-Cartan form often gives a Lax pair
for the Gauss-Codazzi equation, which is one of the characteristic properties
of soliton equations. Thus we call a class of submanifolds soliton submani-
folds if its Gauss-Codazzi equation is a soliton equation.

Higher dimension generalization via soliton theory

Constructions and generalization of geometric transforms for soliton sur-
faces in R? to submanifolds in R are beautiful but mysterious and usually
are done case by case. However, geometric transforms for soliton submani-
folds in R™ can be constructed in a unified way from the action of “simple”
rational loops on the space of solutions of soliton equations and the per-
mutability formula is then a consequence of the geometric transforms being
part of a group action. If the Gauss-Codazzi equation of a class of surfaces
in R? admitting geometric transforms is a soliton equation associated to a
rank 2 symmetric space, then we can often use the same type of symmetric
space of higher rank to construct a natural generalization of a class of soliton
surfaces in R? to higher dimension and co-dimension soliton submanifolds.
For example, the Gauss-Codazzi equation for Christoffel pairs of isothermic
surfaces in R? is the %—Sys‘cem [17], which led to a natural gen-
eralization to k tuples of isothermic k-submanifolds in R™ whose equation

is the %—sys‘cem. Moreover, the action of rational loops on this

%-System gives rise to natural generalizations of Ribaucour transforms and
permutability formulae for these k tuples of isothermic submanifolds in R"
(cf. [25]).

This article is organized as follows: We set up notations for the moving
frame method for submanifolds in section 2, review the classical notion of
line congruences and geometric Bicklund transformations for surfaces in R3
with K = —1 and n-submanifolds in R?"~! with constant sectional curvature



6 CHUU-LIAN TERNG*

—1 in section 3, and explain the notions of sphere congruences and Ribau-
cour transforms for isothermic surfaces in section 4. In section 5 we review
Combescure transforms, O surfaces, and k-tuples in R™ and the fact that
k-tuples in R™ give a natural generalization of isothermic surface theory to
arbitrary dimension and co-dimension isothermic submanifolds. In section
6 we derive the Lax pairs for Gauss-Codazzi equations using the moving
frame of the associated family for surfaces in R? with K = —1, isother-
mic surfaces, k-tuples in R™, and flat Lagrangian submanifolds in C". In
section 7 we give a brief discussion of the method of constructing soliton
hierarchies from splittings of loop algebras and derive formal inverse scat-
tering, commuting flows, and bi-Hamiltonian structure from the splitting.
We give definitions of %—system, twisted %—system, and the —1 flow on the
%-System and their Lax pairs in section 8. We review the construction of
the action of the group of rational maps f : S? = CU {oc} — Ugc such that
f(0o) =Tand f satisfies the %— reality condition on the space of solutions of
the %—system in section 9. In the final section, we give the relation between
the rational loop group action on the space of solutions of %—system and
geometric transformations of the corresponding soliton submanifolds.

The author selects only few classes of soliton submanifolds in Euclidean
space to explain the relation between various geometric transforms and
group actions on solutions of soliton equations. The reader may find more
examples of soliton submanifolds of space forms and symmetric spaces in
[47, [7, [30], 111 39, @ [10], soliton surfaces in affine geometry in [8] [62], and
soliton submanifolds of conformal geometry in [26] [13]. For the theory of
soliton equations, we refer the reader to |27, [3l 40] and for the theory of
transformations we refer the reader to [32] 48, B33]. We also refer to these
references for more complete lists of works related to soliton equations and
soliton submanifolds.

2. THE MOVING FRAME METHOD FOR SUBMANIFOLDS

Let f : M™ — R™* be an immersion, and (,) the standard inner product
on R™"* The first and second fundamental forms I,II and the induced
normal connection V+ form a complete set of local invariants and they
must satisfy the Gauss-Codazzi equations. Below we set up notations for
the method of moving frames of Cartan and Chern.

Let g = (e1,...,entr) be a local orthonormal frame on M such that
e1,...,en are tangent to M, and let wq,...,w, be the 1-forms on M dual
toeq,...,e,. Then

df = Zwiei. (2.1)
i=1

Since ¢g'g = I, the Maurer-Cartan form

w = (wap) := g ldg
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is o(n + k)-valued. In other words, dg = gw, i.e.,

n+k

dep = Z wapes, or equivalently, wap = (d€B7€A)'
A=1

We use the following index conventions:
1<i,j,bk<n, n+l1<afB,vy<n+k 1<ABC<n+k.
Then I,1I, V* are given by
n,n+k

I= Zn:w?, IT= Z Wiinea, Vieq = (des)t = Zwﬁaeﬁv
i=1 B

i=1,a=n+1

where ¢+ denotes the projection of ¢ onto v(M) along TM. The shape
operator A, along a normal vector v € v(M), is the self-adjoint operator on
T M, defined by (II(u1,us2),v) = (Ay(u1),u2) for all uj,us € TM,.

Lemma 2.1. Cartan Lemma

The Levi-Civita connection 1-form (wij)1<ij<n for I = >0 w? is ob-
tained by solving the structure equation:
n
dw; = — Zwij Nwj, wi+w;; =0, 1<14,7<n. (2.2)

=1

For example, the Levi-Civita connection 1-form (w;;) for a diagonal metric
I=3" a;i(x)*da? is

wij = (ai)xj d:EZ — M d:l?j. (2.3)
Qj a;

Gauss-Codazzi equations
Since w = ¢g~'dg, w is a flat o(n + k)-valued connection 1-form, i.e.,
dw = —w A w. Or equivalently,

dwap ==Y wac Awep, 1<A<n+k (2.4)
C

This gives the Gauss-Codazzi-Ricci equation for M:

Qij = dwij + Z Wik N Wi = Z Wiae N Wjar, (2.5)
k «a
dwio = = 3 wij Awja = D wis Awga, (2.6)
J B
Qth_B = dwap + Z Way N Wyg = Z Wia N\ Wig, (2.7)
gl i

where ();; and Qéﬂ are the curvature tensors for I and for the induced
normal connection V- respectively.
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Write w;q, = Zj h%wj. Then h% = h]‘?‘i and the matrix for the shape
operatorA., is (h%) with respect to the tangent basis ey, ..., e,. The Ricci
equation gives

Qiﬁ = Z Wi N\ Wig = Z hﬁhﬁwk A wy.
( ikl

Flat and non-degenerate normal bundle

The normal bundle is flat if the normal curvature is zero, i.e., Q(Jx-ﬁ =0,
or equivalently [Aea,Aeﬁ] =0foralln+1<a,8 <n+k. So the normal
bundle is flat if and only if all shape operators commute. In this case, for
fixed p € M, we can find a common eigenbasis for the shape operators
{4, | v € (M)},

The normal bundle of an n-dimensional submanifold in R"* is non-
degenerate if for each p the space of shape operators {4, | v € v(M),}
has dimension k.

Theorem 2.2. Fundamental Theorem of submanifolds in RY [41]

Let M be an open subset of R™, and n an orthogonal rank k vector bundle
on M with an O(k)-connection V. Let g be a Riemannian metric on M,
and & a smooth section of S*(T*M) ®n. We construct an o(n + k)-valued
1-form as follows:

(1) Choose 1-forms wy, ..., wy such that g =Y 1 w?

i

(2) Solve (wij)i<ij<n from the structure equation (2.2)).

(3) Choose a local orthonormal frame (Sp41,--.,Snik) for n. Write the
connection V+s, = Eﬁ W S3-
(4) Write £ = Za’i’j hiswiw;se with he; = hG;. Set wiq = —we; =
Zj h%wj .
If w:= (waB)i<A,B<n+k s a flat o(n + k)-valued connection 1-form, i.e.,
dw = —w A w, then given o € M, py € R"*, and an orthonormal ba-
sis {v1,...,Ungk} of R"*  the following system of first order PDE for
(f,e1,...,entk) is solvable and has a unique solution defined in an open

subset O of xg in M:

df =3, wie,
desa = > zwpaep, (2.8)
f(zo) =po, ea(0) =va.
Moreover,
(a) f:0 — R"* js an immersion with 1 =g and I1 = hiww;eq,
(b) eq(x) = so(x) gives a vector bundle isomorphism from v(M) to n

that preserves the orthogonal structure and maps the induced normal
connection V+ to V and 11 of f to €.

Remark 2.3. The Fundamental Theorem can be formulated as the
flatness of a G-valued connection 1-form, where G is the Lie algebra of the
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rigid motion group G of R™**: First note that G can be embedded in GL(n+
k+1) by

bgv(z) =gz + v <g 11)> , geOn+k),veRME
The Lie algebra of the rigid motion group is the subalgebra of gl(n+ k+1):
A v
o-{(a 1)

The equation for isometric immersion for given I,1I, V* is (2.8)), or equiva-
lently

Acon+k)ve R"Jrk}.

Wij  Wiq W
d <g {) =T <g {) , where 7= |wa wag O
0 0 0

This system is solvable for any initial data co € O(n + k) and py € R*** if

and only if 7 is flat. Or equivalently, w;, wap satisfy the structure equation
([22) and the Gauss-Codazzi equation (2.4]).

3. LINE CONGRUENCES AND BACKLUND TRANSFORMS

We review the classical notion of line congruences and geometric Bécklund
transforms for K = —1 surfaces in R? and for n-submanifolds in R?*~! with
constant sectional curvature —1 (28] [49] 50]).

A line congruence in R? is a smooth 2- parameter family of lines,

lz) ={c(z) +tv(z) | t € R}

defined for = in an open subset O of R%2. A surface f : O — R3 is called
a focal surface of the line congruence ¢ if f(z) € {(z) and ¢(x) is tangent
to f at f(x) for each x € O. To find a focal surface is to find a function
t: O — R such that f(z) = ¢(x) + t(z)v(z) is an immersion and v(z) is
tangent to f at f(x). This condition is equivalent to

det(fncly fmzvv) =0,

which is a quadratic equation in ¢t. So generically, there are exactly two focal
surfaces for a line congruence. Moreover, the two focal surfaces determine
the line congruence. Hence we call a diffeomorphism ¢ : M — M a line
congruence if the line jointing p and ¢(p) is tangent to M and M at p and
¢(p) respectively for all p € M.
K = —1 surfaces in R? and the sine-Gordon equation (cf. [28] 41])
We can use the Codazzi equation to prove that if M is a surface in R?
with K = —1, then locally there exists a line of curvature coordinate system
(21, x2) such that

I = cos? ¢ dz? 4 sin? ¢ dz3, II=2singcosq(dz? — dz3) (3.1)
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for some smooth function q. We call (21, x2) the Tchebyshef line of curvature
coordinate system. Note that ¢ is the angle between the asymptotic lines.
Let wy = cos ¢ dz; and we = singq dzy. By [23), wi2 = —¢u, dz1 — ¢4, dxa.
Use II to see that wy3 = sin gdx and weg = — cos g dzy. The Gauss-Codazzi
equation is given by the flatness of

0 —Qzy A1 — Gz, AT sin g dry
w = (wAp) = | Gz, dT1 + g, dz2 0 —cosqdxy |,
—sinqgdx cos qdxo 0
(3.2)
which gives the sine-Gordon equation (SGE)
qrix1 — Qrozy = SiH(JCOS q. (33)
Change to light cone coordinates s, t:
Ty =8+t x9=85—1.
The fundamental forms ([B.I]) become
I= ds®+2cos(2q)dsdt + dt*, 1T = 2sin(2q) dsdt.
The SGE in (s,t) coordinate system is
gst = Sin g cos q. (3.4)

We call (s,t) the Tchebyshef asymptotic coordinate system.

Definition 3.1. Backlund transformation

A line congruence ¢ : M — M* is called a Bdcklund transformation (BT)
with constant 6 if for any p € M, the distance between p and p* = ¢(p) is
sinf, and the angle between the normal line of M at p and the normal line
of M* at p* is equal to 6.

Theorem 3.2. Biacklund Theorem

If ¢ : M — M* is a Bdcklund transformation with constant 8, then both
M and M* have constant Gaussian curvature K = —1 and ¢ preserves
Tchebyshef line of curvature and asymptotic coordinates. Conversely, given
a surface M in R® with K = —1, a constant 0 < 0 < m, po € M, and vy €
TM,y, a unit vector, then there exist a unique surface M* and a Bdcklund
transformation ¢ : M — M* with constant 6 such that ¢(pg) = po + sin Ovg.

Analytically to find a BT ¢ with constant 6 for a given K = —1 surface
M in Theorem is to find a unit tangent field v on M such that ¢(z) =
x +sinfv(zx) is a BT. Let e; denote the unit principal directions for i = 1,2
and write v = cosg*e; + sing*es, then the condition that ¢ is a BT with
constant 6 is equivalent to ¢* solving a system of compatible first order
ODEs:

Theorem 3.3. ODE Backlund transform
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Given q(s,t) and a non-zero real constant p, the following system is solv-
able for q*

BT, {(q* +q)s = psin(q” — q), (3.5)

(q" — @) = i sin(q” + q),
if and only if q is a solution of the SGE ([B4l). Moreover, if q is a solution
of the SGE then a solution ¢* of B3 is again a solution of the SGE.

The parameter 6 for geometric BT in Theorem and constant g in
system [3.5] are related by p = tan g.

Given a solution ¢ of SGE, we can solve the system BT, , to get a family
of new solutions of SGE. If we apply this method again, then we get a second
family of solutions. This gives infinitely many families of solutions from a
given solution of SGE. For example, the constant function ¢ = 0 is called
the trivial or vacuum solution of the SGE. The system BTy, is

{ozs = psina,
1 .

oy = —sina.

