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Abstract. We give a survey of the following six closely related topics:
(i) a general method for constructing a soliton hierarchy from a split-
ting of a loop algebra into positive and negative subalgebras, together
with a sequence of commuting positive elements, (ii) a method—based
on (i)—for constructing soliton hierarchies from a symmetric space, (iii)
the dressing action of the negative loop subgroup on the space of solu-
tions of the related soliton equation, (iv) classical Bäcklund, Christoffel,
Lie, and Ribaucour transformations for surfaces in three-space and their
relation to dressing actions, (v) methods for constructing a Lax pair
for the Gauss-Codazzi Equation of certain submanifolds that admit Lie
transforms, (vi) how soliton theory can be used to generalize classical
soliton surfaces to submanifolds of higher dimension and co-dimension.
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1. Introduction

Although it is difficult to give a formal definition of soliton equations,
it is generally agreed that a soliton equation is a non-linear wave equation
having the following properties (cf. [27, 3, 40, 54]):

Existence of explicit n-soliton solutions
A solitary wave is a traveling wave of the form u(x, t) = f(x − ct) for

some smooth function f that decays rapidly as |x| → ∞. An n-soliton
solution is a solution that is asymptotic to a nontrivial sum of n solitary
waves

∑n
i=1 fi(x − cit) as t → −∞ and to the sum of the same waves

∑n
i=1 fi(x − cit + ri) with some nonzero phase shifts ri as t → ∞. In

other words, during nonlinear interaction, the individual solitary waves pass
through each other, keeping their velocities and shapes, but with phase
shifts.

ODE Bäcklund transformation
An ODE Bäcklund transformation is a system of compatible ODEs asso-

ciated to a given solution of the soliton equation such that solutions of the
ODE system are again solutions of the soliton equation. If we apply these
transformations to the vacuum solutions repeatedly, then we get explicit
multi-soliton solutions.

Bi-Hamiltonian structure and commuting flows
A pair of Poisson structures ({ , }0, { , }1) on M is called a bi-Hamiltonian

structure if c0{ , }0 + c1{ , }1 is a Poisson structure for all constants c0, c1. A
soliton equation is an evolution equation on a function space. One important
property is that this function space admits a bi-Hamiltonian structure such
that the equation is Hamiltonian with respect to both Poisson structures.
Moreover, one can use these two Poisson structures to construct a hierarchy
of commuting Hamiltonian PDEs.

Lax pair and inverse scattering
A PDE for q : Rn → V is said to have a G-valued Lax pair or a zero

curvature formulation if there is a family of G-valued connection 1-forms θλ
on R

n written in terms of q and derivatives of q for λ lies in an open subset
O of C such that the PDE for q is given by the condition that θλ is flat for
all λ ∈ O, where G is a finite dimensional Lie algebra. The Lax pair gives
a linear system with a “spectral parameter” λ. The scattering data of a
solution is the “singularity” of parallel frames of θλ. The inverse scattering
reconstructs the solution from its scattering data (cf. [5, 54]).

The above properties will be discussed in more detail in later sections.
Soliton equations also have algebraic geometric solutions via the spectral
curve formulation (cf. [36]), a tau function and a Virasoro action (cf. [63,
61]).

Model soliton equations
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Below are some soliton equations found in 1960s and 70s: The Korteweg-
de Vries equation (KdV)

qt =
1

4
(qxxx + 6qqx),

the non-linear Schrödinger equation (NLS) [64]

qt =
i

2
(qxx + 2|q|2q),

the modified KdV (mKdV)

qt =
1

4
(qxxx + 6q2qx),

the sine-Gordon equation (SGE)

qxt = sin q,

and the 3-wave equation [65] for u = (uij) ∈ su(3) with uii = 0 for 1 ≤ i ≤ 3:

(uij)t =
bi − bj
ai − aj

(uij)x +
bk − bj
ak − aj

uikukj, 1 ≤ i, j, k ≤ 3 distinct,

where a1, a2, a3 are fixed distinct real numbers and b1, b2, b3 are fixed real
constants. Although KdV and SGE as soliton equations were discovered in
the 1960s and 1970s, they were already studied in the nineteen century.

Construction of soliton hierarchy from splittings of Lie algebras
Zakharov-Shabat found a sl(2)-valued Lax pair for NLS in [64], Ablowitz-

Kaup-Newell-Segur [1] found sl(2)-valued Lax pairs for KdV, mKdV, and
SGE, Zakharov-Shabat [65] considered equations admitting a zero curva-
ture formulation depending rationally on λ, Adler [4] derived KdV from a
splitting of the Lie algebra of pseudo-differential operators on the real line,
Kupershmidt-Wilson [37] found a n × n generalization of mKdV, Drinfeld-
Sokolov [27] and Wilson [63] constructed soliton hierarchies from splitting
of loop algebras. These works led to a general method to construct soli-
ton equations from a splitting of Lie algebras. Many properties of soliton
equations can be derived in a unifying way from Lie algebra splittings (cf.
[27, 63, 57]).

Soliton hierarchy associated to symmetric spaces
Given a symmetric space U

K
, there is a natural Lie subalgebra L of the

Lie algebra of loops in U ⊗ C and a splitting of L, where U is the Lie
algebra of U . We call the soliton hierarchy constructed from this splitting

the U
K
-hierarchy. For example, the SU(2)-hierarchy contains NLS, the SU(2)

SO(2) -

hierarchy contains the mKdV, and the SU(3)-hierarchy contains the 3-wave
equation. If the rank of U

K
is n, then the first n flows in the U

K
-hierarchy

are PDEs of first order similar to the 3-wave equation. We put these first
n flows together to construct the U

K
-system in [51]. It turns out that many

U
K
-systems are Gauss-Codazzi equations for special classes of submanifolds

admitting geometric transforms.
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Soliton equations in classical differential geometry
Soliton equations were also found in classical differential geometry. The

SGE arose first through the theory of surfaces of constant Gauss curvature
K = −1 in R

3, and the reduced 3-wave equation can be found in Darboux’s
work [23] on triply orthogonal coordinate systems of R3. In 1906, da Rios,
a student of Levi-Civita, wrote a master’s thesis, in which he modeled the
movement of a thin vortex by the motion of a curve propagating in R

3

along its binormal with curvature as speed. It was much later, in 1971,
that Hasimoto showed the equivalence of this system with the NLS. These
equations were rediscovered independently of their geometric history. The
main contribution of the classical geometers lies in their methods for con-
structing explicit solutions of these equations from geometric transforms.
For example:

K = −1 surfaces in R
3, SGE, and Bäcklund transforms [28]

There is a Tchebyshef line of curvature coordinate system on surfaces
in R

3 with K = −1 such that the Gauss-Codazzi equation written in this
coordinate system is the SGE. Given a surface M with K = −1 in R

3, there
is a one parameter family of new surfaces of curvature −1 related to M by
Bäcklund transformations (a special type of line congruence, see section 3).
Moreover, this family of new K = −1 surfaces can be constructed from a
system of ODEs and infinitely many families of explicit solutions of SGE
are constructed.

Isothermic surfaces in R
3 and Ribaucour transforms [22]

A surface in R
3 is called isothermic if it is parametrized by a conformal

line of curvature coordinate system. The Gauss-Codazzi equation written
as a first order system is a soliton equation. Given an isothermic surface M
in R

3, there is a family of isothermic surfaces related to M by Ribaucour
transforms (a special type of sphere congruence, see section 4). Moreover,
this family of new isothermic surfaces can be constructed by solving a system
of compatible ODEs.

Higher dimension generalizations via differential geometry
In late 1970s, S. S. Chern suggested to Tenenblat and the author that the

Gauss-Codazzi Equation of n-submanifolds in R
2n−1 with negative constant

sectional curvature might be a new soliton equation in more than two vari-
ables. We found a good coordinate system to write down the Gauss-Codazzi
equations in terms of a map from R

n to O(n) (the generalized sine-Gordon
equation GSGE), constructed Bäcklund transformations, a permutability
formula, and explicit mutli-soliton solutions for GSGE in [49, 50]. Ablowitz,
Beals, and Tenenblat [2] constructed a Lax pair for GSGE and used the
inverse scattering method to solve the Cauchy problem for GSGE for small
rapidly decaying initial data on a non-characteristic line. Although GSGE
is a PDE in n variables, it is really a system of n commuting determined
hyperbolic systems in one space and one time variables. Tenenblat gener-
alized Bäcklund theory to other space forms in [47]. Dajczer and Tojeiro
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constructed Ribaucour transforms for flat Lagrangian submanifolds in C
n

and CPn in [19, 20]. It turns out that all these geometric equations arise
naturally as U

K
-systems or twisted U

K
-systems in soliton theory.