L=

It has an explicit solution
afs,t) = 2tan~! (e”SJri t) . (3.6)

We can solve Béacklund transformation BT, ,, to get another family of so-
lutions. However, BT, ,, is not as easy to solve as BT ,. But instead of
solving BT, ;,;, we can use the following Theorem:

Theorem 3.4. Bianchi Permutability Theorem

Let 0 < 61,05 < 7 be constants such that sin? 01 # sin® 0y, and ¢; : My —
M; Bdcklund transformations with constant 0; for i = 1,2. Then there exist
a unique surface Mz and Bdcklund transformations £1 : My — Ms and
gg : My — M3 with constant 61,0y respectively such that ENl oly = gg o /.
Moreover, if q; is the solution of the SGE corresponding to M; for 0 <1 < 3,

then
73— qo 1+ p2 <Q1—Q2>
tan = tan , 3.7
< 2 > p1 — P2 2 3.7

6.
where p; = tan 3.

Global verses local

It follows from the Fundamental Theorem of Surfaces in R? that there is
a bijective correspondence between solutions ¢ of the SGE (8.3)) satisfying
Im(g) C (0,%) and local surfaces in R* with K = —1 up to rigid motions.
So we can construct infinitely many families of K = —1 surfaces in R? by
solving compatible systems of ODEs. Note that if ¢ : R> — R is a smooth
solution of SGE such that sin g cos ¢ is zero at a point pg, then although the
map f constructed from the Fundamental Theorem of Surfaces in R? fails
to be an immersion at po, it is smooth at pg, dfy, has rank 1 and the tangent
bundle is smooth at pg. Thus global solutions of SGE give K = —1 surfaces
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in R? with cusp singularities but smooth tangent bundle. This is a common
phenomenon for soliton submanifolds: Although the Cauchy problem for
small norm initial data can be solved globally, the corresponding soliton
submanifolds often are only defined locally.
Explicit multi-soliton solutions for the SGE

Write the solutions a of BTy, given in (B.6) in space-time coordinates
r1=s+tand 9 = s —t to get a(x1,xy) = 2tan! escfTI—cotfr2 g,

2 csc feCse Ox1—cot Oxo

B 1+ e2(cscOz1—cot fx2) *

O,

Note that « is a traveling wave solution and «a,, decays to zero as |z1| — oo.
Hence SGE viewed as an equation of o, has solitary wave solutions. These
are the 1-soliton solutions of the SGE. If we apply permutability formulae to
these 1-solutions, then we get 2-soliton solutions. Moreover, these solutions
are asymptotically equal to a sum of two solitary waves as xo — —oo and to
the sum of the same two solitary waves as zo — oo but with phase shifts (cf.
[18]). Explicit multi-soliton solutions of SGE can be obtained by applying
permutability formulas repeatedly.

Lie or Lorentz transform

Lie observed that SGE is invariant under the Lorentz transformations,
which are called Lie transforms: If ¢(s.t) is a solution of SGE ([B4]) and r a
non-zero real constant, then G(s,t) := q(rs,r~'t) is also a solution of SGE.

Associated family of K = —1 surfaces in R?

Given a K = —1 surface M in R3, let ¢(s,t) denote the corresponding
solution of the SGE, A € R a non-zero constant, and ¢*(s,t) = q(\s, \™'t).
The family of K = —1 surfaces in R3 corresponding to SGE solution ¢* is
called the associated family of K = —1 surfaces in R3 containing M. In
section [0l we will use the moving frame of this associated family to derive
the standard Lax pair for SGE.

n-submanifolds in R?”~! with sectional curvature —1 and GSGE
The hyperbolic n-manifold H™ is the simply connected, complete, n-
dimensional Riemannian manifold with constant sectional curvature —1. E.
Cartan proved that H” can not be locally isometrically immersed in R?%~2,
but can be locally isometrically immersed in R?"~! and the normal bun-
dle of such immersions must be flat ([I5]). Moore used Codazzi equations
to prove the existence of line of curvature coordinate systems on such im-
mersions, a slight improvement of Moore’s result was given in [50] to get
an analogue of Tchebyshef line of curvature coordinate systems, and the
corresponding Gauss-Codazzi equation is called the generalized sine-Gordon
equation (GSGE). Bécklund theory was generalized to GSGE in [49] [50].

Theorem 3.5. Let M™ be a simply connected submanifold of R**~1 with
constant sectional curvature —1. Then the normal bundle v(M) is flat and
there exist coordinates (x1,...,xyn), an O(n)-valued map A = (ai;), and
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parallel normal frames en11, ..., ea,—1 such that the first and second funda-
mental forms are of the form

n n
I= Z a%idm?, II = Z aliajida:?enﬂ_l.
i=1 i=1,j=2
We call x the Tchebyshef line of curvature coordinate system for M.

To write down the Gauss-Codazzi equation for these immersions we set

w; = ade;, 1<i<n, (3.8)
Wintj—1 = —Wntj—1,i = a5;dT;. (3.9)
By Z3), wij = fij dz; — fj; dz;, where
(a14)a; . .
fy={ o TTD (3.10)
0, =7,

Set F' = (fZJ) Then
w = (wij)ij<n = 6F — F'S, & = diag(day,..., dz,) (3.11)

is the Levi-Civita o(n)-connection of the induced metric I. The Gauss-
Codazzi equation and the structure equation give
dw +w A w = —6Aleq, AS,
H . (3.12)
(ari)z; = fijaj, 1<i#j<n1<k<n,

where e;; is the n X n matrix with all entries zero except the 11-th entry is
1. Or equivalently, it is the second order PDE system for the O(n)-valued
map A = (a;5):
(fij)e; + (fii)a: + 2ok finfin = ariary, i # j,
(ari)z; = ar;fij, i # J, Vk.
This is the GSGE, and when n = 2, it is the SGE.
Since Y1 | ai, = 1,

akz akz T — 5 akj akj § akjf]zakz-
JFi JF
So we have

akz ;i Z QA f]z (3'14)

It follows from (B.I4)) and the third equatlon of (B.13) that
dA = A(6F" — F§).
So ([B12) is equivalent to

dw +wAw = —0Ate1; A5, where w = 6F — F'6,
. . (3.15)
A7 dA =0F" — F§
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Note that we associate to an n-submanifold of R~ three flat connections:
the flat o(n)-connection §F* — F§, the flat o(n, 1)-connection

<5F_§Ft5 %), where § = (w1, ..., wp),

and the flat o(2n — 1) Maurer-Cartan form (wap)a,B<2n—1-

To generalize Bécklund transformations to higher dimensions, we first
recall the notion of k£ angles between two k-dimensional linear subspace V}
and V3 of a 2k-dimensional inner product space (V,(,)): Let m denote the
orthogonal projection of V onto V;. Define a symmetric bilinear form on
Vo by (v1,v2) = (m(v1),m(v2)). Then there is a self-adjoint operator A on
Vo such that (vi,ve) = (A(v1),v2). The k angles between V; and V, are
01,...,0) if cos® 0y, ...,cos? 0 are the eigenvalues of A.

Definition 3.6. Let M, M* be two n-dimensional submanifolds of R?"~!
with flat normal bundle. A diffeomorphism ¢ : M — M* is called a Bécklund
transformation with constant 0 if for all p € M

(1) the line joining p and p* = ¢(p) is tangent to M at p and to M™* at
P

(2) [lpp*|| = sin®),

(3) the (n — 1) angles between the normal space v(M), and v(M™*),-
are all equal to the constant 6 (note that these normal spaces are
two (n— 1) dimensional linear subspaces of the (2n — 2) dimensional
subspace of R?"~! that is perpendicular to p — p*).

Let /(p) denote the line in R?"~! through p and ¢(p) for a Bicklund
transformation ¢ : M — M*. Then condition (1) says that ¢ is an n-

parameter family of lines in R?"~! (i.e., an n-dimension line congruence in
R27"=1) and M, M* are focal surfaces of .

Theorem 3.7. If ¢ : M — M* is a Bdcklund transformation for n-
dimensional submanifolds in R*™1 with constant 0, then both M, M* have
constant sectional curvature —1. Moreover, ¢ maps Tchebyshef line of cur-
vature coordinate system of M to that of M*.

Let
Iy n—i = diag(er,...,€,), where g =1fori <k, =—1fork <i <n.
Backlund transform analytically gives

Theorem 3.8. Given a smooth A : R™ — O(n) and real non-zero constant
A, the following system for X : R™ — O(n),

BT 4, : dX = X0A'D\X — Xw — D) A$, (3.16)

is solvable if and only if A is a solution of GSGE, where Dy = w,
J =11 n—1. Moreover, the solution X is again a solution of GSGE.

The constant 6 and A are related by A = tan g.
There is an analogue of Permutability Theorem for GSGE:
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Theorem 3.9. Let ¢; : My — M; be Backlund transformations for n-
dimensional submanifolds in R**~1 with constant 6; fori =1,2. Ifsin® 6, #
sin® Oy, then there exist unique Ms and Béicklund transformations 11 : My —
M3 and g : My — M3 with angles 61,09 respectively such that 11 o ¢po =
o 0 1. Moreover, if A; is the solution of the GSGE corresponding to M;
fori1=20,1,2,3, then

A3AGt = (=Da + D1 A2 ATY) (D1 — DaAs AT ™My, (3.17)
where D; = diag(csc8;,cot 0;, ..., cot6;).

In other words, given a solution Ag of the GSGE, we solve BT 4, », with
Ai = csc; + cotb; to get A; for i = 1,2. Then Az defined by the algebraic
formula (B.I7) is a solution of BT 4, », and BT}y, ,. Since the constant map
A = 1is a solution of the GSGE, we can apply BT and permutability formula
to construct infinitely many families of explicit solutions of the GSGE.

4. SPHERE CONGRUENCES AND RIBAUCOUR TRANSFORMS

We review the notion of sphere congruences, Christoffel and Ribaucour
transforms for isothermic surfaces in R? (cf. [22]).
A sphere congruence in R? is a smooth 2-parameter family of 2-spheres
in R3:
S(z) ={c(z) +r(x)y |y € 5%}, 2€0,

where ¢ : O — R? and r : O — (0,00) are smooth maps, and O is an open
subset of R2. A surface f : @ — R? is called an envelope of the sphere
congruence S if f(p) € S(p) and f is tangent to the sphere S(p) at f(p).
To construct envelopes of S, we need to find a map y : @ — S? such that
f(z) = c(x) + r(x)y(x) satisfying

fm1'y:fm2'y:0- (4.1)

Generically there are exactly two envelopes. If M and M are two envelopes
of the sphere congruence S, then there is a natural map ¢ : M — M such
that for each p € M, there exists x € O such that the sphere S(z) is tangent
to M and M at p and ¢(p) respectively. Note that the map ¢ determines
the sphere congruence S. Hence we make the following definition:

Definition 4.1. Ribaucour transform for surfaces in R3

A diffeomorphism ¢ : M — M is called a sphere congruence if for each
p € M, the normal line of M at p intersects the normal line of M at ¢(p)
at equal distance r(p). A sphere congruence ¢ from a surface M in R? to a
surface M in R3 is called a Ribaucour transform if ¢ maps line of curvature
coordinates of M to those of M.

Isothermic surfaces
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An immersion f(z1,22) € R? is called isothermic if (x1,2) is both a
conformal and line of curvature coordinate system. In other words, f is
isothermic if fundamental forms for f are

I=¢e%(da? + da3), 1= e%(r da? + rydad), (4.2)
for some smooth functions ¢, r; and rs.

Set

w1 = el d:l?l, Wo = e? dﬂ?Q, w1z = T1 dﬂ?l, W23 = T2 dﬂ?Q.

By 23)), w12 = ¢u, dx1 — ¢z, dzo. The Gauss-Codazzi equation is:

Qryzy T Guozy + 1172 = 0,
(1) 2y = QzaT2, (4.3)
(12)2y = qay71-
For example, constant mean curvature surfaces in R away from umbilic
points are isothermic.

Ribaucour transform for isothermic surfaces

Given an isothermic surface M in R3, there exist an one parameter fam-
ily of isothermic surfaces M, and Ribaucour transforms ¢y : M — M,.
Moreover, ¢y can be constructed by solving a system of compatible ODEs.
Bianchi proved a permutability formula for these Ribaucour transforms be-
tween isothermic surfaces.
Christoffel Transform

A Christoffel transform is an orientation reversing conformal diffeomor-
phism ¢ : M — M such that T'M,, is parallel to T' M¢(p) for all p € M.
We call (M, M) a Christoffel pair. Note that if (q,71,72) is a solution of
#3) then so is (—q,71,—r2). This fact gives the Christoffel transform for
isothermic surfaces:

Theorem 4.2. A surface M in R3 is isothermic if and only if there exist
a second surface M and a Christoffel transform ¢ : M — M. Moreover, if
f(x1,229) — f(x1,22) is a Christoffel transform, then the fundamental forms
of M and M are of the forms

I=e*(da? + da3), 1 = e?(ry da? + ry da?),
I=c%(da? + dad), = e 9(ry da? — ro da?).
for some smooth solution (q,r1,72) of (A3).

Associated family of Christoffel pairs
If (f1, fo) is a Christoffel pair of isothermic surfaces in R3, then

{(Afi,Af2) [ A € R}

is an associated family of Christoffel pairs of isothermic surfaces in R3. The
induced action of Rt on the space of solutions of ([3) is

*(¢,r1,7m2) = (¢+Ins,ri,m2), seRT.
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5. COMBESCURE TRANSFORMS, O-SURFACES, AND k-TUPLES

We review the notions of conjugate coordinates on surfaces in R3, the
Combescure transforms between surfaces in R?, O surfaces defined in [45],
and k-tuples of k-submanifolds in R" defined in [T 25].

In classical geometry, a local coordinate system (x1,x2) on a surface M
in R? is said to be conjugate if the position function f(x1,z) satisfies

fxlxz = hlf:cl + h2f:c2

for some smooth functions hi,hs; or equivalently, II is diagonalized with
respect to (x1,z2). The collection of coordinate curves {z; = ¢; | ¢; € R,i =
1,2} is called a conjugate net on M. An orthogonal conjugate coordinate
system on a surface in R? is a line of curvature coordinate system, and the
corresponding net is called an O-net (cf. [28]). Note that a surface away
from umbilic points admits line of curvature coordinates.