R-action and associated family
One reason why many soliton equations arise in submanifold geometry can

be seen from the method of moving frames: A local orthonormal frame g =
(e1, . . . , en+k) for a submanifold Mn in R

n+k is called adapted if e1, . . . , en
are tangent to M . The Gauss-Codazzi equation (GCE) for M is given by
the flatness for the Maurer-Cartan form θ = g−1 dg. Consider a class of
n-submanifolds in R

n+k satisfying a certain geometric condition. Suppose

(a) we can use this geometric condition to find a “good” coordinate
system on these submanifolds such that its Maurer-Cartan form θ
and hence the GCE has specially “simple” form,

(b) there is an R-action on solutions of the GCE, and we call an orbit
of the induced R-action on this class of submanifolds an associated
family .

Then the induced R-action on the Maurer-Cartan form often gives a Lax pair
for the Gauss-Codazzi equation, which is one of the characteristic properties
of soliton equations. Thus we call a class of submanifolds soliton submani-
folds if its Gauss-Codazzi equation is a soliton equation.

Higher dimension generalization via soliton theory
Constructions and generalization of geometric transforms for soliton sur-

faces in R
3 to submanifolds in R

n are beautiful but mysterious and usually
are done case by case. However, geometric transforms for soliton submani-
folds in R

n can be constructed in a unified way from the action of “simple”
rational loops on the space of solutions of soliton equations and the per-
mutability formula is then a consequence of the geometric transforms being
part of a group action. If the Gauss-Codazzi equation of a class of surfaces
in R

3 admitting geometric transforms is a soliton equation associated to a
rank 2 symmetric space, then we can often use the same type of symmetric
space of higher rank to construct a natural generalization of a class of soliton
surfaces in R

3 to higher dimension and co-dimension soliton submanifolds.
For example, the Gauss-Codazzi equation for Christoffel pairs of isothermic

surfaces in R
3 is the O(4,1)

O(3)×O(1,1) -system [17], which led to a natural gen-

eralization to k tuples of isothermic k-submanifolds in R
n whose equation

is the O(n+k−1,1)
O(n)×O(k−1,1) -system. Moreover, the action of rational loops on this

U
K
-system gives rise to natural generalizations of Ribaucour transforms and

permutability formulae for these k tuples of isothermic submanifolds in R
n

(cf. [25]).
This article is organized as follows: We set up notations for the moving

frame method for submanifolds in section 2, review the classical notion of
line congruences and geometric Bäcklund transformations for surfaces in R

3

withK = −1 and n-submanifolds in R
2n−1 with constant sectional curvature
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−1 in section 3, and explain the notions of sphere congruences and Ribau-
cour transforms for isothermic surfaces in section 4. In section 5 we review
Combescure transforms, O surfaces, and k-tuples in R

n and the fact that
k-tuples in R

n give a natural generalization of isothermic surface theory to
arbitrary dimension and co-dimension isothermic submanifolds. In section
6 we derive the Lax pairs for Gauss-Codazzi equations using the moving
frame of the associated family for surfaces in R

3 with K = −1, isother-
mic surfaces, k-tuples in R

n, and flat Lagrangian submanifolds in C
n. In

section 7 we give a brief discussion of the method of constructing soliton
hierarchies from splittings of loop algebras and derive formal inverse scat-
tering, commuting flows, and bi-Hamiltonian structure from the splitting.
We give definitions of U

K
-system, twisted U

K
-system, and the −1 flow on the

U
K
-system and their Lax pairs in section 8. We review the construction of

the action of the group of rational maps f : S2 = C ∪ {∞} → UC such that
f(∞) = I and f satisfies the U

K
- reality condition on the space of solutions of

the U
K
-system in section 9. In the final section, we give the relation between

the rational loop group action on the space of solutions of U
K
-system and

geometric transformations of the corresponding soliton submanifolds.
The author selects only few classes of soliton submanifolds in Euclidean

space to explain the relation between various geometric transforms and
group actions on solutions of soliton equations. The reader may find more
examples of soliton submanifolds of space forms and symmetric spaces in
[47, 7, 30, 11, 39, 9, 10], soliton surfaces in affine geometry in [8, 62], and
soliton submanifolds of conformal geometry in [26, 13]. For the theory of
soliton equations, we refer the reader to [27, 3, 40] and for the theory of
transformations we refer the reader to [32, 48, 33]. We also refer to these
references for more complete lists of works related to soliton equations and
soliton submanifolds.

2. The moving frame method for submanifolds

Let f :Mn → R
n+k be an immersion, and ( , ) the standard inner product

on R
n+k. The first and second fundamental forms I, II and the induced

normal connection ∇⊥ form a complete set of local invariants and they
must satisfy the Gauss-Codazzi equations. Below we set up notations for
the method of moving frames of Cartan and Chern.

Let g = (e1, . . . , en+k) be a local orthonormal frame on M such that
e1, . . . , en are tangent to M , and let w1, . . . , wn be the 1-forms on M dual
to e1, . . . , en. Then

df =
n
∑

i=1

wiei. (2.1)

Since gtg = I, the Maurer-Cartan form

w = (wAB) := g−1 dg
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is o(n+ k)-valued. In other words, dg = gw, i.e.,

deB =

n+k
∑

A=1

wABeA, or equivalently, wAB = (deB , eA).

We use the following index conventions:

1 ≤ i, j, k ≤ n, n+ 1 ≤ α, β, γ ≤ n+ k, 1 ≤ A,B,C ≤ n+ k.

Then I, II,∇⊥ are given by

I =
n
∑

i=1

w2
i , II =

n,n+k
∑

i=1,α=n+1

wiwiαeα, ∇⊥eα = (deα)
⊥ =

∑

β

wβαeβ ,

where ξ⊥ denotes the projection of ξ onto ν(M) along TM . The shape
operator Av along a normal vector v ∈ ν(M)p is the self-adjoint operator on
TMp defined by (II(u1, u2), v) = (Av(u1), u2) for all u1, u2 ∈ TMp.

Lemma 2.1. Cartan Lemma
The Levi-Civita connection 1-form (wij)1≤i,j≤n for I =

∑n
i=1w

2
i is ob-

tained by solving the structure equation:

dwi = −

n
∑

j=1

wij ∧ wj, wij + wji = 0, 1 ≤ i, j ≤ n. (2.2)

For example, the Levi-Civita connection 1-form (wij) for a diagonal metric
I =

∑n
i=1 ai(x)

2 dx2i is

wij =
(ai)xj

aj
dxi −

(aj)xi

ai
dxj . (2.3)

Gauss-Codazzi equations
Since w = g−1 dg, w is a flat o(n + k)-valued connection 1-form, i.e.,

dw = −w ∧ w. Or equivalently,

dwAB = −
∑

C

wAC ∧wCB , 1 ≤ A ≤ n+ k. (2.4)

This gives the Gauss-Codazzi-Ricci equation for M :

Ωij = dwij +
∑

k

wik ∧ wkj =
∑

α

wiα ∧ wjα, (2.5)

dwiα = −
∑

j

wij ∧ wjα −
∑

β

wiβ ∧ wβα, (2.6)

Ω⊥
αβ = dwαβ +

∑

γ

wαγ ∧wγβ =
∑

i

wiα ∧ wiβ, (2.7)

where Ωij and Ω⊥
α,β are the curvature tensors for I and for the induced

normal connection ∇⊥ respectively.
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Write wiα =
∑

j h
α
ijwj . Then hαij = hαji and the matrix for the shape

operatorAeα is (hαij) with respect to the tangent basis e1, . . . , en. The Ricci
equation gives

Ω⊥
α,β =

∑

i

wiα ∧ wiβ =
∑

i,k,l

hαikh
β
ilwk ∧wl.

Flat and non-degenerate normal bundle
The normal bundle is flat if the normal curvature is zero, i.e., Ω⊥

αβ = 0,

or equivalently [Aeα , Aeβ ] = 0 for all n + 1 ≤ α, β ≤ n + k. So the normal
bundle is flat if and only if all shape operators commute. In this case, for
fixed p ∈ M , we can find a common eigenbasis for the shape operators
{Av | v ∈ ν(M)p}.

The normal bundle of an n-dimensional submanifold in R
n+k is non-

degenerate if for each p the space of shape operators {Av | v ∈ ν(M)p}
has dimension k.

Theorem 2.2. Fundamental Theorem of submanifolds in R
N [41]

Let M be an open subset of Rn, and η an orthogonal rank k vector bundle
on M with an O(k)-connection ∇̃. Let g be a Riemannian metric on M ,
and ξ a smooth section of S2(T ∗M) ⊗ η. We construct an o(n + k)-valued
1-form as follows:

(1) Choose 1-forms w1, . . . , wn such that g =
∑n

i=1 w
2
i .

(2) Solve (wij)1≤i,j≤n from the structure equation (2.2).
(3) Choose a local orthonormal frame (sn+1, . . . , sn+k) for η. Write the

connection ∇⊥sα =
∑

β wβαsβ.

(4) Write ξ =
∑

α,i,j h
α
ijwiwjsα with hαij = hαji. Set wiα = −wαi =

∑

j h
α
ijwj .

If w := (wAB)1≤A,B≤n+k is a flat o(n + k)-valued connection 1-form, i.e.,

dw = −w ∧ w, then given x0 ∈ M , p0 ∈ R
n+k, and an orthonormal ba-

sis {v1, . . . , vn+k} of R
n+k, the following system of first order PDE for

(f, e1, . . . , en+k) is solvable and has a unique solution defined in an open
subset O of x0 in M :











df =
∑

iwiei,

deA =
∑

B wBAeB ,

f(x0) = p0, eA(0) = vA.

(2.8)

Moreover,

(a) f : O → R
n+k is an immersion with I = g and II =

∑

hαijwiwjeα,

(b) eα(x) 7→ sα(x) gives a vector bundle isomorphism from ν(M) to η
that preserves the orthogonal structure and maps the induced normal
connection ∇⊥ to ∇̃ and II of f to ξ.

Remark 2.3. The Fundamental Theorem 2.2 can be formulated as the
flatness of a G-valued connection 1-form, where G is the Lie algebra of the
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rigid motion group G of Rn+k: First note that G can be embedded in GL(n+
k + 1) by

φg,v(x) = gx+ v 7→

(

g v
0 1

)

, g ∈ O(n+ k), v ∈ R
n+k.

The Lie algebra of the rigid motion group is the subalgebra of gl(n+ k+1):

G =

{(

A v
0 0

) ∣

∣

∣

∣

A ∈ o(n+ k), v ∈ R
n+k

}

.

The equation for isometric immersion for given I, II,∇⊥ is (2.8), or equiva-
lently

d

(

g f
0 1

)

= τ

(

g f
0 1

)

, where τ =





wij wiα wi

wαi wαβ 0
0 0 0



 .

This system is solvable for any initial data c0 ∈ O(n + k) and p0 ∈ R
n+k if

and only if τ is flat. Or equivalently, wi, wAB satisfy the structure equation
(2.2) and the Gauss-Codazzi equation (2.4).

3. Line congruences and Bäcklund transforms

We review the classical notion of line congruences and geometric Bäcklund
transforms for K = −1 surfaces in R

3 and for n-submanifolds in R
2n−1 with

constant sectional curvature −1 ([28, 49, 50]).
A line congruence in R

3 is a smooth 2- parameter family of lines,

ℓ(x) = {c(x) + tv(x) | t ∈ R}

defined for x in an open subset O of R2. A surface f : O → R
3 is called

a focal surface of the line congruence ℓ if f(x) ∈ ℓ(x) and ℓ(x) is tangent
to f at f(x) for each x ∈ O. To find a focal surface is to find a function
t : O → R such that f(x) = c(x) + t(x)v(x) is an immersion and v(x) is
tangent to f at f(x). This condition is equivalent to

det(fx1
, fx2

, v) = 0,

which is a quadratic equation in t. So generically, there are exactly two focal
surfaces for a line congruence. Moreover, the two focal surfaces determine
the line congruence. Hence we call a diffeomorphism φ : M → M̃ a line
congruence if the line jointing p and φ(p) is tangent to M and M̃ at p and
φ(p) respectively for all p ∈M .

K = −1 surfaces in R
3 and the sine-Gordon equation (cf. [28, 41])

We can use the Codazzi equation to prove that if M is a surface in R
3

with K = −1, then locally there exists a line of curvature coordinate system
(x1, x2) such that

I = cos2 q dx21 + sin2 q dx22, II = 2 sin q cos q ( dx21 − dx22) (3.1)
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for some smooth function q. We call (x1, x2) the Tchebyshef line of curvature
coordinate system. Note that q is the angle between the asymptotic lines.
Let w1 = cos q dx1 and w2 = sin q dx2. By (2.3), w12 = −qx2

dx1 − qx1
dx2.

Use II to see that w13 = sin q dx1 and w23 = − cos q dx2. The Gauss-Codazzi
equation is given by the flatness of

w = (wAB) =





0 −qx2
dx1 − qx1

dx2 sin q dx1
qx2

dx1 + qx1
dx2 0 − cos q dx2

− sin q dx1 cos q dx2 0



 ,

(3.2)
which gives the sine-Gordon equation (SGE)

qx1x1
− qx2x2

= sin q cos q. (3.3)

Change to light cone coordinates s, t:

x1 = s+ t, x2 = s− t.

The fundamental forms (3.1) become

I = ds2 + 2cos(2q) ds dt+ dt2, II = 2 sin(2q) ds dt.

The SGE in (s, t) coordinate system is

qst = sin q cos q. (3.4)

We call (s, t) the Tchebyshef asymptotic coordinate system.

Definition 3.1. Bäcklund transformation
A line congruence φ :M →M∗ is called a Bäcklund transformation (BT)

with constant θ if for any p ∈ M , the distance between p and p∗ = φ(p) is
sin θ, and the angle between the normal line of M at p and the normal line
of M∗ at p∗ is equal to θ.

Theorem 3.2. Bäcklund Theorem
If φ : M → M∗ is a Bäcklund transformation with constant θ, then both

M and M∗ have constant Gaussian curvature K = −1 and φ preserves
Tchebyshef line of curvature and asymptotic coordinates. Conversely, given
a surface M in R

3 with K = −1, a constant 0 < θ < π, p0 ∈ M , and v0 ∈
TMp0 a unit vector, then there exist a unique surface M∗ and a Bäcklund
transformation φ :M →M∗ with constant θ such that φ(p0) = p0 + sin θv0.

Analytically to find a BT φ with constant θ for a given K = −1 surface
M in Theorem 3.2 is to find a unit tangent field v on M such that φ(x) =
x+ sin θv(x) is a BT. Let ei denote the unit principal directions for i = 1, 2
and write v = cos q∗e1 + sin q∗e2, then the condition that φ is a BT with
constant θ is equivalent to q∗ solving a system of compatible first order
ODEs:

Theorem 3.3. ODE Bäcklund transform
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Given q(s, t) and a non-zero real constant µ, the following system is solv-
able for q∗

BTq,µ

{

(q∗ + q)s = µ sin(q∗ − q),

(q∗ − q)t =
1
µ
sin(q∗ + q),

(3.5)

if and only if q is a solution of the SGE (3.4). Moreover, if q is a solution
of the SGE then a solution q∗ of (3.5) is again a solution of the SGE.

The parameter θ for geometric BT in Theorem 3.2 and constant µ in
system 3.5 are related by µ = tan θ

2 .
Given a solution q of SGE, we can solve the system BTq,µ to get a family

of new solutions of SGE. If we apply this method again, then we get a second
family of solutions. This gives infinitely many families of solutions from a
given solution of SGE. For example, the constant function q = 0 is called
the trivial or vacuum solution of the SGE. The system BT0,µ is

{

αs = µ sinα,

αt =
1
µ
sinα.

It has an explicit solution

α(s, t) = 2 tan−1
(

e
µs+ 1

µ
t
)

. (3.6)

We can solve Bäcklund transformation BTα,µ1
to get another family of so-

lutions. However, BTα,µ1
is not as easy to solve as BT0,µ. But instead of

solving BTα,µ1
we can use the following Theorem:

Theorem 3.4. Bianchi Permutability Theorem
Let 0 < θ1, θ2 < π be constants such that sin2 θ1 6= sin2 θ2, and ℓi :M0 →

Mi Bäcklund transformations with constant θi for i = 1, 2. Then there exist
a unique surface M3 and Bäcklund transformations ℓ̃1 : M2 → M3 and
ℓ̃2 : M1 → M3 with constant θ1, θ2 respectively such that ℓ̃1 ◦ ℓ2 = ℓ̃2 ◦ ℓ1.
Moreover, if qi is the solution of the SGE corresponding to Mi for 0 ≤ i ≤ 3,
then

tan

(

q3 − q0
2

)

=
µ1 + µ2
µ1 − µ2

tan

(

q1 − q2
2

)

, (3.7)

where µi = tan θi
2 .

Global verses local
It follows from the Fundamental Theorem of Surfaces in R

3 that there is
a bijective correspondence between solutions q of the SGE (3.3) satisfying
Im(q) ⊂ (0, π2 ) and local surfaces in R

3 with K = −1 up to rigid motions.

So we can construct infinitely many families of K = −1 surfaces in R
3 by

solving compatible systems of ODEs. Note that if q : R2 → R is a smooth
solution of SGE such that sin q cos q is zero at a point p0, then although the
map f constructed from the Fundamental Theorem of Surfaces in R

3 fails
to be an immersion at p0, it is smooth at p0, dfpo has rank 1 and the tangent
bundle is smooth at p0. Thus global solutions of SGE give K = −1 surfaces
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in R
3 with cusp singularities but smooth tangent bundle. This is a common

phenomenon for soliton submanifolds: Although the Cauchy problem for
small norm initial data can be solved globally, the corresponding soliton
submanifolds often are only defined locally.