Given surfaces M, M in R3, a diffeomorphism ¢ : M — M is a Combescure
transform it TM;, = T' My, for all p € M. These classical notions can be
generalized to submanifolds in Euclidean spaces as follows:

Conjugate coordinate system for submanifolds in R"
A coordinate system x on a k-dimensional submanifold M in R™ is called
conjugate if the position function f(x) satisfies the following conditions:
k
fmixj :Zcijéfxp 1<i<j<k
=1
for some smooth functions c;jy. We call the collection of all coordinate curves
of a conjugate coordinate system a conjugate net on the submanifold.

If f(z) is an immersion parametrized by conjugate coordinate system,
then f;, are eigenvectors of the shape operator A, along any normal vector
field v. So all shape operators commute, which implies that the normal
bundle of f must be flat. An orthogonal conjugate coordinate system on a
submanifold in R™ is a line of curvature coordinate system. Unlike surfaces
in R3, submanifolds in Euclidean space with flat normal bundle generically
do not admit line of curvature coordinate systems.

Definition 5.1. Combescure transform for submanifolds R
A diffeomorphism ¢ from a k-dimensional submanifold M to another M
in R™ is called a Combescure transform if T M, = T' My, for all p € M.

Definition 5.2. Combescure O-transform [25]

Let M, M be submanifolds in R” admitting line of curvature coordinates
(so they have flat normal bundles). A Combescure transform ¢ : M — M
is called a Combescure O-transform if

(1) ¢ preserves line of curvature coordinates,
(2) if v is parallel normal field on M, then v is a parallel normal field
on M (since TM), = T' My, for all p € M, we can identify v(M),

as V(M) (p))-
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Definition 5.3. Combescure O-map [25]

Let © be an open subset of R*, and M,,, the space of real n x £ matrices
with ¢ < k. A smooth map YV = (Y1,...,Ys) : Q@ — M,y is called a
Combescure O-map if it satisfies the following conditions:

(a) Each Y; : © — R” is an immersion with flat normal bundle and
parametrized by line of curvature coordinates.

(b) The map Y;(x) — Yiy1(z) is a Combescure O-transform for 1 < i <
-1

(c) Let e; be the unit direction of (Y1),, for 1 < j <k (so e; is parallel to
(Yi)z, for 2 <4 <), and ay;’s defined by (Y;).; = ajje; for 1 <i <4
and j < k. We call (a;;) the metric matriz associated to Y. The
rank of (ai;(x)) is £ for all z € Q,

Remark 5.4. Let Y = (Y7,...,Y)) : @ — M, 4, be a Combescure O-
map, and (a;;) the metric matrix associated to Y. Let (epy1,...,e,) be
an orthonormal parallel normal frame for Y7, and g = (e1,...,e,). Then
g is an adapted frame on Yj for all 1 < j < k. Hence they have the same
Maurer-Cartan form g~ dg = (wap). By Cartan Lemma Bl and (Z.3]), we
have

Wye = (air)a, dz, — (ais)a,
Qjs Ay

des, 1<r#s<k, 1<i<U/l.

So
(@ir)e, — (“”)‘“, 1<r#s<k 1<i</.
Ais Q1s
Geometrically, this means that V;e; = Vye; for all 7,5 < k, where V; is the
Levi-Civita connection of the induced metric I; of Y;. Since z is a line of

curvature coordinate system, there exist smooth functions h;, such that
Wiq = hig dz;, 1<i<kk<a<n.
Definition 5.5. O surfaces ([45])

Two surfaces fi(z), fo(x) in R? parametrized by line of curvature coordi-
nates are called O-surfaces if

(a) the map fi(x) — fa(z) is a Combescure transform for all i # j,
(b) (afl;);? — (ajllllxz and (aff)”l = (az)lxl, where e; is the unit direction

of (f1)z; (hence e; is parallel to (fa),;) for j = 1,2 and a;j’s are
defined by (fi)s; = ae; for i,j =1,2.

As a consequence of Remark [5.4], we have

Proposition 5.6. Two surfaces f(x), f(z) parametrized by line of curvature

coordinates are O surfaces if and only if the map (f, f) is a Combescure O-
map.

Definition 5.7. k-tuples in R" [11] 25]
A Combescure O-map Y = (Y7,...,Y;) of k-dimensional submanifolds in
R™ is called
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(1) a k-tuple of k-submanifolds in R™ of type R¥=6¢ (or just k-tuple in
R™ of type R¥~4) if all rows of the metric matrix of Y have constant
length in RF=6¢,

(2) a k-tuples of k-submanifolds in R™ of type O(k — ¢, £) if the metric
matrix of Y lies in O(k — ¢,¢),

(3) a a k-tuple of k-submanifolds in R™ of null RF=%* type if all rows of
the metric matrix of Y are null vectors in RF¥=4¢,

Combescure O-maps and 2-tuples occur naturally in surface geometry:

Example 5.8. If f(x) is a surface in R3 parametrized by line of curvature
coordinates, then {f,e3} and {f, f +re3} are O surfaces in R?, where r € R
is a constant and es is the unit normal.

Example 5.9. A Christoffel pair of isothermic surfaces (f1, f2) is a Combes-

eq

q
. . . e
cure O-map whose metric matrix (a;;) is of the form <e_ _q | for some

7 —e
q, i.e., it is a 2-tuple in R3 of null R type.

Example 5.10. [11] [45]
A 2-tuple (f1, fo) of surfaces in R? of type O(1,1) is a Combescure O-

cosh g sinhq) and the two

map whose metric matrix is of the form | .
sinhq coshgq

fundamental forms for Y7, Y5 are

{Il = cosh? uda? + sinh? u dz2,

II; = r{ coshu dx% + ro sinh u dx%,

Iy = sinh? u dz? 4 cosh? u dx3,
IIy = rysinhu dx% + r9 coshu dx%.
Note that
(1) the Gaussian curvature of f; and fo are equal, Kj(x) = Ka(x),
(2) (Y1 4 Y3,Y; —Y5) is an isothermic pair.
Example 5.11. [I1, 45] A 2-tuple (fi, f2) of surfaces in R? of type O(2) is
a Combescure O-map whose metric matrix is of the form cosqg s ,
—sing cosgq
and the fundamental forms of Y7, Y, are

{Il = cos? gdz? + sin? ¢ da3, {12 =sin’q dx? + cos? gdz3,

II; = r1 cosq dx% + rgsing dx%, Il = r1sing dx% — 79 COS ¢ dx%.

Thus the Gaussian curvature K (z) = —Ka(z).
If fi(z) is a surface with K = —1 parametrized by Tchebyshef line of
curvature coordinates as in section [3 then r; = sinq, ro = —cosgq, ¢ is a

solution of SGE, and (f, e3) is a 2-tuple of surfaces in R? of type O(2).

Definition 5.12. Isothermic, k-submanifolds in R" [25]
A k-dimensional submanifold M in R"™ is isothermicy if
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(1) the normal bundle is flat,
(2) there is a line of curvature coordinate system (x1,...,x) such that
1= Y"1 gis da? satisfies 301 gii — Sorjo_p41 9ii = 0.
Remark 5.13.
(1) A k-tuple in R™ of type O(k — £,£) is of type RF=4£,
(2) a Christoffel pair of isothermic surfaces in R™ is a 2-tuple in R" of
null RY type (cf. [I11 12])
(3) The equation for k-tuples in R™ of type R¥¢ is the %—
system and there are Ribaucour transforms and permutability for-
mulae for these k-tuples. These will be reviewed in sections 8 and
10.
(4) fY = (Y1,...,Y%) is a k-tuple in R of null R*=%¢ type, then each
Y; is an isothermic, submanifold in R" and Y; and Y} are related by
Combescure O-transforms.

6. FROM MOVING FRAME TO LAX PAIR

Suppose the PDE for ¢ : R — V has a G-valued Laz pair 65 on R™,
where G is the Lie algebra of a Lie group G. If ¢ is a solution of the PDE,
then given ¢y € G there is a unique G-valued solution E(x,\) for

E7YdE =06,, E(0,)\) = ¢,

which will be called a parallel frame of the solution ¢ or of its Lax pair ).
The solution with initial data ¢y = I is called the normalized parallel frame.

The existence of a Lax pair is one of the characteristic properties of soliton
equations. The SGE, GSGE, and the Gauss-Codazzi equation for isothermic
surfaces and for flat Lagrangian submanifolds in C", and the equation for
k-tuples in R™ of type R¥~4¢ are soliton equations and their Lax pairs were
found in [1}, 2], [17), 58| 25] respectively. In general, it is not easy to determine
whether a PDE has a Lax pair. We explain in this section how to construct

(1) Lax pairs for SGE, GSGE, equations for flat Lagrangian submani-
folds in C", and for k-tuples in R™ of type R4 from the Maurer-
Cartan forms of specially chosen moving frames of the associated
family of these submanifolds,

(2) the immersions of these submanifolds from parallel frames of the
corresponding Lax pairs.

K = —1 surfaces in R?
Laz pair (cf. [7,56])

Suppose M is a surface in R3 with K = —1, (s,t) the Tchebyshef asymp-
totic coordinate system, and q(s,t) is the solution of SGE corresponding to
M. Let f*: M* — R? denote the K = —1 surface corresponding to the
solution ¢*(s,t) = g(As, \"'t). We derive a Lax pair for the SGE from the
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Maurer-Cartan form for M*: For each non-zero real \, choose the orthonor-
mal frame FA = (e7,e3,e3) on M? such that e} = f2, and €3 is the unit
normal to M?*. Set w* := (FA)~1 dF*. Substitute (55s,2At) for (s,t) in w?
to get a one-parameter family of flat o(3)-valued connection 1-forms:

0 —2g O 1 0 0 sin 2q
Ww=12¢s 0 —2X] ds+ o\ 0 0 cos2q | dt. (6.1)
0 2A 0 —sin2q —cos2q 0

To get the known Lax pair of SGE, we identify the Lie algebra o(3) as
su(2) to rewrite the family w* of o(3)-valued connections as a family of flat
su(2)-valued connection 1-forms:

[ —iN —gs i [ cos2q —sin2q
O = < qs iA > ds + 4\ <— sin2qg —cos2q dt. (6.2)
Moreover, given ¢ : R> — R, then ¢ is a solution of the SGE if and only if
6 defined by (6.2)) is flat for all non-zero A € C.
Sym’s formula [40)
If ¢ is a solution of the SGE, then we can construct the corresponding
surface with K = —1 in R? from a parallel frame of the Lax pair associated

to ¢ as follows: Set 8y by (6.2]), and let E(s,t, A\) be a parallel frame for 6,
i.e., the solution of

E-YdE =#6,, E(0,0,)\) =cyc SU(2).

Since 65 + 0, = 0, E(s,t, A)*E(s,t,\) = L. Hence E(s,t,r) € SU(2) for any
real number r. Set
e

=——FE1 .
f oA A=r
Because E(s,t,r) € SU(2) for r € R, we have f, € su(2). Also

B -i 0 i [—cos2q sin2q 1
dfr = E(s,t,r) <<0 i) ds + 2 < sin 2¢ 0052q> dt> E(s,t,r)"".

If we identify su(2) as R3, then f := f% (s,t) is a surface with K = —1, (s,t)
is the Tchebyshef asymptotic coordinate system, and ¢ is the solution of the
SGE corresponding to f.
n-submanifolds in R?"~! with sectional curvature —1
Lazx pair

Let f : M™ — R?~! be an immersion with sectional curvature —1, x the
Tchebyshef line of curvature coordinate system, e; the unit direction of f;,,

(én+t1,--.,e€2n—1) the parallel normal frame, and
n n
Z 2 Z 2
1= aiq d:l?Z s II = a17Qj;5 d.:EZ Entji—1,
i=1 i=1,j=2

the fundamental forms as in Theorem Set F' = (fi;) as in BI0), w; =
a1; Az, Wi pyj—1 = aj; Az, wi; = fijdo; — fi;de; and wpqi—1045-1 = 0.
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We associate to the immersion f two flat connection 1-forms: The sec-
tional curvature of I = Y"1 | w? is —1, giving

dw,’j + E Wik Wi = —W;Wj,
k

which is equivalent to

t
1= (? 50>’ w = (wijij<n, €= (Wi, wn)

being a flat o(n, 1)-valued connection 1-form. The Maurer-Cartan form of
f gives a flat o(2n — 1)-valued 1-form

w:g_ldg: (wAB) = <_wt 77>7

n 0
where g = (e1,...,em—1), W = (Wij)i j<n and n;; = aj; dz;.
It is easy to see that an o(2n — 1)-valued 1-form <_wt g) is flat if and
only if
o= (i 0)=0 5 (5 0) 6 3)
is a flat o(n,n — 1, C)-valued 1-form. We embed o(n, 1) and o(n,n — 1) into

o(n,n) as Lie subalgebras by
o(n,n—1) ={y = (yij) € o(n,n) | Yin+1 = Yn+1, =0V 1 <i<n}

Use these embeddings to write (1, (2 as flat o(n,n)-valued 1-forms:

o w (5AtDj .
<j—<D]A(5 0 >7 ]_1727

where § = diag(dxy,..., dz,), D1 = e;; = diag(1,0,...,0) and Dy =
i(I —eq1). The flatness of ¢; and (s gives:

6.3
DAANO+DASAw =0 (6:3)
for D = Dy or D = Dy. Write system (6.3)) in terms of A and F' to get the

GSGE (B15).

Set Dy = cosDq + sinDy = diag(cos6,isinf,...,isinf). Then Dg =
—sin? 1+ Dy. Since §AS =0, SA'D3AS = §A%e;1 AS. So (6.3)) is flat for all
D = %(ewl + e‘iell,n_l). Hence

o w 5AtD)\
6’\_<D,\A5 0 > (6:4)

is a flat o(n,n)-valued connection 1-form on R™ for all A = ¢, where Dy =
S+ A7W), w = 0F — F'6, and A~'dA = §F" — F§. Moreover, A is a

{ dw+wAw+ A D2AS =0,  wherew = §F — F'6,
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solution of GSGE if and only if ) is flat for all A # 0. This is the Lax pair
given in [2] for the GSGE.
SGE has two Lax pairs

Note that SGE has two Lax pairs, one is the si(2,C)-valued connection
1-form (62) in asymptotic coordinates and the other is the o(2,2)-valued
connection 1-form (6.4)) in line of curvature coordinates.