Explicit multi-soliton solutions for the SGE
Write the solutions α of BT0,µ given in (3.6) in space-time coordinates

x1 = s+ t and x2 = s− t to get α(x1, x2) = 2 tan−1 ecsc θx1−cot θx2 . So

αx1
=

2csc θecsc θx1−cot θx2

1 + e2(csc θx1−cot θx2)
.

Note that α is a traveling wave solution and αx1
decays to zero as |x1| → ∞.

Hence SGE viewed as an equation of αx1
has solitary wave solutions. These

are the 1-soliton solutions of the SGE. If we apply permutability formulae to
these 1-solutions, then we get 2-soliton solutions. Moreover, these solutions
are asymptotically equal to a sum of two solitary waves as x2 → −∞ and to
the sum of the same two solitary waves as x2 → ∞ but with phase shifts (cf.
[18]). Explicit multi-soliton solutions of SGE can be obtained by applying
permutability formulas repeatedly.

Lie or Lorentz transform
Lie observed that SGE is invariant under the Lorentz transformations,

which are called Lie transforms: If q(s.t) is a solution of SGE (3.4) and r a
non-zero real constant, then q̃(s, t) := q(rs, r−1t) is also a solution of SGE.

Associated family of K = −1 surfaces in R
3

Given a K = −1 surface M in R
3, let q(s, t) denote the corresponding

solution of the SGE, λ ∈ R a non-zero constant, and qλ(s, t) = q(λs, λ−1t).
The family of K = −1 surfaces in R

3 corresponding to SGE solution qλ is
called the associated family of K = −1 surfaces in R

3 containing M . In
section 6, we will use the moving frame of this associated family to derive
the standard Lax pair for SGE.

n-submanifolds in R
2n−1 with sectional curvature −1 and GSGE

The hyperbolic n-manifold H
n is the simply connected, complete, n-

dimensional Riemannian manifold with constant sectional curvature −1. É.
Cartan proved that Hn can not be locally isometrically immersed in R

2n−2,
but can be locally isometrically immersed in R

2n−1 and the normal bun-
dle of such immersions must be flat ([15]). Moore used Codazzi equations
to prove the existence of line of curvature coordinate systems on such im-
mersions, a slight improvement of Moore’s result was given in [50] to get
an analogue of Tchebyshef line of curvature coordinate systems, and the
corresponding Gauss-Codazzi equation is called the generalized sine-Gordon
equation (GSGE). Bäcklund theory was generalized to GSGE in [49, 50].

Theorem 3.5. Let Mn be a simply connected submanifold of R2n−1 with
constant sectional curvature −1. Then the normal bundle ν(M) is flat and
there exist coordinates (x1, . . . , xn), an O(n)-valued map A = (aij), and
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parallel normal frames en+1, . . . , e2n−1 such that the first and second funda-
mental forms are of the form

I =

n
∑

i=1

a21idx
2
i , II =

n
∑

i=1,j=2

a1iajidx
2
i en+j−1.

We call x the Tchebyshef line of curvature coordinate system for M .

To write down the Gauss-Codazzi equation for these immersions we set

wi = a1idxi, 1 ≤ i ≤ n, (3.8)

wi,n+j−1 = −wn+j−1,i = ajidxi. (3.9)

By (2.3), wij = fij dxi − fji dxj , where

fij =

{

(a1i)xj
a1j

, i 6= j,

0, i = j,
. (3.10)

Set F = (fij). Then

ω = (wij)i,j≤n = δF − F tδ, δ = diag( dx1, . . . , dxn) (3.11)

is the Levi-Civita o(n)-connection of the induced metric I. The Gauss-
Codazzi equation and the structure equation give

{

dw + w ∧ w = −δAte11Aδ,

(aki)xj
= fijakj, 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ n,

(3.12)

where e11 is the n× n matrix with all entries zero except the 11-th entry is
1. Or equivalently, it is the second order PDE system for the O(n)-valued
map A = (aij):











(fij)xj
+ (fji)xi

+
∑

k fikfjk = a1ia1j , i 6= j,

(fij)xk
= fikfkj, i, j, k distinct,

(aki)xj
= akjfij, i 6= j, ∀k.

(3.13)

This is the GSGE , and when n = 2, it is the SGE.
Since

∑n
i=1 a

2
ki = 1,

aki(aki)xi
= −

∑

j 6=i

akj(akj)xi
= −

∑

j 6=i

akjfjiaki.

So we have
(aki)xi

= −
∑

j

akjfji. (3.14)

It follows from (3.14) and the third equation of (3.13) that

dA = A(δF t − Fδ).

So (3.12) is equivalent to
{

dw + w ∧w = −δAte11Aδ, where w = δF − F tδ,

A−1dA = δF t − Fδ
(3.15)
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Note that we associate to an n-submanifold of R2n−1 three flat connections:
the flat o(n)-connection δF t − Fδ, the flat o(n, 1)-connection

(

δF − F tδ ξt

ξ 0

)

, where ξ = (w1, . . . , wn),

and the flat o(2n− 1) Maurer-Cartan form (wAB)A,B≤2n−1.
To generalize Bäcklund transformations to higher dimensions, we first

recall the notion of k angles between two k-dimensional linear subspace V1
and V2 of a 2k-dimensional inner product space (V, ( , )): Let π denote the
orthogonal projection of V onto V1. Define a symmetric bilinear form on
V2 by 〈v1, v2〉 = (π(v1), π(v2)). Then there is a self-adjoint operator A on
V2 such that 〈v1, v2〉 = (A(v1), v2). The k angles between V1 and V2 are
θ1, . . . , θk if cos2 θ1, . . . , cos

2 θk are the eigenvalues of A.

Definition 3.6. Let M,M∗ be two n-dimensional submanifolds of R2n−1

with flat normal bundle. A diffeomorphism φ :M →M∗ is called a Bäcklund
transformation with constant θ if for all p ∈M

(1) the line joining p and p∗ = φ(p) is tangent to M at p and to M∗ at
p∗,

(2) ||pp∗|| = sin θ,
(3) the (n − 1) angles between the normal space ν(M)p and ν(M∗)p∗

are all equal to the constant θ (note that these normal spaces are
two (n−1) dimensional linear subspaces of the (2n−2) dimensional
subspace of R2n−1 that is perpendicular to p− p∗).

Let ℓ(p) denote the line in R
2n−1 through p and φ(p) for a Bäcklund

transformation φ : M → M∗. Then condition (1) says that ℓ is an n-
parameter family of lines in R

2n−1 (i.e., an n-dimension line congruence in
R
2n−1) and M,M∗ are focal surfaces of ℓ.

Theorem 3.7. If φ : M → M∗ is a Bäcklund transformation for n-
dimensional submanifolds in R

2n−1 with constant θ, then both M,M∗ have
constant sectional curvature −1. Moreover, φ maps Tchebyshef line of cur-
vature coordinate system of M to that of M∗.

Let

Ik,n−k = diag(ǫ1, . . . , ǫn), where ǫi = 1 for i ≤ k, ǫi = −1 for k < i ≤ n.

Bäcklund transform analytically gives

Theorem 3.8. Given a smooth A : Rn → O(n) and real non-zero constant
λ, the following system for X : Rn → O(n),

BTA,λ : dX = XδAtDλX −Xω −DλAδ, (3.16)

is solvable if and only if A is a solution of GSGE, where Dλ = (λI+λ−1J)
2 ,

J = I1,n−1. Moreover, the solution X is again a solution of GSGE.

The constant θ and λ are related by λ = tan θ
2 .

There is an analogue of Permutability Theorem for GSGE:
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Theorem 3.9. Let φi : M0 → Mi be Bäcklund transformations for n-
dimensional submanifolds in R

2n−1 with constant θi for i = 1, 2. If sin2 θ1 6=
sin2 θ2, then there exist uniqueM3 and Bäcklund transformations ψ1 :M2 →
M3 and ψ2 : M1 → M3 with angles θ1, θ2 respectively such that ψ1 ◦ φ2 =
ψ2 ◦ φ1. Moreover, if Ai is the solution of the GSGE corresponding to Mi

for i = 0, 1, 2, 3, then

A3A
−1
0 = (−D2 +D1A2A

−1
1 )(D1 −D2A2A

−1
1 )−1I1,n−1, (3.17)

where Di = diag(csc θi, cot θi, . . . , cot θi).

In other words, given a solution A0 of the GSGE, we solve BTA0,λi
with

λi = csc θi + cot θi to get Ai for i = 1, 2. Then A3 defined by the algebraic
formula (3.17) is a solution of BTA1,λ2

and BTA2,λ1
. Since the constant map

A = I is a solution of the GSGE, we can apply BT and permutability formula
to construct infinitely many families of explicit solutions of the GSGE.

4. Sphere congruences and Ribaucour transforms

We review the notion of sphere congruences, Christoffel and Ribaucour
transforms for isothermic surfaces in R

3 (cf. [22]).
A sphere congruence in R

3 is a smooth 2-parameter family of 2-spheres
in R

3:

S(x) = {c(x) + r(x)y | y ∈ S2}, x ∈ O,

where c : O → R
3 and r : O → (0,∞) are smooth maps, and O is an open

subset of R2. A surface f : O → R
3 is called an envelope of the sphere

congruence S if f(p) ∈ S(p) and f is tangent to the sphere S(p) at f(p).
To construct envelopes of S, we need to find a map y : O → S2 such that
f(x) = c(x) + r(x)y(x) satisfying

fx1
· y = fx2

· y = 0. (4.1)

Generically there are exactly two envelopes. If M and M̃ are two envelopes
of the sphere congruence S, then there is a natural map φ : M → M̃ such
that for each p ∈M , there exists x ∈ O such that the sphere S(x) is tangent

to M and M̃ at p and φ(p) respectively. Note that the map φ determines
the sphere congruence S. Hence we make the following definition:

Definition 4.1. Ribaucour transform for surfaces in R
3

A diffeomorphism φ : M → M̃ is called a sphere congruence if for each
p ∈ M , the normal line of M at p intersects the normal line of M̃ at φ(p)
at equal distance r(p). A sphere congruence φ from a surface M in R

3 to a

surface M̃ in R
3 is called a Ribaucour transform if φ maps line of curvature

coordinates of M to those of M̃ .

Isothermic surfaces
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An immersion f(x1, x2) ∈ R
3 is called isothermic if (x1, x2) is both a

conformal and line of curvature coordinate system. In other words, f is
isothermic if fundamental forms for f are

I = e2q( dx21 + dx22), II = eq(r1 dx
2
1 + r2 dx

2
2), (4.2)

for some smooth functions q, r1 and r2.
Set

w1 = eq dx1, w2 = eq dx2, w13 = r1 dx1, w23 = r2 dx2.

By (2.3), w12 = qx2
dx1 − qx1

dx2. The Gauss-Codazzi equation is:










qx1x1
+ qx2x2

+ r1r2 = 0,

(r1)x2
= qx2

r2,

(r2)x1
= qx1

r1.

(4.3)

For example, constant mean curvature surfaces in R
3 away from umbilic

points are isothermic.

Ribaucour transform for isothermic surfaces
Given an isothermic surface M in R

3, there exist an one parameter fam-
ily of isothermic surfaces Mλ and Ribaucour transforms φλ : M → Mλ.
Moreover, φλ can be constructed by solving a system of compatible ODEs.
Bianchi proved a permutability formula for these Ribaucour transforms be-
tween isothermic surfaces.

Christoffel Transform
A Christoffel transform is an orientation reversing conformal diffeomor-

phism φ : M → M̃ such that TMp is parallel to TM̃φ(p) for all p ∈ M .

We call (M,M̃ ) a Christoffel pair . Note that if (q, r1, r2) is a solution of
(4.3) then so is (−q, r1,−r2). This fact gives the Christoffel transform for
isothermic surfaces:

Theorem 4.2. A surface M in R
3 is isothermic if and only if there exist

a second surface M̃ and a Christoffel transform φ : M → M̃ . Moreover, if
f(x1, x2) 7→ f̃(x1, x2) is a Christoffel transform, then the fundamental forms

of M and M̃ are of the forms

I = e2q( dx21 + dx22), II = eq(r1 dx
2
1 + r2 dx

2
2),

Ĩ = e−2q( dx21 + dx22), ĨI = e−q(r1 dx
2
1 − r2 dx

2
2).

for some smooth solution (q, r1, r2) of (4.3).

Associated family of Christoffel pairs
If (f1, f2) is a Christoffel pair of isothermic surfaces in R

3, then

{(λf1, λf2) | λ ∈ R}

is an associated family of Christoffel pairs of isothermic surfaces in R
3. The

induced action of R+ on the space of solutions of (4.3) is

s ∗ (q, r1, r2) = (q + ln s, r1, r2), s ∈ R
+.
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5. Combescure transforms, O-surfaces, and k-tuples

We review the notions of conjugate coordinates on surfaces in R
3, the

Combescure transforms between surfaces in R
3, O surfaces defined in [45],

and k-tuples of k-submanifolds in R
n defined in [11, 25].

In classical geometry, a local coordinate system (x1, x2) on a surface M
in R

3 is said to be conjugate if the position function f(x1, x2) satisfies

fx1x2
= h1fx1

+ h2fx2

for some smooth functions h1, h2; or equivalently, II is diagonalized with
respect to (x1, x2). The collection of coordinate curves {xi = ci | ci ∈ R, i =
1, 2} is called a conjugate net on M . An orthogonal conjugate coordinate
system on a surface in R

3 is a line of curvature coordinate system, and the
corresponding net is called an O-net (cf. [28]). Note that a surface away
from umbilic points admits line of curvature coordinates.

Given surfacesM,M̃ in R
3, a diffeomorphism φ :M → M̃ is a Combescure

transform if TMp = TM̃φ(p) for all p ∈ M . These classical notions can be
generalized to submanifolds in Euclidean spaces as follows:

Conjugate coordinate system for submanifolds in R
n

A coordinate system x on a k-dimensional submanifold M in R
n is called

conjugate if the position function f(x) satisfies the following conditions:

fxixj
=

k
∑

ℓ=1

cijℓfxℓ
, 1 ≤ i < j ≤ k

for some smooth functions cijℓ. We call the collection of all coordinate curves
of a conjugate coordinate system a conjugate net on the submanifold.

If f(x) is an immersion parametrized by conjugate coordinate system,
then fxi

are eigenvectors of the shape operator Av along any normal vector
field v. So all shape operators commute, which implies that the normal
bundle of f must be flat. An orthogonal conjugate coordinate system on a
submanifold in R

n is a line of curvature coordinate system. Unlike surfaces
in R

3, submanifolds in Euclidean space with flat normal bundle generically
do not admit line of curvature coordinate systems.

Definition 5.1. Combescure transform for submanifolds
A diffeomorphism φ from a k-dimensional submanifold M to another M̃

in R
n is called a Combescure transform if TMp = TM̃φ(p) for all p ∈M .

Definition 5.2. Combescure O-transform [25]

Let M,M̃ be submanifolds in R
n admitting line of curvature coordinates

(so they have flat normal bundles). A Combescure transform φ : M → M̃
is called a Combescure O-transform if

(1) φ preserves line of curvature coordinates,
(2) if v is parallel normal field on M , then v is a parallel normal field

on M̃ (since TMp = TM̃φ(p) for all p ∈ M , we can identify ν(M)p
as ν(M̃)φ(p)).
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Definition 5.3. Combescure O-map [25]
Let Ω be an open subset of Rk, and Mn×ℓ the space of real n× ℓ matrices

with ℓ ≤ k. A smooth map Y = (Y1, . . . , Yℓ) : Ω → Mn×ℓ is called a
Combescure O-map if it satisfies the following conditions:

(a) Each Yi : Ω → R
n is an immersion with flat normal bundle and

parametrized by line of curvature coordinates.
(b) The map Yi(x) 7→ Yi+1(x) is a Combescure O-transform for 1 ≤ i ≤

ℓ− 1.
(c) Let ei be the unit direction of (Y1)xj

for 1 ≤ j ≤ k (so ei is parallel to
(Yi)xi

for 2 ≤ i ≤ ℓ), and aij ’s defined by (Yi)xj
= aijej for 1 ≤ i ≤ ℓ

and j ≤ k. We call (aij) the metric matrix associated to Y . The
rank of (aij(x)) is ℓ for all x ∈ Ω,

Remark 5.4. Let Y = (Y1, . . . , Yℓ) : Ω → Mn×ℓ be a Combescure O-
map, and (aij) the metric matrix associated to Y . Let (ek+1, . . . , en) be
an orthonormal parallel normal frame for Y1, and g = (e1, . . . , en). Then
g is an adapted frame on Yj for all 1 ≤ j ≤ k. Hence they have the same
Maurer-Cartan form g−1 dg = (wAB). By Cartan Lemma 2.1 and (2.3), we
have

wrs =
(air)xs

ais
dxr −

(ais)xr

air
dxs, 1 ≤ r 6= s ≤ k, 1 ≤ i ≤ ℓ.

So
(air)xs

ais
=

(a1r)xs

a1s
, 1 ≤ r 6= s ≤ k, 1 ≤ i ≤ ℓ.

Geometrically, this means that ∇jei = ∇1ei for all i, j ≤ k, where ∇j is the
Levi-Civita connection of the induced metric Ij of Yj . Since x is a line of
curvature coordinate system, there exist smooth functions hiα such that

wiα = hiα dxi, 1 ≤ i ≤ k, k < α ≤ n.