Construct immersions
Suppose (A = (a;j), F' = (fij)) is a solution of the GSGE (B.I3]), and 6y
the Lax pair defined by (6.4]). Let E(x,\) denote the normalized parallel

frame of 8y, and
1 0 ~(1 0
g(x) = <0 i) E(z,1) <0 —i> .

Then g(z) € O(2n), g(x)n+1,i = 9(2)iny1 = 0for i # n+1, g(z)nt1n+1 = 1,

and
-1 o 1 0 . 1 0 . w 5At(1 — 611)
g dg= <0 i) 0 <0 —i) - <—(I —e11)Ad 0

is a flat o(2n — 1)-valued connection 1-form with g(0) = I. Hence g(z) €
O(2n — 1). Let e;(x) denote the i-th column of g(z). Then the following
system

n
df = aye;dz; (6.5)
i=1
is solvable for f in R?"~! and the solution f (up to translation) has sectional
curvature —1.
Flat Lagrangian submanifolds in C" [58]
Egoroff line of curvature coordinate system
If f: M — C" =R?" is a flat Lagrangian submanifold with flat and non-
degenerate normal bundle, then there exist a coordinate system (z1,...,x,)
and function ¢ such that

=30y é, daf, (6.6)
=37, dzf @ J(fs,), '

where J is the standard complex structure on R**. We call  the Egoroff
line of curvature coordinate system. Let

i

€; = 19 en+i:J6i7 1§Z§n7
(¢z,)2
g = (e1,...,ea,) the adapted frame for f, and @ = g~ 'dg = (wap). Then

the dual 1-forms for eq,...,e, are w; = (qﬁxz)% dz; and w; p4; = 0;; dz;. By
the Cartan Lemma 2] and (2.3)), we have

I
Wi = /Bij da:, — 5]'7; d.Z'j, where /Bij = 2(¢xi¢xj)§

AN TY)
0, 1=7
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1 1
for i,j < n. Note that 8 = (8;;) is symmetric. Set h = (¢3,,...,¢3,)"
The Gauss-Codazzi equation and the structure equation for f is the PDE
for (5, h) defined by the condition that

[6,8] & 6k
r=| -6 [58 0 (6.7)
0o 0 0

is flat, i.e., it is the following system for (53, h):

(hi)a; = Bijhy, i # J,
(Bij)a; + (Bij)a; + 21 BirBej =0, i # j, (6.8)
(Bij)ay, = BikBrj i,7,k distinct.

Conversely, if (8, h) is a solution of (6.8]) with S = (8;;) symmetric and h =
(h1,...,hy)", then the first equation of ([B.8) implies that h;(hi)e, = hj(hj)a,
for all i # j. So (h?,...,h2) is a gradient field, i.e., there is a function ¢ such

that h? = ¢p, for 1 < i < n. Hence there is a flat Lagrangian immersion
f(z) in C" such that I,1I are of the form (6.6]).

Associated family of flat Lagrangian submanifolds in C™
If M is a flat Lagrangian submanifold in C™ with I,II as in (G.0]), then
given A € R, there is a flat Lagrangian submanifold My in C"™ with

Do=1=) ¢, de, Ih=X> da}®J(f)
i=1 i=1
Lazx pair
If £y is the associated family of f, then the Maurer-Cartan form (6.7)) for
fais

5,8] A6 6h
o= -X [58 o0]. (6.9)
o 0 0

Moreover, the following statements are equivalent: (i) 0 is flat, (ii) ) is
flat for all A € C, (iii) (8, h) is a solution of (6.8]).

Construct flat Lagrangian submanifold from parallel frame
If (8,h) is a solution of the (G.8) and E a parallel frame of 8y given by

©9), then

(1) there exists ¢ such that h? = ¢,, for 1 <i <mn,
(2) for each real r, E(z,r) is of the form (g(%’ ) A

U(n) C O(2n) and f(-,r) € R?",
(3) f(-,r) is a flat Lagrangian submanifold in C" = R?" with

T, T

1 )> with g €

L=) ¢reida], 1L =Y rdz}®J(fs(-7)),
=1

i=1
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where e;(x,r) is the i-th column of g(z,7) € O(2n) and J(fy,) is
parallel to e,1; for 1 <i <n
Isothermic surfaces in R?

Lazx pair
We use the associated family of Christoffel transforms to construct a Lax

pair for isothermic surfaces. Suppose (f(x), f(z)) is a Christoffel transform
of isothermic immersions in R3. Let e, es denote the coordinate directions.
By Theorem [£2] there exists a solution (g,71,7r2) of (&3] such that

df = el(dxie; + dazges), df =e (dzie; — dxges).
Write the above equation in matrix form:

da:l 0 .
~ cosh sinh 1 1
d(f,f) = (ex, e2,e3) 0 dz (sinhg coshZ) (1 —1> )
0 0

Set

de; O :
- coshq sinhgq
¢ = (e1,e2,€3) 8 dab"z <sinhq cosh q> ’

£ = <—3Ct 8) , J =diag(1l,—-1).

Compute directly to see that d§ = 0 and £ A £ = 0, which implies that &
is a flat 0(4, 1)-valued connection 1-form. Apply the above computation to

the associated family A(f, f) to see that A{ is a flat connection 1-form for
all A € R. Set

B [ coshq —sinhg (o O
g1 = (e1,e2,€3), 92—<_sinhq coshq)7 g—<0 92)

The gauge transformation of \¢ by ¢! is

_ _ w D
0h=Xg"'€g+yg 1dg=<_)\JDt T>, (6.10)
where
0 Gz, dT1 — @z, dwo 71 dag
w = 91_1 dg1 = —Qz, dzq + 4z dwo 0 rodxo |,
—rydzy —r9dag 0

_ 0 —d 1) .
7':921dg2 = <—dq 0q>7 D= <0>, 0 = diag(dxy, dzs).

Since & is flat, so is ). Moreover, (q,71,72) is a solution of the Gauss-
Codazzi equation (4.3)) of isothermic surfaces if and only if 6, is flat for all
parameters A. In other words, 6, is a Lax pair of the isothermic equation

@3).
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Note that 6, can be written as
2

0\ = Z(ai)\ + [a;,v]) dz;, (6.11)
i=1
where J =1 1,

10 0
a; = (—})Dt 132> s Dl = 00 s D2 =10 N (6.12)
¢ 0 0 0

O = O

0 @

0 1
v:(_m g) n=1-q, 0. (6.13)

—T1 T2

Construction of Christoffel pairs of isothermic surfaces from parallel frames
Method 1

Let (g,71,72) be a solution of ([4.3)), A its Lax pair defined by (6.10]), and
E(z,\) a parallel frame for 6, with initial data ¢y € O(3) x O(1,1). Since
0o € 0(3) x o(1,1), g := E(z,0) = <g& ;) € O(3) x O(1,1). Write
coshgq —sinh q>

g1 = (61762763)7 g2 = (_ sinhq COShq

Then
geby=gbrg ' —dgg =A( 0, ¢
_Jct 0/’

where

dz;y O :
B coshg sinhgqg
¢ = (e1,ea,€3) 8 dg2 (sinhq cosh q) )

The flatness g x 8, implies that d¢ = 0. Hence there exists a 3 x 2 matrix

valued map Y such that dY = (. Moreover, (fi,f2) =Y (} _11> is a

Christoffel pair of isothermic surfaces in R® and (g, 71, 72) is the correspond-
ing solution of (L.3).
Method 2

We claim that if F is the normalized parallel frame of the Lax pair 0y de-
fined by (6.10]) of a solution (g, r1,72) of (£.3), then g—f\JE_l |/\:0 is of the form
0 Z . 1 1
<—I1,1Zt 0) for some 3 x 2 matrix value map Z and (f1, fo) = Z <1 _1>
is a Christoffel pair of isothermic surfaces in R? with fundamental forms as
in Theorem

To see this, we first note that 6y is o(4,1,C)-valued 1-form and satisfies

th 0(4,1)

€ oBxo(I.1) reality condition:

Oy =0x, I320\I30 =0_,.
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So the normalized parallel frame E of ) satisfies E(x, \) € O(4,1,C) satis-
fying

E(z,A\) = E(z,\), I32E(z,\)32 = E(z,—\). (6.14)
Note that 7(y) = y and o(y) = 1372y13_é are involutions on O(4,1,C) that
. . 0(4,1)
give the symmetric space OB<O(T1)’ and

0(4,1) =K+ P, K=o0(3)xo(1,1), P = {(—Iglét g>}

is the Cartan decomposition of 41 eigenspaces of ¢ on the fixed point set
0(4,1) of 7. Tt follows from (G.I4]) that g—f\JE_l‘)\ZO lies in P, hence is of

the form <_§) 7t g) for some 3 x 2 valued map Z. A direct computation

0\ —

1 . . . . .
_1> is a Christoffel pair associated to the solution (gq,71,72),

implies that

and Z <i

where g1, g2 is given by E(x,0) = <%1 ;)
2
k-tuples in R™ of type R¥~4¢ [11] 25]
Lax pair
First we associate to a k-tuple Y in R™ of type R*~4¢ two flat connections,
and then use them to construct a Lax pair for the equation of Y.

Theorem 6.1. [25] Let Y = (Y1,...,Yy) : Q = My« be a k-tuple in R™
of type RF-4L, ej the unit direction of (Y1)z; for 1 < j <k, exq1,...,6n
a parallel orthonormal normal frame for Y1, g = (e1,...,€n), (Wij)ij<n =
gt dg, and (aij)i <k the metric matriz associated to'Y defined by (Y;)z, =
a;je; for 1 <i,5 <k. Set

(a14)a; . .

iy <

fl_]: “y 1_Z#], 5:diag(dx1,..., dxk)a
0, =],

and a; = (a;1,...,a;) for all1 <i<k. Then

(1) fundamental forms of Y; are

k kn—k
I = Zde?, 1L = imPomjCht
T aij xj7 T Aim m]ek—l—]
i=1 m,j=1

for some My, ;1 matriz h = (hyj) (50 w; j4j = hijda; for 1 <i <k
and 1 <j<n-—k),
0F — F'% 6h

(2) w= (wijhi<ijn =g~ dg = ( —hts 0) is flat,
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(3) da; = a;(6F" — JF&J) for 1 < i < k, where J = Iy_yy, in other
words, a; is a parallel field for the o(k—{, ¢)-valued connection 1-form

OFt — JF6§J.
(4) 7:=0F'— JF&J is a flat o(k — £, ) connection 1-form,
(5) t
w  —ADYJ
0, = ()\D i > (6.15)
is flat for all A € C, where D = (§,0) and 6 = diag(dzq,..., dxg),

(6) let <%1 ;) be a frame of 6y = <16) ?_) , then there exists a constant
2

C € GL(k) such that dY = g1Dgy 'C.

The equation for k-tuples in R™ of type RF~4¢ is the equation for (F,h) :
R* — gl(k), x M kx(n—k) Such that w and 7 defined in Theorem [6.T] are flat,
ie.,

—hts 0
dr+7AT=0, 71=086F"—JF§J,

ot
dw+wAw=0, wz(éF Fo 5h>,

(6.16)

where
gl(k)s = {(yi;) € gl(k) | yii =0V 1 <0 <k}

and J = Iy_s¢. So 0y defined by (6.I5]) is the Lax pair for the equation
(6.I6)) of k-tuples in R™ of type RF4£,
Construction of k-tuples from parallel frames

Let (F,h) be a solution of (6.I0]), and E is the normalized parallel frame
for 0 defined by (6.15]). Since 0y = <16) ?_), E(z,0) = (%1 g()2> for some
g1 € O(n) and g2 € O(k — ¢,¢). Similar argument as for Christoffel pairs of
isothermic surfaces gives

(1) g1Dgy s closed, so there exists Y such that dY = g1 Dgy L
(2) YC is a k-tuple in R™ of type R¥=%¢ for a constant C' € GL(k).

(3) %—fE‘l‘/\ZO = —th g) for some 3 x 2 valued map Z and Y =

Z + ¢q for some constant ¢y € R"™.

7. SOLITON HIERARCHIES CONSTRUCTED FROM SYMMETRIC SPACES

We review the method for constructing soliton hierarchies from a splitting
of a Lie algebra (cf. [57]).

Definition 7.1. Let L be a formal Lie group, £ its Lie algebra, and L
subgroups of L with Lie subalgebras £1. The pair (£4,L£_) is called a
splitting of L if L =L, & L_ as a direct sum of linear subspaces and L N
L_ = {e}, where e is the identity in L. We call theset O = (L. L_)N(L_L)
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the big cell of L. In other words, f € O if and only if f can be factored
uniquely as fy f_ and g_g4 with fi, g+ € L.

Theorem 7.2. (Local Factorization Theorem) [42] [57]

Suppose L is a closed subgroup of the group of Sobolev H'- loops in a finite
dimensional Lie group G, and (Ly,L_) is a splitting of the Lie algebra L.
Let V be an open subset in RV, and g : V — L a map such that (x,\) —
g(x)(A) is smooth. If po € V and g(po) = kyk— = h_hy with kv, hy € Ly,
then there exist an open subset Vo C V containing py and unique f4,g+ :
Vo — L+ such that g = g+g- = f—f1+ on Vo and g+(po) = k+, f+(po) = h+.

Definition 7.3. A commuting sequence J = {J; | i > 1, integer} in L is
called a vacuum sequence of the splitting (L4, £_) if J is linearly indepen-
dent and each J; is an analytic function of Jj.

Construction of soliton hierarchy
Let (L4, L£_) be a splitting of £, and {.J; | j > 1} a vacuum sequence. For
& € L, let &1 denote the projection of £ onto £ with respectto L =L, +L_.
Set
M={(g7"Nig)+ | g€ L-}. (7.1)
Assume that given smooth £ : R — M, there is a unique Q;(§) € L such
that
(1) [0x +€,Q;(§)] =0,
(2) Q;(&) is a function of £ and the derivatives of &,
(3) Q;(&) is conjugate to J; and Q;(J1) = J;j.
Claim that 5
% 0+ 6 (@40)4] (7.2
J
is a PDE system on M. We only need to show that the right hand side is
tangent to M at &: Since [0, +€, Q;] = 0, the right hand side of (Z.2) is equal
to —[0; + &, (Q;)-]. But it should be in L4, so it is equal to —[¢, (Q;)—]+,
which is tangent to M. Hence this defines a flow on M. We call (7.2]) the
j-th flow and the collection of these flows the soliton hierarchy constructed
from (Li,L_) and {J; | j > 1}.

Proposition 7.4. The following statements are equivalent for € : R? — M:

(1) € is a solution of the flow ([T2),
(2) [0z + ¢, Oy + (Q5(8))+] =0,
(3) &dax 4+ (Q;(§))+dt; is a flat L -valued connection 1-form.

So (3) is a Lax pair of the flow (T2).

If £ is a Lie subalgebra of the Lie algebra of formal power series A(\) =
ZD”O A\ with A; € G a finite dimensional simple Lie algebra, then equa-
tion (7.2)) is a PDE with a parameter \. For examples given in this article,
it follows from [0, + &, Q;(£)] = 0 that (Z.2)) gives a determined PDE system
in &.
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Commuting flows on L_
Given a splitting (£4,£_) of £ and a vacuum sequence {J; | j > 1}, we
consider a hierarchy of flows on the negative group L_:

oM _ ~M(M'J;M)_. (7.3)
ot

A direct computation implies that (7.3]) are commuting flows on L_, i.e.,
_(Pj)tk + (Pk)tj + [Pjvpk] =0

for all j,k, where P; = —(M~YJ;M)_. Use [J1,J;] = 0 and a straight
forward computation to get the following known results (cf. [57]) :

Proposition 7.5. If M(t1,t;) solves the first and the j-th flows (L3]) on
L_, then (M~YJy M), is a solution of the j-th flow (T2).

Theorem 7.6. The flows in the soliton hierarchy constructed from a split-
ting and a vacuum sequence commute.

Formal inverse scattering [55]

Given an element f € L_, we use the Local Factorization Theorem to
construct a solution of the flow in the soliton hierarchy generated by J; as
follow: First note that J; is in the phase space M defined by (7)) and
([T2) is satisfied, i.e., the constant map J; is the solution of all flows in the
hierarchy. The Lax pair of the flow generated by J; is Jidx + J;dt;. Let
E(x,t;) = exp(zJ1 + t;J;), i.e., E is the normalized parallel frame of the
solution on L, satisfying

E'E,=J, ET'E,=J;, E@0\=L
By Theorem [[.2] given f € L_, we can factor
f_lE(x7 t]) = E(‘Ta t])f(xa tj)_l
with E(z,t;) € Ly and f(x,t;) € L_ for (x,t;) in some open subset of the
origin. We claim that f is a solution of (Z.3) for the first and the j-th flow.
To see this, note that £ = f~'Ef and
E7' By ='W+ e ETVE, =TT T

Since the left hand sides are in £ and 1, f‘lﬁj are in £_, the above
equation implies that

FUL= )
f_lftj = —(f_lef)—-

Hence f(z,t;) is a solution of (Z:3) and this proves the claim. By Proposition
[T5 & = (f~1J1f)+ is a solution of the flow generated by J;.
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Example 7.7. The G-hierarchy [I} 44 [63] [55]

Let G be a complex simple Lie group, and L(G) the group of smooth
loops f : S' — G, L, (G) the subgroup of f € L(G) that can be extended
holomorphically to |A\| < 1, and L_(G) the subgroup of f € L(G) that can be
extended holomorphically to oo = |A\| > 1 and f(o0) = I. The corresponding
Lie algebras are

L(G) ={AN) =D AN | 4; € G},

L4(G)={A€ L@ | AN =) AN},
Jj=20
L(G)={A€L@) | AN =) _ 4N},
j<0
where G is the Lie algebra of G. Then (L(G),L_(G)) is a splitting of £L(G)
Let A be a maximal abelian subalgebra of G, and AT the orthogonal
complement of A with respect to the Killing form (,) of G. The dimension
of A is the rank of G. An element ¢ € G is regular if ad(£) is semi-simple
and the centralizer G¢ is a maximal abelian subalgebra. If ¢ is regular, then
ad(€) is a linear isomorphism of le. Let {ai,...,a,} be a basis of A such
that ap is regular. Then
J={Jij=aN |[1<i<rj>1}
is a vacuum sequence with J; = Ji1 = a1A. A direct computation shows
that M defined by (7)) is
M=J+ ([a\ L))y = J + AL,

To write down the flow generated by J; ;, we construct

Qi(u) = a; A + Z Qi,k(u))\k

k<0
satisfying
{[(% + a1 A+ u, Q;(u)] =0, (7.4)
fi(Qi(u)) = fj(aiX), 1<j<m,
where f1,..., f, are free generators of the ring of invariant polynomials on

G (for example, if G = sl(n), then r =n — 1 and f;(A) can be chosen to be
tr(A7) for 2 < j < n). Equate the coefficient of A* in the first equation of
[T4) to get the recursive formula

(Qik)a + [u, Qik) + [a1, Qik—1] = 0. (7.5)

We use (ZH) and the second equation of (Z4) to prove that Q; is a poly-

nomial differential operator of u. Since M_lJZ-,jM = )\j_lM_lJi,lM, the
flow generated by J; ; is (L2), i.e.,

O(a1 A+ u)

. [0 + a1 A +u, N + QioN !+ 4+ Qi
irj
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Although the right hand side is a degree 7 + 1 polynomial in ), it follows
from the recursive formula (Z.5)) that all coefficients of A* of the right hand
side are zero except the constant term. So the flow equation generated by
J; j is the following PDE for w:

g ; = [0r + u, Qin—j] = [Qi—j, aa]- (7.6)
By Proposition [T.4] equation (7.6]) has a Lax pair
Ox = (a1 A +u)dz + (ai)\j + Qi,O)\j_l + -+ Qi,1_j) dt; ;.

We call this hierarchy of flows the G-hierarchy. For example, for general G,
the flow generated by Jj ; in the G-hierarchy is the PDE for u : R? — At:

uty ; = ad(aj)ad(a1) ™" (ug) + [u, ad(a;j)ad (a1) " (u)],
and its Lax pair is
0y = (a1 A + ) dz + (a; A + ad(a;)ad(ay) " (u)) dty ;.
Example 7.8. The U-hierarchy [55]
Let 7 be a Lie group involution of G such that dr. : G — G (still denoted
by 7) is conjugate linear. Let U denote the fixed point set of 7, and U the

Lie algebra of U, i.e., U is a real form of G. Let L™ (G) denote the subgroup
of all f € L(G) satisfying the U-reality condition

T(f(N) = F(N), (7.7)
and L7 (G) = L (G)N L4 (G). Let L7(G) and L7 (G) denote the correspond-
ing Lie algebras. Let {a1,...,a,} be a basis of a maximal abelian subalge-

bra of U such that a; is regular, and J = {J;; = ;M | 1 <i < n,j > 1}
Then (£7.(G),L7.(G)) is a splitting and J is a vacuum sequence. The flows
generated by J;;’s form the U-hierarchy and flows in the U-hierarchy are
evolution equations on C®°(R, A+ N/). For example, for 7(g) = (g*)~* on
sl(2,C). Then U = su(2). Let a = diag(i, —i). The flows are evolution PDE
on C®(R,Y), where Y = {(_Oq g) | q € (C} and the flow generated by
J12 = a)? in the su(2)-hierarchy is the NLS

Example 7.9. The Z-hierarchy [57]
Let 7,0 be commuting involutions of G such that the induced involutions
7 and ¢ on G are conjugate and complex linear respectively, and U the fixed
point set of 7 on G and K the fixed point set of o on U (so % is a symmetric
space). Let P denote the —1 eigenspace of o in Y. Then we have Y = K+ P
and
K,KlCcK, [K,PlCcP, [P,P]CK.

This is the Cartan decomposition for % Note that K acts on P by conju-

gation. An element b € P is reqular if the K-orbit of b in P is maximal. If
b is regular, then {{ € P | [b,&] = 0} is a maximal abelian subalgebra and
is the kernel of ad(b) : P — K.
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Let A be a maximal abelian subalgebra in P, and {aq,...,a,} a basis of
A such that a; is regular (i.e., ad(a1) is a linear isomorphism from K N K,
onto PN AL, where K, = {k € K | [a1,k] = 0}. The dimension of A is the
rank of the symmetric space.

Let £77(G) be the subalgebra of £ € L(G) satisfying the %—realz’ty condi-
tion

T(EN) =€), a(€(=1) = &), (7.8)
and
LY(G) = L77(G) N Lx(9)).
Then (£7°(G), L7°(G)) is a splitting and

J={Jij=a;XN | 1<i<n,j>1odd integer}

is a vacuum sequence. The hierarchy constructed from these are called
the %—hierarchy and the flows in this hierarchy are evolution equations on
C™(R,KZ,), where Ky, ={y € K | (y,k) =0V k € K4, }. For example, the
symmetric space given by 7(g) = (g71)" and o(g) = (¢*)~! on G = SL(2,C)

is ggg; = 82, Let a = diag(i, —i). The flows in the gg—g—hierarchy are for

U= <—0q g) and the flow generated by J; 3 = a)? is the mKdV.

Remark 7.10. If % has mazimal rank, i.e., the rank of % is equal to the
rank of U, then:

e A maximal abelian subalgebra A in P is also a maximal abelian
subalgebra of U over R and is a maximal abelian subalgebra of G
over C.

e Fix a basis {a1,...,a,} of A over R. The phase space for flows in
the G-hierarchy is C>®(R, A%).

e The flow generated by J; ; in the G-hierarchy leaves C*°(R, A+ NU)
invariant and the restricted flows form the U-hierarchy.

e The flow generated by J; 2j+1 of the U-hierarchy leaves the subspace
lel invariant and the restricted flows form the %—hierarchy.

The matrix NLS hierarchy [31] [55]

Let 7(g) = (g*)~! be the involution of G = GL(n,C) that defines the real
form U = U(n), and (L7 (G), L_(G)) the splitting that gives the U-hierarchy.
Let a = iIk,n—k- Then

J={aN |j>1}

is a vacuum sequence. The flows constructed by this splitting and hierarchy
are equations for u : RZ — M.« (n—k), and the flow generated by a)? is the

matriz NLS, q = %(q:cx + QQQtQ)-

The —1 flow associated to % [51]
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We use the same notation as for the %—hierarchy. Given b € A, the —1
flow associated to % is the equation for ¢ : R? = K:

(97 g2)e = [a, g~ tbg]. (7.9)

It is easy to check that g is a solution of (7.9) if and only if ) is flat for all
A # 0, where
0y = (@A + g Lg.)dz + A\ tg b dt. (7.10)

For example, the —1-flow associated to ggg; defined by a = diag(i, —i) and

),mism,andm

cosq —sing

— _a; i =
b = —7 is the equation for g < sing  cosgq

gives the SGE.

Example 7.11. Twisted Kll-hierarchy [53]

Let 7 be the conjugate involution of the complex simple Lie group G that
gives the real form U, o; and o9 involutions of G such that 01,09 and 7
commute, and

U=K1+P, U=Ks+ P>

Cartan decompositions for o1 and oy respectively. Let A be a maximal
abelian subalgebra in P;. Assume that

1. o9(A) C A,

2. K1NKy =81 x8S2, K1 =51 x K}, Ky = K}, x S as direct product

of subgroups.
Let L = L™ denote the group of holomorphic maps f from e < |A| < ¢™*
to G satisfying the U/Kj-reality condition:
T(f(N) = FN),  o1(F(=N) = fF(V).

Let L, denote the subgroup of f € L such that oo(f(A™1)) = f(A\) and
f(1) € Kb, and L_ the subgroup of f € L that can be extended holomor-
phically to oo > |\| > € and f(o0) € K{. Then Ly N L_ = {e} and the Lie
algebras are:

L={\) = Zﬁj)\j | £ € Kiif kiseven, € P, if kisodd.},
J
Lp={{eL]|&j=02),8(1) € Ky},
Lo={EN) =) &N eL|&HeKi})
J<0
Let {a1,...,a,} be a basis of A such that a; is regular with respect to the
Ad(K;) action on Py, and J = {J;; | 1 <i <n,j > 1lodd}, where
Jij = a;N + oa(a;) A 7.

Then (L£4,L£_) is a splitting of £ and J is a vacuum sequence. We call
the hierarchy constructed from this splitting and vacuum sequence the K%'
hierarchy twisted by oo. The phase space of this hierarchy is C*°(R, M),
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where
M= {g aigh +v+0o2(g )N | g € K], v € Si}.
Example 7.12. A twisted 70(2)(2’8)(n)-hierarchy [53]

Let G = o(n,n,C), 7(x) = Z, and

o1(x) = In,nxlgil, o9(x) = In+17n_13:I;41_17n_1.

Then
U=o(n,n), Ki=o(n)xo(n), Ky=on,1)xon-—1),
KiNKe =381+ 8, where S; =o0(n) x0,S,=0xo0(n—1),
Ky =38+ (P1NKs) =o0(n,1), Kj=0xo(n).

The space

b o)

is a maximal abelian subalgebra in P; and o2(A) C A. Choose a basis
{a1,...,a,} of A such that a; is regular. Then 7,01,09 satisfy all the
conditions given above and we obtain the %—hierarchy twisted by

g9.

D € gl(n,R) is diagonal}

Next we give a brief discussion of bi-Hamiltonian structure, conservation
laws, and formal inverse scattering for the U-hierarchy.