Definition 5.5. O surfaces ([45])
Two surfaces f1(x), f2(x) in R

3 parametrized by line of curvature coordi-
nates are called O-surfaces if

(a) the map f1(x) 7→ f2(x) is a Combescure transform for all i 6= j,

(b)
(a21)x2
a22

=
(a11)x2
a12

and
(a22)x1
a21

=
(a12)x1
a11

, where ej is the unit direction

of (f1)xj
(hence ej is parallel to (f2)xj

) for j = 1, 2 and aij’s are
defined by (fi)xj

= aijej for i, j = 1, 2.

As a consequence of Remark 5.4, we have

Proposition 5.6. Two surfaces f(x), f̃(x) parametrized by line of curvature

coordinates are O surfaces if and only if the map (f, f̃) is a Combescure O-
map.

Definition 5.7. k-tuples in R
n [11, 25]

A Combescure O-map Y = (Y1, . . . , Yk) of k-dimensional submanifolds in
R
n is called
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(1) a k-tuple of k-submanifolds in R
n of type R

k−ℓ,ℓ (or just k-tuple in
R
n of type Rk−ℓ,ℓ) if all rows of the metric matrix of Y have constant

length in R
k−ℓ,ℓ.

(2) a k-tuples of k-submanifolds in R
n of type O(k − ℓ, ℓ) if the metric

matrix of Y lies in O(k − ℓ, ℓ),
(3) a a k-tuple of k-submanifolds in R

n of null Rk−ℓ,ℓ type if all rows of
the metric matrix of Y are null vectors in R

k−ℓ,ℓ.

Combescure O-maps and 2-tuples occur naturally in surface geometry:

Example 5.8. If f(x) is a surface in R
3 parametrized by line of curvature

coordinates, then {f, e3} and {f, f + re3} are O surfaces in R
3, where r ∈ R

is a constant and e3 is the unit normal.

Example 5.9. A Christoffel pair of isothermic surfaces (f1, f2) is a Combes-

cure O-map whose metric matrix (aij) is of the form

(

eq eq

e−q −e−q

)

for some

q, i.e., it is a 2-tuple in R
3 of null R1,1 type.

Example 5.10. [11, 45]
A 2-tuple (f1, f2) of surfaces in R

3 of type O(1, 1) is a Combescure O-

map whose metric matrix is of the form

(

cosh q sinh q
sinh q cosh q

)

, and the two

fundamental forms for Y1, Y2 are
{

I1 = cosh2 udx21 + sinh2 udx22,

II1 = r1 cosh udx
2
1 + r2 sinhudx

2
2,

,

{

I2 = sinh2 udx21 + cosh2 udx22,

II2 = r1 sinhudx
2
1 + r2 cosh udx

2
2.

Note that

(1) the Gaussian curvature of f1 and f2 are equal, K1(x) = K2(x),
(2) (Y1 + Y2, Y1 − Y2) is an isothermic pair.

Example 5.11. [11, 45] A 2-tuple (f1, f2) of surfaces in R
3 of type O(2) is

a Combescure O-map whose metric matrix is of the form

(

cos q sin q
− sin q cos q

)

,

and the fundamental forms of Y1, Y2 are
{

I1 = cos2 q dx21 + sin2 q dx22,

II1 = r1 cos q dx
2
1 + r2 sin q dx

2
2,

{

I2 = sin2 q dx21 + cos2 q dx22,

II2 = r1 sin q dx
2
1 − r2 cos q dx

2
2.

Thus the Gaussian curvature K1(x) = −K2(x).
If f1(x) is a surface with K = −1 parametrized by Tchebyshef line of

curvature coordinates as in section 3, then r1 = sin q, r2 = − cos q, q is a
solution of SGE, and (f, e3) is a 2-tuple of surfaces in R

3 of type O(2).

Definition 5.12. Isothermicℓ k-submanifolds in R
n [25]

A k-dimensional submanifold M in R
n is isothermicℓ if
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(1) the normal bundle is flat,
(2) there is a line of curvature coordinate system (x1, . . . , xk) such that

I =
∑k

i=1 gii dx
2
i satisfies

∑k−ℓ
i=1 gii −

∑k
i=k−ℓ+1 gii = 0.

Remark 5.13.

(1) A k-tuple in R
n of type O(k − ℓ, ℓ) is of type R

k−ℓ,ℓ,
(2) a Christoffel pair of isothermic surfaces in R

n is a 2-tuple in R
n of

null R1,1 type (cf. [11, 12])

(3) The equation for k-tuples in R
n of type R

k−ℓ,ℓ is the O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ)-

system and there are Ribaucour transforms and permutability for-
mulae for these k-tuples. These will be reviewed in sections 8 and
10.

(4) If Y = (Y1, . . . , Yk) is a k-tuple in R
n of null Rk−ℓ,ℓ type, then each

Yi is an isothermicℓ submanifold in R
n and Yi and Yj are related by

Combescure O-transforms.

6. From moving frame to Lax pair

Suppose the PDE for q : Rn → V has a G-valued Lax pair θλ on R
n,

where G is the Lie algebra of a Lie group G. If q is a solution of the PDE,
then given c0 ∈ G there is a unique G-valued solution E(x, λ) for

E−1 dE = θλ, E(0, λ) = c0,

which will be called a parallel frame of the solution q or of its Lax pair θλ.
The solution with initial data c0 = I is called the normalized parallel frame.

The existence of a Lax pair is one of the characteristic properties of soliton
equations. The SGE, GSGE, and the Gauss-Codazzi equation for isothermic
surfaces and for flat Lagrangian submanifolds in C

n, and the equation for
k-tuples in R

n of type R
k−ℓ,ℓ are soliton equations and their Lax pairs were

found in [1, 2, 17, 58, 25] respectively. In general, it is not easy to determine
whether a PDE has a Lax pair. We explain in this section how to construct

(1) Lax pairs for SGE, GSGE, equations for flat Lagrangian submani-
folds in C

n, and for k-tuples in R
n of type R

k−ℓ,ℓ from the Maurer-
Cartan forms of specially chosen moving frames of the associated
family of these submanifolds,

(2) the immersions of these submanifolds from parallel frames of the
corresponding Lax pairs.

K = −1 surfaces in R
3

Lax pair (cf. [7, 56])
SupposeM is a surface in R

3 with K = −1, (s, t) the Tchebyshef asymp-
totic coordinate system, and q(s, t) is the solution of SGE corresponding to
M . Let fλ : Mλ → R

3 denote the K = −1 surface corresponding to the
solution qλ(s, t) = q(λs, λ−1t). We derive a Lax pair for the SGE from the
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Maurer-Cartan form for Mλ: For each non-zero real λ, choose the orthonor-
mal frame F λ = (eλ1 , e

λ
2 , e

λ
3 ) on Mλ such that eλ1 = fλs , and eλ3 is the unit

normal to Mλ. Set wλ := (F λ)−1 dF λ. Substitute ( 1
2λs, 2λt) for (s, t) in ω

λ

to get a one-parameter family of flat o(3)-valued connection 1-forms:

ωλ =





0 −2qs 0
2qs 0 −2λ
0 2λ 0



 ds+
1

2λ





0 0 sin 2q
0 0 cos 2q

− sin 2q − cos 2q 0



 dt. (6.1)

To get the known Lax pair of SGE, we identify the Lie algebra o(3) as
su(2) to rewrite the family ωλ of o(3)-valued connections as a family of flat
su(2)-valued connection 1-forms:

θλ =

(

−iλ −qs
qs iλ

)

ds+
i

4λ

(

cos 2q − sin 2q
− sin 2q − cos 2q

)

dt. (6.2)

Moreover, given q : R2 → R, then q is a solution of the SGE if and only if
θλ defined by (6.2) is flat for all non-zero λ ∈ C.

Sym’s formula [46]
If q is a solution of the SGE, then we can construct the corresponding

surface with K = −1 in R
3 from a parallel frame of the Lax pair associated

to q as follows: Set θλ by (6.2), and let E(s, t, λ) be a parallel frame for θλ,
i.e., the solution of

E−1 dE = θλ, E(0, 0, λ) = c0 ∈ SU(2).

Since θ∗
λ̄
+ θλ = 0, E(s, t, λ̄)∗E(s, t, λ) = I. Hence E(s, t, r) ∈ SU(2) for any

real number r. Set

fr =
∂E

∂λ
E−1

∣

∣

∣

∣

λ=r

.

Because E(s, t, r) ∈ SU(2) for r ∈ R, we have fr ∈ su(2). Also

dfr = E(s, t, r)

((

−i 0
0 i

)

ds+
i

4r2

(

− cos 2q sin 2q
sin 2q cos 2q

)

dt

)

E(s, t, r)−1.

If we identify su(2) as R3, then f := f 1

2

(s, t) is a surface with K = −1, (s, t)

is the Tchebyshef asymptotic coordinate system, and q is the solution of the
SGE corresponding to f .

n-submanifolds in R
2n−1 with sectional curvature −1

Lax pair
Let f :Mn → R

2n−1 be an immersion with sectional curvature −1, x the
Tchebyshef line of curvature coordinate system, ei the unit direction of fxi

,
(en+1, . . . , e2n−1) the parallel normal frame, and

I =

n
∑

i=1

a1i dx
2
i , II =

n
∑

i=1,j=2

a1iaji dx
2
i en+j−1,

the fundamental forms as in Theorem 3.5. Set F = (fij) as in (3.10), wi =
a1i dxi, wi,n+j−1 = aji dxi, wij = fij dxi − fji dxj and wn+i−1,n+j−1 = 0.
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We associate to the immersion f two flat connection 1-forms: The sec-
tional curvature of I =

∑n
i=1w

2
i is −1, giving

dwij +
∑

k

wikwkj = −wiwj,

which is equivalent to

ζ1 =

(

ω ξt

ξ 0

)

, ω = (wij)i,j≤n, ξ = (w1, . . . , wn)

being a flat o(n, 1)-valued connection 1-form. The Maurer-Cartan form of
f gives a flat o(2n − 1)-valued 1-form

̟ = g−1 dg = (wAB) =

(

w η
−ηt 0

)

,

where g = (e1, . . . , e2n−1), w = (wij)i,j≤n and ηij = aji dxi.

It is easy to see that an o(2n − 1)-valued 1-form

(

ω η
−ηt 0

)

is flat if and

only if

ζ2 =

(

ω iη
iηt 0

)

=

(

1 0
0 −i

)(

w η
−ηt 0

)(

1 0
0 i

)

is a flat o(n, n− 1,C)-valued 1-form. We embed o(n, 1) and o(n, n− 1) into
o(n, n) as Lie subalgebras by

o(n, 1) = {y = (yij) ∈ o(n, n) | yij = 0, ∀ n+ 1 < i, j ≤ 2n},

o(n, n− 1) = {y = (yij) ∈ o(n, n) | yi,n+1 = yn+1,i = 0 ∀ 1 ≤ i ≤ n}.

Use these embeddings to write ζ1, ζ2 as flat o(n, n)-valued 1-forms:

ζj =

(

ω δAtDj

DjAδ 0

)

, j = 1, 2,

where δ = diag( dx1, . . . , dxn), D1 = e11 = diag(1, 0, . . . , 0) and D2 =
i(I− e11). The flatness of ζ1 and ζ2 gives:

{

dω + ω ∧ ω + δAtD2Aδ = 0, wherew = δF − F tδ,

D dA ∧ δ +DAδ ∧ ω = 0
(6.3)

for D = D1 or D = D2. Write system (6.3) in terms of A and F to get the
GSGE (3.15).

Set Dθ = cos θD1 + sin θD2 = diag(cos θ, i sin θ, . . . , i sin θ). Then D2
θ =

− sin2 θI+D1. Since δ ∧ δ = 0, δAtD2
θAδ = δAte11Aδ. So (6.3) is flat for all

D = 1
2(e

iθI + e−iθI1,n−1). Hence

θλ =

(

ω δAtDλ

DλAδ 0

)

, (6.4)

is a flat o(n, n)-valued connection 1-form on R
n for all λ = eiθ, where Dλ =

1
2(λI + λ−1J), w = δF − F tδ, and A−1 dA = δF t − Fδ. Moreover, A is a
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solution of GSGE if and only if θλ is flat for all λ 6= 0. This is the Lax pair
given in [2] for the GSGE.

SGE has two Lax pairs
Note that SGE has two Lax pairs, one is the sl(2,C)-valued connection

1-form (6.2) in asymptotic coordinates and the other is the o(2, 2)-valued
connection 1-form (6.4) in line of curvature coordinates.

Construct immersions
Suppose (A = (aij), F = (fij)) is a solution of the GSGE (3.13), and θλ

the Lax pair defined by (6.4). Let E(x, λ) denote the normalized parallel
frame of θλ, and

g(x) :=

(

1 0
0 i

)

E(x, i)

(

1 0
0 −i

)

.

Then g(x) ∈ O(2n), g(x)n+1,i = g(x)i,n+1 = 0 for i 6= n+1, g(x)n+1,n+1 = 1,
and

g−1 dg =

(

1 0
0 i

)

θi

(

1 0
0 −i

)

=

(

w δAt(I− e11)
−(I− e11)Aδ 0

)

is a flat o(2n − 1)-valued connection 1-form with g(0) = I. Hence g(x) ∈
O(2n − 1). Let ei(x) denote the i-th column of g(x). Then the following
system

df =

n
∑

i=1

a1iei dxi (6.5)

is solvable for f in R
2n−1 and the solution f (up to translation) has sectional

curvature −1.

Flat Lagrangian submanifolds in C
n [58]

Egoroff line of curvature coordinate system
If f :M → C

n = R
2n is a flat Lagrangian submanifold with flat and non-

degenerate normal bundle, then there exist a coordinate system (x1, . . . , xn)
and function φ such that

{

I =
∑n

i=1 φxi
dx2i ,

II =
∑n

i=1 dx2i ⊗ J(fxi
),

(6.6)

where J is the standard complex structure on R
2n. We call x the Egoroff

line of curvature coordinate system. Let

ei =
fxi

(φxi
)
1

2

, en+i = Jei, 1 ≤ i ≤ n,

g = (e1, . . . , e2n) the adapted frame for f , and ̟ = g−1 dg = (wAB). Then

the dual 1-forms for e1, . . . , en are wi = (φxi
)
1

2 dxi and wi,n+j = δij dxi. By
the Cartan Lemma 2.1 and (2.3), we have

wij = βij dxi − βji dxj, where βij =







φxixj

2(φxi
φxj

)
1
2

, i 6= j,

0, i = j
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for i, j ≤ n. Note that β = (βij) is symmetric. Set h = (φ
1

2
x1
, . . . , φ

1

2
xn)

t.
The Gauss-Codazzi equation and the structure equation for f is the PDE
for (β, h) defined by the condition that

τ =





[δ, β] δ δh
−δ [δ, β] 0
0 0 0



 (6.7)

is flat, i.e., it is the following system for (β, h):










(hi)xj
= βijhj , i 6= j,

(βij)xi
+ (βij)xj

+
∑

k βikβkj = 0, i 6= j,

(βij)xk
= βikβkj, i, j, k distinct.

(6.8)

Conversely, if (β, h) is a solution of (6.8) with β = (βij) symmetric and h =
(h1, . . . , hn)

t, then the first equation of (6.8) implies that hi(hi)xj
= hj(hj)xi

for all i 6= j. So (h21, . . . , h
2
n) is a gradient field, i.e., there is a function φ such

that h2i = φxi
for 1 ≤ i ≤ n. Hence there is a flat Lagrangian immersion

f(x) in C
n such that I, II are of the form (6.6).

Associated family of flat Lagrangian submanifolds in C
n

If M is a flat Lagrangian submanifold in C
n with I, II as in (6.6), then

given λ ∈ R, there is a flat Lagrangian submanifold Mλ in Cn with

Iλ = I =

n
∑

i=1

φxi
dx2i , IIλ = λ

n
∑

i=1

dx2i ⊗ J(fxi
).

Lax pair
If fλ is the associated family of f , then the Maurer-Cartan form (6.7) for

fλ is

θλ =





[δ, β] λδ δh
−λδ [δ, β] 0
0 0 0



 . (6.9)

Moreover, the following statements are equivalent: (i) θ1 is flat, (ii) θλ is
flat for all λ ∈ C, (iii) (β, h) is a solution of (6.8).

Construct flat Lagrangian submanifold from parallel frame
If (β, h) is a solution of the (6.8) and E a parallel frame of θλ given by

(6.9), then

(1) there exists φ such that h2i = φxi
for 1 ≤ i ≤ n,

(2) for each real r, E(x, r) is of the form

(

g(x, r) f(x, r)
0 1

)

with g ∈

U(n) ⊂ O(2n) and f(·, r) ∈ R
2n,

(3) f(·, r) is a flat Lagrangian submanifold in C
n = R

2n with

Ir =

n
∑

i=1

φxi
ei dx

2
i , IIr =

n
∑

i=1

r dx2i ⊗ J(fxi
(·, r)),
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where ei(x, r) is the i-th column of g(x, r) ∈ O(2n) and J(fxi
) is

parallel to en+i for 1 ≤ i ≤ n

Isothermic surfaces in R
3

Lax pair
We use the associated family of Christoffel transforms to construct a Lax

pair for isothermic surfaces. Suppose (f(x), f̃(x)) is a Christoffel transform
of isothermic immersions in R

3. Let e1, e2 denote the coordinate directions.
By Theorem 4.2, there exists a solution (q, r1, r2) of (4.3) such that

df = eq( dx1e1 + dx2e2), df̃ = e−q( dx1e1 − dx2e2).