Bi-Hamiltonian structure for the U-hierarchy (cf. [27, [51])
Let (,) denote a bi-invariant non-degenerate bilinear form on U, and

o) = [ @) ds

the induced bi-linear form on V = S®(R, A1) the space of Schwartz maps
from R to A+. Given a functional F on V, the gradient of F is defined by

dF,(v) = (VF(u),v),

(i.e., VF(u) = 0 is the Euler-Lagrangian equation for F'). A Poisson struc-
ture on V' is an operator J : V — L(V, V), u — J,, such that

{F1, Fo}(u) = (Ju(VEL(w)), VE(u))

defines a Lie bracket on V' and { } satisfies the product rule. The Hamilton-
ian equation for F' : V — R is

du

— = Ju(VF(u)).

= Ju(VE(w)

Two Poisson structures {, }1,{, }2 on V are compatible if

af{, h+ef, b

is again a Poisson structure for any constant cq, co.
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Given a smooth map u : R — A', let P, be the operator on C(R,.A+)
defined by

xT

P) = @)t lwdl,  G=v+ T, T = [ [

oo

where & and ¢ denote the projection of ¢ € U to A and A’ respectively.
By definition, P,(v) € A*. Let Jy and .J; be the operator from V to L(V, V)
defined by

(Jo)u = —ad(ay), (J1)u = Pu.
Define
{F,Glo(u) = ([VF(u),a1], VG(u)), {F,Gh(u) = ([Pu(VF(u)), VG(u)).

The following are known (cf. [27], [51]):
(1) {, }o and {, }1 are compatible Poisson structures on C (R, A").
(2) Set
1 o
Fij(u) = _3/ (Qi,—j(u), a1) dz. (7.11)

Then VF; j(u) = Qi —jr1(u)" and the flow generated by J; ; is
Uy = J(](VFi,j—i-l) = JI(VFZ'J)‘

(3) Both Poisson structures can be constructed from the natural Poisson
structures of co-adjoint orbits of L (G).

8. THE %—SYSTEM AND THE GAUSS-CODAZZI EQUATIONS

We review the definition of the %-system, the twisted %-system, and the
—1 flow on the %—system and see that SGE, GSGE, equations for isothermic
surfaces, for k-tuples in R™ of type R¥—%*, and for flat Lagrangian subman-
ifolds in C™ are %—Systems.

The ¥-system [51]

Let % be a rank n symmetric space, U = K 4+ P a Cartan decomposition,

A a maximal abelian subspace in P, and {a1,...,a,} a basis of A. The %—
system is the following over-determined first order non-linear PDE system
for v: R" — A+ N P:

[ai,vtlyj] — [aj,vtu] = [[ai, v], [aj,v]], 1<i#j<n, (8.1)

It follows from the definition that the following statements are equivalent
for v:R* - AN P:

(1) v is a solution of (8I),
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(2) the following connection 1-form on R” is flat for all parameters \ €

C:

0\ = Z(ai/\ + [a;,v]) dz; (8.2)
i=1
0, is a Lax pair of the Y-system),
K
(3) 65 is flat for some s € R U R,
(4) if aq is regular, then u = [ag,v] is a solution of the flow generated
by Ji1 = a;\ in the %—hierarchy.

Remark 8.1. If we use a different basis of A, the %—systems differ by a
linear coordinate change. If two maximal abelian subalgebras A and A
are conjugated by an element in K, then the corresponding %—Systems are
equivalent. If % is a Riemannian symmetric space, then any two maximal
abelian subalgebras in P are conjugate by an element of K, so there is a
unique U/K-system. But when % is a pseudo-Riemannian symmetric space,
there may be more than one maximal abelian subalgebras in P modulo the
conjugation action of K on P. Hence there may be more than one non-
equivalent %—system associated to %

Statement (4) given above means that the %—System combines the com-
muting flows in the %—hierarchy generated by Ji1 = a1, ..., Jp1 = apA
together.

Curved flats in symmetric spaces

Recall that a flat of a symmetric space % is a totally geodesic flat subman-
ifold of &. If A is a maximal abelian subalgebra in P, then A = exp(A)K
is a flat through eK and gA is a flat through gK. Moreover, all flats are
obtained this way.

Definition 8.2. [29] A curved flat in % is an immersed flat submanifold of
% that is tangent to a flat of % at every point.

Definition 8.3. [52] Let % be a symmetric space, and Y = K+ P a Cartan
decomposition. A flat submanifold M of P is called an abelian flat subman-
ifold if T M, is a maximal abelian subalgebra of P for all x € M. Here the
metric on P is the restriction of the Killing form (,) of U to P.

If we identify the tangent space of % at eK to be P, then a flat subman-
ifold ¥ in % is a curved flat if and only if g_lTEgK is a maximal abelian
subalgebra of P for all gK € ¥. A curved flat ¥ is semi-simple if g71T%,
is a semi-simple maximal abelian subalgebra of P for all gK € X..

Let % be the symmetric space defined by 7,0. Then the map % - U
defined by gK + go(g)~! is well-defined and gives an isometric embedding
of the symmetric space % into U as a totally geodesic submanifold. This is
called the Cartan embedding of % in U.

The following is known (|29, [52]):



38 CHUU-LIAN TERNG*

Theorem 8.4. Suppose v is a solution of the %—system and E is its a
parallel frame. Then:

(1) Y = E(z, \)o(E(xz, )™ = BE(z,1)E(z,—1)"! is a curved flat.

Conwversely, all local semi—g\irrllple curved flats can be constructed this
way. In other words, the %-system can be viewed as the equation for
curved flats in % with a “good coordinate system”.

(2) Z = %—EE_” r=0 %8 an abelian flat in P. Conversely, locally all
abelian flats in Py can be constructed this way, where Py is the subset
of reqular points in Py.

Example 8.5. The Ugng[x%n -system [5§]

Let U(n) x C" denote the group of unitary rigid motions of C* = R?",
and G the complexified u(n) x C", i.e

b ¢ =
g = — b y| |b=-bc =—cbcecglnC),rycC
0 0 O
Let 7,0 : G — G be the involutions defined by
I, 0 0
7(9) =g, o(g)=TgT™', whereT=|0 -I, 0
0 0 1

The fixed point set of 7 is U(n) x C", o and 7 commute, and the correspond-

ing symmetric space is g%iﬁz The Cartan decomposition is u(n) x C"* =

K + P, where
b 0 =z
K= 0 b 0 ‘ beo(n),reR" 3,
0 00
0 — O
P = c 0 yl|le=d,é=cyeR"
0 0 0
Then {a; = ep+ii — €inti | 1 < i < n} form a basis of a maximal abelian
0 B 0
algebra A in P. The UE";[;E,L -system is the system for ¢ = —OB 8 —Oh
given by the condition that
n [0,8] Ad  Oh
Oy =Y (aid+[aiql)de; = [ =A6 [5,8 0 (8.3)
i=1 0 0 0

is flat for all A € C. Note that this is the Lax pair (6.9]) for flat Lagrangian
submanifolds in C".
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Example 8.6. The %—system

The involutions that gives % is 7(g) = g and o(g) = 13729157%,
and the Cartan decomposition is 0(4,1) = K + P with K = 0o(3) x o(1,1)
and

P = {<_3£t g) ‘5 isareal 3 x Qmatrix}, J = diag(1,—1).

Note that
0

)0 ey [T
(e 1= (5 5

is a maximal abelian subalgebra in P. Let {a1,az2} be a basis of A defined
by

10 0 0
ai:<_})D¢ 13) Di=(0 0|, Dy={0 1
i 0 0 00

0 fi
. 0 .
The %—sys‘cem @®1) is for v = <_J£t g) with § = fi ;)
T T2
Write down this system in terms of fi, fo, 71,72 we get
(fl)wg — _(fZ)m17
(f2)x2 - (fl)xl —rire =0, (84)
(Tl)xz = —f27’2,
(12)2, = f171-
Its Lax pair is
dxl 0
_ (—DJE +¢JD? DX _
O = ( _JDt\ _JD% + J¢tD ) where D = 8 d(:)vg
(8.5)

The first equation of (84]) implies that there exists ¢ such that f; = ¢,
and fo = —qg,. Write (84) in terms of ¢, 71,72 we get the Gauss-Codazzi
equation (A3]) for isothermic surfaces. Moreover, the Lax pair (85 is the
Lax pair (G.I1) for isothermic surfaces in R3.

Example 8.7. The %—system

We choose

(0 —-DJ . (0 =gty
az—<Dt 0 >7 1SZSI{I, U—<§ 0 >7

where Df = (€44,0) € Mpxn, and e;; is the diagonal k x k matrix with all

entries zero except the ii-th entry is 1. The %-sys‘cem is the PDE
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for & = (y,7) : R¥ — gli(k) x My _x with Lax pair 6 = Zle(ai)\ +
[a;,v]) dz;. We write 6y in terms of y,~ to get

([ w  =AnJ
0\ = <77t)\ - > , where (8.6)
(=8 Jy+ytIs oJy
w= —~tJé 0
and § = diag(dxy, ..., dzg).

Set F = —Jy and h = Jv, then (80) is the same Lax pair (6.I5]) for

k-tuples in R™ of type R¥=4¢ given in Theorem B.1l So the %—

> ) T = _5yt'] + y5J, 77t = (570)7

system is the equation for k-tuples in R™ of type RF 4,

Example 8.8. [11] The %-sys‘cem is the equation for

(1) 2-tuples in R? of type O(2),

(2) flat surfaces in S* with flat and non-degenerate normal bundle,

(3) surfaces in S* with constant sectional curvature 1 and flat and non-
degenerate normal bundle.

Moreover, if v is a solution of the %-sys‘cem, and E a parallel frame
of the Lax pair of v. Write E(z,0) = <%1 ;), and D = <g> is M3xa
2
valued, where 0 = diag(dxy, dzg). Then:
(1) nggz_1 is closed, so there exists Y = (Y1,Y3) € Mj3yxo such that
dy = nggz_l, and Y is a 2-tuple of surfaces in R? of type O(2).

~1
(2) The first column of E(xz,7) <gb IO> is a flat surface in S* with
2

flat and non-degenerate normal bundle.

(3) The third column of E(x,r) I(‘;) o
2

stant curvature 1 and flat, non-degenerate normal bundle.

> is a surface in S* with con-

Analogous results hold for %—system when % is a real Grassmannian.

Example 8.9. [58]: The %—sys‘cem is the equation for

(1) Egoroff orthogonal coordinate systems of R",
(2) flat Lagrangian submanifolds of C" that lie in S?"~1,
(3) flat Lagrangian submanifolds of CP"~L.

Twisted --system [30, 10, 53]
We use the same notation as for twisted %—hierarchy. The Kll—system

twisted by o2 is the PDE for maps g : R — K and v; : R™ — & such that

the connection 1-form
n

0 = Z((ga,-g_l))\ + v; + o2(gaig AT da (8.7)

i=1
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is flat for all non-zero parameters A € C. So the %—System twisted by o9 is

given by the collection of flows in the Kll-hierarchy twisted by o9 generated

by a;\ + oa(a;) A"t for 1 <i < n.

Example 8.10. A twisted %-system (53]

We use the same notations as in Example [(12] i.e, G = O(n,n,C), and

T(g) = ga 0'1(9) = In,ngI;;n 02(9) - In—i—l,n—lgI;_::,l_l,n_l'
Let A be the maximal abelian subalgebra in P; spanned by

1 0 €44 .
;] — — <171 <
a; 2<eii 0), 1<1<n,

Then K} = 0 x o(n), S1 = o(n) x 0, and the Lax pair 6 of the %—
system twisted by oy is (8.7) with

g:<(1) 21>2Rn—>K{, ’l)z':<ui 0>:Rn—>31, 1<i<n.

In other words,

A0 SA u 0 AL/ 0 AT
) <A5 0 ) * (0 0> TN <JA5 0 > (88)
where A : R" — O(n), § = diag(dxy,...,dz,), J = diag(1l,—1,...,—1), and

w=> 1 udz.
The flatness of 6 is equivalent to (A, u) satisfying the following system

A AS A u =
{d AS+ A5 Au =0, 59)

du+uAu+ AN AL+ 200)245 = 0.

The first equation implies that there exists F' = (f;;) with fi; = 0 for all
1 < i < n such that

A7 dA =6Ft — I, u=06F — F'.

Since this is the Lax pair (B.8)) for the GSGE, the twisted %—sys‘cem
is the GSGE.

The —1 flow on the %-system

We combine the —1 flow and the flows in the %-hierarchy generated by
a; A for 1 < i <n to get the —1 flow on the %—system. This is the equation
for v: R"1 — AL NP and g: R — K

_[aiﬂij]+[CLj,Uxi]—f—[[CLi,U],[CLi,'UH :07 175,]7
[97 gz, — [ai, 0], g7 bg] = 0, 1<i<n, (8.10)
[a;, ve] = [ai, g by, 1<i<n.
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Equation (8I0) has a Lax pair

9)\ = <Z(CLZ)\ + [CLZ', U]) dx1> + A_lg_lbg dt.
i=1

If Ky = {k € K| [k,b] = 0} = 0, then the second equation of ([8I0) gives

97 ge, = [ai,v] for 1 <i < n. If % has maximal rank and a € A is regular,

then the —1 flow on the %-System becomes the following system:

_[CL“U%']+[ajvvﬂfi]+[[ai7v]7[ai7v]] =0, 17&]7
9 gz, = [ai, 0], 1<i<n, (8.11)
[a, ve] = [a, g7 'bg].

Note that
(1) when % is of rank one, the —1 flow on the %—system is the —1 flow
for the %-hierarchy by changing the dependent variable u = [a, v],
(2) (BII) is an evolution equation on the space of solutions of the £-
system.
Higher flows on the space of solutions of the %-system
Assume a € A is a regular element, and QQ = ngl Qj)\j is constructed
from (74) using u = [a, v]. Note that @ satisfies the recursive formula

(Qj)z + [[a,v],Q;] = [Qj-1,a],

Q1 = a, and f;(Q) = fj(aX), where f1,..., f, are a set of free generators of
the ring of Ad(K)-invariant polynomials on P. The flow in the %—hierarchy

generated by a\ written in v is
[a, 0] = (Q1-j)e + [[a, 0], Q1] = (@}, a]- (8.12)

Recall that v is a solution of the %—system if and only if [a,v(x1,...,zy,)]
solves the flow generated by a; A in the %-hierarchy for 1 <4 < n. Since all
flows in the %—system commute, the space of solutions of the %—system is
invariant under the evolution equation (8I2]) for all odd j. In other words,
the following system for v : R® x R - A+ NP,

{—[ai,vxk] + [ak, va;] + [[ai, ], [ag, v]] = 0, ™ (8.13)

[avvt] = (Ql—j)wi + [[aivv]v Ql—j]’ 1

has a Lax pair

n
(aN + QN "'+ + Q1) dt + Z(ai)\ + [ai, v]) dz;.
i=1
System (8.I3) can be viewed as an evolution equations on the space of so-
lutions of %-System as follows: Write a =Y ;" | ¢;a; and u = [a, v]. Then

uz, = ad(a;)ad(a) "L (X0 ciug,) + [u,ad(a;)ad(a) " L(u)], 1<i<n,
up = 3 €i(Qu—j(u))a, + [u, Q1—j(u)],
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are commuting flows for u. The first set of equation in the above system
means that v = [a,u] is a solution of the %-system. Hence
n
@, 0] =Y i@y (w))a, + [, Q1—j(w)]
i=1

leaves the space of solutions of the %—System invariant.

9. LOOP GROUP ACTIONS

We review the dressing action of L™7(G) on the space of solutions of the
%-system, and explain the relation between the action of “simple” rational
elements in L™?(G) and geometric Béacklund and Ribaucour transforms.

Let v be a solution of the %—System, and FE the normalized parallel frame
for the Lax pair 0y = >_1" | (a;A + [a;, v]) da;, i.e., E(x, \) is the solution of

E7'E,, = a;\+[a;,v], 1<i<n,
E0,\) =1L

Since @) is holomorphic in A € C and satisfies the %-reality condition
7(05) = Ox, a(6_y) = 0y,

its frame E(z) € L}?(G), where E(x)()\) = E(z,\). Given f € LT?(G), by
the Local Factorization Theorem [.2] we can factor

fE(z) = E(x)f(x)
with E(z) € L77(G) and f(z) € L77(G) in an open subset of z = 0 in R™
Expand
F@)A) =T+ fr(@)A ™ -
Then fi(z) € P and we have

Theorem 9.1. [55]
Let f,u,E, f, f1,E be as above. Then

(1) 9(x) := (f1)« is a solution of the L-system, where (f1). denotes the
projection of fi € P onto AX NP along A.

(2) E is the normalized parallel frame for ©.

(3) f*wv:= 10 defines an action of L7 (G) on the space of solutions of
the %-system.

(4) f+E = E defines an action of L™°(G) on normalized parallel frames
of solutions of the %—system.

(5) If f € L”°(G) is rational, then fxv can be computed explicitly using
E and the poles and residues of f.

(6) If U is compact, ay is reqular and f € L7 (G) is rational, then f*0
is globally defined and rapidly decaying as |xi| — oo.

Remark 9.2.
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(1) Wesay f: S' — C* x G satisfies the %—reality condition up to scalar
functions if there is a ¢ : ST — C such that

T(f(N) = 6N F(N),  a(f(=A) = oM F(N).
Since scalar functions commute with L™7(G), Theorem works
for rational maps f that satisfy the %-reality condition up to scalar
functions.
(2) Given f € L”7(@G), if E is a parallel frame of a solution v of the
%—system and fE(0,-) lies in the big cell of L™?(G) then Theorem

@.1)(1) still holds and E is a parallel frame for f*v (but may not be
normalized).

Béacklund transformations for U(n)-system [55]

We use the U(n)-system as an example to demonstrate how to compute
explicitly the action of the subgroup R (G) of rational elements in L7 (G).
Note that RT (G) is the group of rational maps f : S* — GL(n,C) that
satisfying the U(n)-reality condition and f(oo) =I. First we find a rational
element f € R” (G) with only one simple pole, then use residue calculus to
compute the action of f on solutions of the U(n)-system.

Let a € C, 7 a Hermitian projection of C*, and 7+ =1 — 7. Then
Jan(A) =7+ i_zwL:I—l—(/)\é_zﬂl (9.1)

satisfies the U(n)-reality condition g(A)*g(A\) =L
Three methods to compute g, r * v
Method 1: Algebraic Backlund Transformation
Let A be the space of diagonal matrices in u(n), a; = ie;j, v a solution of
the U(n)-system, and E the normalized parallel frame, i.e., E-1dE = 6, =
Yoy (aid + [ag,v]) da; and E(0,\) = 1. We claim that
Ganx*x0 =0+ (@ — @)Ty,

where 7(x) is the Hermitian projection of C" onto E(x, ) ! (Imn) and 7,
is the projection of u(n) onto A+ along A. To see this, we need to factor
JarBE(x) = E(x)§(z) with E(z) € L7 (G) and g(z) € L7 (G). We make an
Ansatz that § = g, #() and solve 7(x) by requiring that

E(z,)\):= gaﬂr()\)E(_x,)\)g_l(x,)\)
= (I+5—

—m ) B, )(I = S——7(2)")

lies in L7 (G). Hence the residues of E(z,)\) at A\ = «,a should be zero.
This implies that

mtE(z,a)7(z) =0,  wBE(z,a)7(z)t =0.
Both conditions are satisfied if
Im(7(x)) = B(z, )" (Im(r)).
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This gives the formula for #(z). The formula for E implies that £~ dE
has a simple pole at A = oo and E~'dE = 37 | a;\ + [a;, 0], where & =
v+ (o — @)7,. This proves the claim.

Method 2: ODE Bdcklund transformation
The new solution gis » * v can be also obtained by solvmg a system Of

compatible ODEs: Set #y = E~' dF and 0, = E-1dE. Since FE = Ja, ﬂEg
1 _ dgg 1.
0rg = §0x — dg, (9.2)

where § = g 7. Multiply ([@2)) by (A — @) and compare coefficients of A\’ to
see that T must satisfy

and g, r is independent of z, 0\ = GO\G~ ; or equivalently,

laj,v], 7] = (v — @)[aj,fr]frl, 1<j<n,

{fr(a;) [:ﬁ(x). W —x - (0:3)

and go . * v = v + (a — @), Moreover, given v,
(1) system (@.3) is solvable for 7 if and only if v is a solution of the
U (n)-system,
(2) if v is a solution of the U(n)-system and 7 the solution of (0.3)), then
0 =v+ (@ — a&)T, is a solution of the U(n)-system, where 7, is the
projection of 7 onto A along A.

Method 3: Linear Bdcklund transformations
Suppose 7 is the Hermitian projection of C™ onto V = Cyqg. Set

y(x) = B(z, )~ (o)-

The normalized parallel frame of gq » * v is go rE(z,-) g;% () where 7(x) is

the projection onto Cy(x). Differentiate y to get
dy=—EYdEE yg = —0,y.

So y is the solution of the following linear system

{dy = Oy =— Z] 1(ajo+ [ag,v]) day, (9.4)

y(0) = yo.
In fact, given v : R® = At NP,
(1) system (@4 is solvable if and only if v is a solution of the ¥ To-System,
(2) if v is a solution of the f-system and y is a solution of (Iﬂl), then
Ga,x ¥V = v+ (@ — @), where 7(x) is the Hermitian projection of
C™ onto Cy(x).
Note that the first and third methods are essentially the same because

solutions y of ([@4)) is E(-,a)"(yo), where E(-, ) is a parallel frame for 6,.
If dim(Im7) = k, then we first choose a basis ¢{, . . . ,yg of Imm. Let y; be

the solution of (@) with ;(0) = 39, V(x) the linear subspace spanned by
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y1(x), ..., yr(x), and 7(z) the Hermitian projection of C* onto V(z). Then
the new solution is gor ¥ v = v + (@ — @)y
Permutability formula [55]

The permutability formulae for Backlund transformations for the SGE,
the GSGE, Ribaucour transforms for flat Lagrangian submanifolds in C"
and for k-tuples in R™ of type R¥~4f can be obtained in a unified way. This
is because

(1) geometric transforms on these submanifolds correspond to actions
of simple rational elements in the negative loop group,

(2) if g; have poles at «; for ¢ = 1,2, then we use residue calculus to
factor g1g2 = fof1 such that f; have poles at «; for i =1, 2.

Permutability formulae can then be obtained from the fact that the geomet-
ric transforms are actions.

We use U(n)-system as an example to explain this method: Given gq, x,
Gas,my With o # g, let 71, 72 be the projections such that

Im7 = gay mo(@1)(Immy),  Im7Ty = gay x, (a2)(Immy). (9.5)
Then

Gagz,m2 © Yai,m1 = Gou,m1 © Jao,ma- (9'6)

This gives a relation for rational elements in R” (G)) with only one simple
pole.

Formula (9.6]) leads to a Bianchi type permutability formulae for Backlund
transformations as follows: Let vy be a solution of the U(n)-system, and
Ey(x, ) its normalized parallel frame. Let 7;(x) denote the Hermitian pro-
jections of C™ onto Ey(z, ;) ! (Imm;) for j = 1,2. Then

Ej (337 )‘) = Goyj,m; (/\)EO (:Ev /\)gaj 75 (x) (A)_l
is the normalized parallel frame for
Vj = Gay,m; * V0 = Vo + (0 — &;)(75)s, J=12.

Use the fact that L7 (G) acts on the space of solutions and the permutability
formula (@.6]) to get

V3 = Gag,m * V1 = Jag,m * (Gay,m *00) = Jar,m * (Jag,m * V0) = Gaymy * V2.
But
U3:U1—|—(042—5£2)(7~'2)* :’Ug—l-(()él —dl)(%l)*, where
Im7y = Ey(x,a2) (Im7y), Im7 = Ey(z,a1) (Im7y).

So v3 can be given by an explicit formula in terms of vg, v, ve. This gives
the permutability formula for the U(n)-system.

Action of R (G)
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The method we used to construct the action of g, - * v works for the
action of any f € R”(G) on v as follows: First we write

k,n;

N =1+ Z —az

zl,]l

for some constants o;; € C and P;; € gl(n). Let E be the normalized parallel
frame of a solution v of the L-system. We assume fE(z) = E(z)f(z) where

f( ) has poles at «q,...,q; with order ny,...,ng respectively, i.e.,
kyn;
x,\) =1
Fen =1 Y L
i=1,j= 1

Reality condition gives f(z,\)~' = f(:n,/_\)t. Then f(N\)E(z, \)f(z,\)~! =
FN)E(z, \) f(z,\)* should have no poles at A = o; for 1 < i < k. We
can use these conditions to solve I:’,](x) This computation is long and
tedious. However, if we find a set of generators of the negative rational
loop group R (G) with minimal number of poles then we can simplify the
computation by using permutability formulas (relations) for these generators
or the algebraic BT.
Simple elements and generators

Let % denote the symmetric space constructed from two commuting invo-
lutions 7,0, and R™7(G) denote the subgroup of rational maps f : S? — G
that arein L”7(G). A f € R”7(G) is called a simple element if f can not be
factored as product of fifo with both fi and fo in R”?(G). The following
are known:

(1) Uhlenbeck [59] proved that
{gar | @ €C,7* =7,7% = 7}

generates the negative rational loop group satisfying the U (n)-reality
condition.
(2) Note that
(a) gis,x satisfies the % reality condition if s € R and & = .
(b) if @ € C\ iR, 7 is a Hermitian projection of C", and Imp =
Ja,x(—a)(Im7), then

faJr = g-a,pYa,7

satisfies the % reality condition.
Terng and Wang [58] proved that these elements generate the nega-
tive rational loop group satisfying the OE"% -reality condition.

(3) Donaldson, Fox, and Goertsches [24] construct a set of generators
for R™?(G) when G is a classical group.



48 CHUU-LIAN TERNG*

Bicklund transforms for %—system [55]

The methods described above for constructing algebraic and analytic BT
and permutability formula for U(n)-system work the same way for general
%-system. For example, g, satisfies the % reality condition. If v is a

solution of the %—System and F is its normalized parallel frame for the

Lax pair of v, then:

(1) E(z,-) satisfies the % reality condition.

(2) Since 05 = > (isa; + [ai, v]) dz; and q; is diagonal in u(n), ;s is a
sl(n,R)-valued 1-form. Hence E(z,is) € SL(n,R) and E(x,is)(Imm)
is real.

(3) Gis,x ¥ v = v+ 2is7, is a solution of the %—sys‘cem, where 7 is the

orthogonal projection of R™ onto E(z,is)~!(Imr).

10. ACTION OF SIMPLE ELEMENTS AND GEOMETRIC TRANSFORMS

Suppose a class of submanifolds in Euclidean space admits a local coor-
dinate system and an adapted frame such that its Gauss-Codazzi equation
is the %—system (or twisted %—system) for some symmetric space % If
the adapted frame and the immersion of the submanifold can be obtained
from the parallel frame of the Lax pair of the corresponding solution of the
%—system, then the action of a simple rational loop on the parallel frame
of a solution of the %-System gives rise to a geometric transform of these
submanifolds. We explain how this is done for K = —1 surfaces in R3,
flat Lagrangian submanifolds in C", and k-tuples in R” of type R¥~%*. We
have given a unified method to construct Permutability formula for actions
of simple elements on the space of solutions and normalized parallel frames
of %—systems in section 9. Hence if we know how to read geometric trans-
forms from the action of simple elements on parallel frames then we can
obtain an analogue of Bianchi’s Permutability Theorem for these geometric
transforms.

BT for K = —1 surfaces in R? and action of Gis m

Let gis.» be the rational map defined by (Q.I]) with s € R and = real. It
was noted by Uhlenbeck in [60] that the dressing action of gis » on solutions
SGE gives rise the Bicklund transforms for K = —1 surfaces in R3.

Let g be a solution of the SGE, 2¢,; = sin2q, and E(z,t, A) the normalized
parallel frame for the Lax pair

_ —i 0 0 —¢ i [ cos2q —sin2q
9)\_<)\<0 i>+<qib 0 >> dac—|—4)\ (—Sian —coqu) dt

Then

N (10.1)
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is the immersion of a K = —1 surface in su(2) (identified as Rg) corre-
sponding to the solution g of SGE. We have seen that F = g;, WEgls . is the

normalized parallel frame for g;s »*q, where 7(x) is the orthogonal projection
of R? onto E(x,is)~!(Imn). Then

1
- Atis\2
E = ()\ — is> Egisir. (10.2)
is a parallel frame for gis » * ¢, and
A aE A —1
= — 10.
F=oxE (10.3)
-2
is the immersion of a K = —1 surface in su(2) corresponding to gis r * g.

Note that E € SU (2). To see the properties of the transform f — f, we use

([I02]) and (I0.3)) to get

Fo f+1 1 1 1

S)E = SDE(, )7

E(
2 2 2

Let (cosy(z),siny(x))! denote the unit direction of the real line Im(x) C
R2. Then a direct computation then implies that

f = f+sinfey,

where sin ) = = and
ats

_ -1 0\ 1 0 i 1
el—cos2yE%<0 i> E% sm2yE% <i O> E%

is tangent to f, where E1 = E(-, %) Use [I0.2) to see that f — f is tangent
2

to f. In other words, f f is a BT with angle 6.

n-submanifolds in R?"~! with constant curvature —1
Let Ly denote the positive and negative groups defined in Example [Z.11]
for the % -system twisted by oo. First we construct a simple rational

map satisfies the % reality condition up to scalar functions. A direct

computation shows that if g(\) = (O 5) + 1% P satisfies the %_

reality condition up to scalar functions, then
1 CY\ (1 0
(e ) )

In other words, g must be of the form

0 s (1 C'8 1 [\ sC'8
we= (5 5) 575 (e ) v (e )

where 3,C € O(n).
Let A be a solution of the GSGE, and E(z,\) the normalized parallel
frame for the corresponding Lax pair 6, defined by (6.4]). Note that E(z,-) €



50

CHUU-LIAN TERNG*

L. Suppose gg1(A\)E(z,\) = E(x’)\)gﬁ(x),é(x)()\) with 5(x),C(z) € O(n)
and E(z,-) € L. Then

EN(% A) = ga1(NE(z, )‘)gg(m),é(x)()‘)_l
is holomorphic for A € C. So the residue at \ = s is zero, i.e.,

1 -t
(1,B)E(, s) (_Bté Bt > =0.
This implies that

BIC = (12 + Bna) " (m + Bns),
Set

where E(-,s) = (771 772) .
3 M4

(P, Q) = (LB)E("S)'
Then d(P,Q) = (P,Q)8, = (P,Q) ( v

SAD, 1 -1
DSA6 0 >, Ds—§(31+3 J),
or equivalently,
dP = Pw + QD AS,
dQ = PSA'D,.

If X := —Q'P, then we get the BT given in Theorem B.8
dX = X6A'DsX — Xw — DsAS.

This explains the following Theorem of [6] in terms of the action of gg c:

Theorem 10.1. Let s be a non-zero real constant.
system for y : R™ — My xon:

Consider the linear
o w 5AtDs o 1 -1
dy—y<DsA5 0 ), Ds—a(sI—i—s J). (10.4)
Then

(1) System ([IQ.4) is solvable if and only if A is a solution of the GSGE.
(2) If y = (P,Q) is a solution of ({I0.4]) with Q € GL(n), then X =

—Q~'P is a solution of BT [3.10) for GSGE and X is a solution of
GSGE.

In other words, (I0.4) can be viewed as the Linear Bdacklund transform
for GSGE.

Definition 10.2. Ribaucour transform for submanifolds [21]

Let M and M be two n-dimensional submanifolds in R®** with flat
normal bundle.
D :

following conditions:

A Ribaucour transform is a vector bundle isomorphism
v(M) — v(M) covers a diffeomorphism ¢ : M — M satisfying the

(1) ® maps parallel normal fields of M to parallel normal fields of M,
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(2) for each p € M and v € v(M),, the normal line p + tv intersects the
normal line ¢(p) + t®(v) at equal distance r(p,v),

(3) d¢p maps common eigenvectors of shape operators of M at p to
common eigenvectors of shape operators of M at o(p),

(4) the tangent line through p in a principal direction v meets the tan-
gent line through ¢(p) in the direction of d¢,(v) at equal distance,

Let M be a submanifold in R"t* and (e1,...,en+k) an orthonormal frame
on M such that (ey,...,e,) are principal directions (i.e., a common eigen-
frame for the shape operator of M) and (ep41,- .., en+k) is a parallel normal
frame. Let M be another n-submanifold with flat normal bundle, ¢ : M —
M a diffeomorphism, (En+1,---,€ntx) a parallel normal frame for M, and
€; is the direction of d¢(e;) for 1 <i <n. Then ¢ is a Ribaucour transform
if

(a) é; is a principal direction for M for 1 <i<n,
(b) there exist functions hy, ..., h,1x on M such that

é(p) + hi(p)éi(p) = p + hi(p)ei(p), 1<i<n+k
for all p € M.

Flat Lagrangian submanifolds in C"

Let (5,h) be a solution of the ggz%z%-sys‘cem, 0, its Lax pair (6.9]), and
EF X

F= > the normalized parallel frame of 8. We have seen in section

0 1
that for each r € R, X(-,r) is a flat Lagrangian immersion in C" corre-
sponding to solution (3, h) (the associated family). We review the action of
(n)xC™
(n)xR™
and derive the corresponding geometric transformations ([58]).
The action of hq x

We compute the action of h, , on flat Lagrangian submanifolds in C",

where
Jia,m 0
ha,ﬂ = < 0 )\+ia>

A—ia

two types of simple elements on the space of solutions of the g -system

U(n)xC™

with &« € R and 7 = 7. Note that h, r satisfies the O(n)xR"

up to scalar functions.
We claim that the action of h, r gives a Ribaucour transform for flat

Lagrangian submanifolds in C™. To see this, first we factor ¢F = Ff with

AR E X ;[ Yo7 §
F_<O 1)7 f_< 0 )\+ia>7

A—ia

reality condition

where £ = ;Eiigfrn, n(z) = E(x, —ia) "' X (z, —ia), and 7(x) is the Hermitian
projection onto (x) = E(x,ia)~!(Imm). It follows from reality conditions

that both 7 and 7 are real.
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We assume Im7 is of one dimension and is equal to Ryg. Let

j(x) = B(x,ia) " (yo)-
Then
00
7[>
Equate the 12-entry of fF = Ff to get ¢X = E€ + f\”j%f( . This implies
that

-

(10.5)

S W -
X =gl Be+ 20y 1R,
A — i
where g = gin,» and § = giq 7. Set X = §f;gg;j7r)i' Then
. i
X=X Ex 10.6
X (10.6)

is a ﬂat~Lagrangian submanNifold in C" corresponding to the solution (5 , }N‘L),
where = 8 — 2a(7), and h = h — 2a7.

Claim that (I0.6)) is a Ribaucour transform. To see this we first note that
A + iOé 1 2iC¥

1l E=FEQ1 7 10.
X —ia Jiar T+ =57 (10.7)

E=
is a parallel frame for the Lax pair of (3, h). Hence
. 92
E-EB=-"" px (10.8)
—ia

Write E = (e1,...,ep) and E = (é1,...,é,). By (I05), we see that the j-th
column of )\2_1‘;; E7 is equal to y;Z, where

_ 2ia Ey
A —ia|lgl]*
By (I0.6) and (I0.8]), we get
& —e; =07, (109)
Xox= WMo (10.10)
Yi

It remains to compute the relation between parallel normal fields of X and
X. The parallel tangent frames for X and X are V= FA L and V = FA~!
respectively, where A(z) = E(z,0) and A(z) = E(x,0). By (I0.7), A =
A(I — 27). Compute directly to see that

o 2ic
=EA ' = E(1 )1 — 27) AL
Vv (I+ A_iaw)( )
=EB(I—- ZA, AT =EAT! - ZA, ExA~!
A — i —ix
=V - 2A, E7A~!



GEOMETRIC TRANSFORMATIONS AND SOLITON EQUATIONS 53

Thus we have
f)-—v-—ﬂ(zn:a- Uk )Z (10.11)
J 1T e ikYk )4, .
where v; and v; are the j-th column of V and V respectively. Since X, X are
Lagrangian, v,; = iv; and 0,,4; = i; are parallel normal fields for X and

X respectively. As a consequence of (I0.11)), (I0.9) and (I0.I0), we have

a(n,9)

X—X=—-— " (Dpyj — Upyj).
\ ZZ:1 ik ( n+j n+J)

This proves that X — X is a Ribaucour transform. In fact, this is the
Ribaucour transform found in [20].
The action of kiqp

We claim that the action of ki, gives an Combescure O-transform for
flat Lagrangian submanifolds in C", where

Q-
boaty = (1 728,

. E YV iE'b
kia,bF =Fk = <0 1> <(I) A—lia .

i(b — E\E;'))
A —ia
Moreover, if A € R then Y is a flat Lagrangian submanifold of C" corre-
sponding to the solution (8,k), where h = h + E(-,ia)~'b. Note that the

transform X — Y is a Combescure O-transform.
k-tuples in R” of type RF—4¢

It is known that the Darboux (or Ribaucour) transforms for Christoffel
pairs of isothermic surfaces in R3 and for Christoffel pairs of isothermic
surfaces in R™ can be derived from the action of a simple rational map by
dressing actions (cf. [16,[34] and [111[12] respectively). Ribaucour transforms
are constructed for k-tuples in R” of type R¥=4¢ in [IT] 25] using dressing
action of a simple rational loop. Recall that Christoffel pairs of isothermic
surfaces in R (for n > 3) are 2-tuples in R™ of type R!. So the construction
of Ribaucour transforms for k-tuples in R" of type R¥~%* contains the surface
case.

First factor

Then

Y =X+

Simple elements for the %—system

Let W € R" and Z € RF6¢ with length 1, ie., W!W = ZtIk_MZ =1,
and 7 the projection of C"** onto C C/IZ/)’ ie.,

™

1 (wwtiwzt
“o\izwt zzt )
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Note that 77 = 7w = 0. Let s € R. Then

A+ 1s A —1s
i I— T I-7
i = (7 + 32— )7+ (1 - 7))
A AT
A —is A+is

satisfies the %—reahty condition.

Theorem 10.3. [11] 25]
Let £ = (F,v) be a solution of the %-system, and E(xz,\) a
parallel frame for the Lax pair 0y defined by ([RB6l). Let W € R™ and Z €

RE=4E be unit vectors, T the projection of C"** onto C <iZ>' Then:

(1) E(z,is)~! <I/IZ/> is of the form <gg;> with W € R*, Z € RF-44
and WtW = Ztlk_LlZ.

(2) The action pis - *& = (F,v) + 4s(ZWh),, where 1, = n— Zle Nii€ii
for kxn matrizn = (n;;) and W (z) and Z(x) are the unit directions
of W(z) in R™ and Z(x) in R¥=4L respectively.

(3) E($,/\) = E(, \)Pis #(x)(\) is a parallel frame for the Laz pair of

Pis,x * &, where 7 is the projection onto (C(W, iZ)t.

We use Theorem [I0.3], E= Ep;is # and a straight-forward computation to
write down the geometric transform on k-tuples of type R¥~4¢ corresponding
to the action of pj, . We state the results for the case n = k+1, and similar
results hold for higher co-dimension.

Theorem 10.4. Ribaucour transform for k-tuples [11, 25]

Let E, pis #, E be as in Theorem I03, and n =k + 1. Then:

~
—_

(1) There are M 11)xi valued maps =, = such that

OF 0 = OF - 0 =

—E_l = < =t ) ) _E_l = < -~ ) )

O\ =0 —='J 0 O\ A=0 —J= 0
where J = 1_p = diag(ei, ..., €x).

(2) Given a non-zero vector ¢ € RF=64 Z(x)c is a hypersurface in RFF1
with flat normal bundle, x is a line of curvature coordinate system,
and the first fundamental form 1 = Zle Jii d:z:? satisfies the condi-
tion that " | €;gi; is equal to the length of ¢ in RE=6L . In particular,
if ¢ is a null vector in RE=4C then Sc is an isothermic, hypersurface
(as defined in[5.12).

(3) For any ci,co € RF4 Z(2)e; — E(z)cy is a Combescure O-
transform.

(4) Let C = (c1,...,cr) be a constant matriz in GL(k), and

Y =(Yy,....,Y3) =2C, Y =(Y},...,Y}) =2C.
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Then:
(a) Y,Y are k-tuples in R¥+1 of type RF4L,
(b) If all columns of C are null vectors in R¥=%¢ then Y;,Y; are
isothermicy hypersurfaces in RFFL for 1 <i< k.
(¢) E(z,0),E(x,0) € O(k+1) x O(k —£,¢).
: (9 0\ & o _ (1 O
@ wie 56,0 = (4 2) 800 = (3 2).
g1 = (€1, ekt1), g1 =(€1,...,Ek11),
and W = (q1,---,qes1)t. Then

k+1

N Z'Jg; e
YV, =Yy, - 2792 ™ E e
) ) s j_lq] J

(e) Yi(z) — Yi(x) is a Ribaucour transform for 1 <i < k. In fact,
we have

SQj SQj

foralll <i,j <k+1.
O(n+k—1,0)

O(n)xO(k—1,0)
isothermic, k-submanifolds in R™ parametrized by the null cone of
and any two submanifolds in this family are related by Combescure O-
transforms. But for the converse, we need to have k or k — 1 isothermicy
k-submanifolds in R™ related by Combescure O-transforms to construct a

solution of the %—Sys‘cem. This is because Theorem [6.1] (1)-(3)

hold for any Combescure O-map Y = (Y1,...,Yn) : R¥ = M, xm. So the
connection o(k — £, ¢)-valued 1-form 7 = §F' — JF'§.J has m parallel sections,
and 7 isflat if m=%k—1or m = k.

Note that a solution of the -system gives rise to a family of

RE—L:L
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