Write the above equation in matrix form:

d(f, f̃) = (e1, e2, e3)





dx1 0
0 dx2
0 0





(

cosh q sinh q
sinh q cosh q

)(

1 1
1 −1

)

.

Set

ζ := (e1, e2, e3)





dx1 0
0 dx2
0 0





(

cosh q sinh q
sinh q cosh q

)

,

ξ =

(

0 ζ
−Jζt 0

)

, J = diag(1,−1).

Compute directly to see that dξ = 0 and ξ ∧ ξ = 0, which implies that ξ
is a flat 0(4, 1)-valued connection 1-form. Apply the above computation to

the associated family λ(f, f̃) to see that λξ is a flat connection 1-form for
all λ ∈ R. Set

g1 = (e1, e2, e3), g2 =

(

cosh q − sinh q
− sinh q cosh q

)

, g =

(

g1 0
0 g2

)

.

The gauge transformation of λξ by g−1 is

θλ = λg−1ξg + g−1 dg =

(

w λD
−λJDt τ

)

, (6.10)

where

w = g−1
1 dg1 =





0 qx2
dx1 − qx1

dx2 r1 dx1
−qx2

dx1 + qx1
dx2 0 r2 dx2

−r1 dx1 −r2 dx2 0



 ,

τ = g−1
2 dg2 =

(

0 − dq
− dq 0

)

, D =

(

δ
0

)

, δ = diag( dx1, dx2).

Since ξλ is flat, so is θλ. Moreover, (q, r1, r2) is a solution of the Gauss-
Codazzi equation (4.3) of isothermic surfaces if and only if θλ is flat for all
parameters λ. In other words, θλ is a Lax pair of the isothermic equation
(4.3).
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Note that θλ can be written as

θλ =
2
∑

i=1

(aiλ+ [ai, v]) dxi, (6.11)

where J = I1,1,

ai =

(

0 Di

−JDt
i 0

)

, D1 =





1 0
0 0
0 0



 , D2 =





0 0
0 1
0 0



 , (6.12)

v =

(

0 η
−Jηt 0

)

, η =





0 qx1

−qx2
0

−r1 r2



 . (6.13)

Construction of Christoffel pairs of isothermic surfaces from parallel frames

Method 1
Let (q, r1, r2) be a solution of (4.3), θλ its Lax pair defined by (6.10), and

E(x, λ) a parallel frame for θλ with initial data c0 ∈ O(3) × O(1, 1). Since

θ0 ∈ o(3)× o(1, 1), g := E(x, 0) =

(

g1 0
0 g2

)

∈ O(3)×O(1, 1). Write

g1 = (e1, e2, e3), g2 =

(

cosh q − sinh q
− sinh q cosh q

)

.

Then

g ∗ θλ = gθλg
−1 − dgg−1 = λ

(

0 ζ
−Jζt 0

)

,

where

ζ = (e1, e2, e3)





dx1 0
0 dx2
0 0





(

cosh q sinh q
sinh q cosh q

)

.

The flatness g ∗ θλ implies that dζ = 0. Hence there exists a 3 × 2 matrix

valued map Y such that dY = ζ. Moreover, (f1, f2) = Y

(

1 1
1 −1

)

is a

Christoffel pair of isothermic surfaces in R
3 and (q, r1, r2) is the correspond-

ing solution of (4.3).

Method 2
We claim that if E is the normalized parallel frame of the Lax pair θλ de-

fined by (6.10) of a solution (q, r1, r2) of (4.3), then
∂E
∂λ
E−1

∣

∣

λ=0
is of the form

(

0 Z
−I1,1Z

t 0

)

for some 3×2 matrix value map Z and (f1, f2) = Z

(

1 1
1 −1

)

is a Christoffel pair of isothermic surfaces in R
3 with fundamental forms as

in Theorem 4.2.
To see this, we first note that θλ is o(4, 1,C)-valued 1-form and satisfies

the O(4,1)
O(3)×O(1,1) reality condition:

θλ̄ = θλ, I3,2θλI3,2 = θ−λ.
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So the normalized parallel frame E of θλ satisfies E(x, λ) ∈ O(4, 1,C) satis-
fying

E(x, λ̄) = E(x, λ), I3,2E(x, λ)I3,2 = E(x,−λ). (6.14)

Note that τ(y) = ȳ and σ(y) = I3,2yI
−1
3,2 are involutions on O(4, 1,C) that

give the symmetric space O(4,1)
O(3)×O(1,1) , and

o(4, 1) = K + P, K = o(3)× o(1, 1), P =

{(

0 ξ
−I1,1ξ

t 0

)}

is the Cartan decomposition of ±1 eigenspaces of σ on the fixed point set
o(4, 1) of τ . It follows from (6.14) that ∂E

∂λ
E−1

∣

∣

λ=0
lies in P, hence is of

the form

(

0 Z
−JZt 0

)

for some 3× 2 valued map Z. A direct computation

implies that

dZ = g1

(

δ
0

)

g−1
2

and Z

(

1 1
1 −1

)

is a Christoffel pair associated to the solution (q, r1, r2),

where g1, g2 is given by E(x, 0) =

(

g1 0
0 g2

)

.

k-tuples in R
n of type R

k−ℓ,ℓ [11, 25]

Lax pair
First we associate to a k-tuple Y in R

n of type Rk−ℓ,ℓ two flat connections,
and then use them to construct a Lax pair for the equation of Y .

Theorem 6.1. [25] Let Y = (Y1, . . . , Yk) : Ω → Mn×k be a k-tuple in R
n

of type R
k−ℓ,ℓ, ej the unit direction of (Y1)xj

for 1 ≤ j ≤ k, ek+1, . . . , en
a parallel orthonormal normal frame for Y1, g = (e1, . . . , en), (wij)i,j≤n =
g−1 dg, and (aij)i,j≤k the metric matrix associated to Y defined by (Yi)xj

=
aijej for 1 ≤ i, j ≤ k. Set

fij =

{

(a1i)xj
a1j

, 1 ≤ i 6= j,

0, i = j,
δ = diag( dx1, . . . , dxk),

and ai = (ai1, . . . , aik) for all 1 ≤ i ≤ k. Then

(1) fundamental forms of Yi are

Ii =

k
∑

i=1

a2ij dx
2
j , IIi =

k,n−k
∑

m,j=1

aimhmjek+j

for some Mk,n−k matrix h = (hij) (so wi,k+j = hij dxi for 1 ≤ i ≤ k
and 1 ≤ j ≤ n− k),

(2) w = (wij)1≤i,j≤n := g−1 dg =

(

δF − F tδ δh
−htδ 0

)

is flat,
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(3) dai = ai(δF
t − JFδJ) for 1 ≤ i ≤ k, where J = Ik−ℓ,ℓ, in other

words, ai is a parallel field for the o(k−ℓ, ℓ)-valued connection 1-form
δF t − JFδJ .

(4) τ := δF t − JFδJ is a flat o(k − ℓ, ℓ) connection 1-form,
(5)

θλ =

(

w −λDtJ
λD τ

)

(6.15)

is flat for all λ ∈ C, where D = (δ, 0) and δ = diag( dx1, . . . , dxk),

(6) let

(

g1 0
0 g2

)

be a frame of θ0 =

(

w 0
0 τ

)

, then there exists a constant

C ∈ GL(k) such that dY = g1Dg
−1
2 C.

The equation for k-tuples in R
n of type R

k−ℓ,ℓ is the equation for (F, h) :
R
k → gl(k)∗ ×Mk×(n−k) such that w and τ defined in Theorem 6.1 are flat,

i.e.,










dw + w ∧ w = 0, w =

(

δF − F tδ δh

−htδ 0

)

,

dτ + τ ∧ τ = 0, τ = δF t − JFδJ,

(6.16)

where

gl(k)∗ = {(yij) ∈ gl(k) | yii = 0 ∀ 1 ≤ i ≤ k}

and J = Ik−ℓ,ℓ. So θλ defined by (6.15) is the Lax pair for the equation

(6.16) of k-tuples in R
n of type R

k−ℓ,ℓ.

Construction of k-tuples from parallel frames
Let (F, h) be a solution of (6.16), and E is the normalized parallel frame

for θλ defined by (6.15). Since θ0 =

(

w 0
0 τ

)

, E(x, 0) =

(

g1 0
0 g2

)

for some

g1 ∈ O(n) and g2 ∈ O(k − ℓ, ℓ). Similar argument as for Christoffel pairs of
isothermic surfaces gives

(1) g1Dg
−1
2 is closed, so there exists Y such that dY = g1Dg

−1
2 ,

(2) Y C is a k-tuple in R
n of type R

k−ℓ,ℓ for a constant C ∈ GL(k).

(3) ∂E
∂λ
E−1

∣

∣

λ=0
=

(

0 Z
−JZt 0

)

for some 3 × 2 valued map Z and Y =

Z + c0 for some constant c0 ∈ R
n.

7. Soliton hierarchies constructed from symmetric spaces

We review the method for constructing soliton hierarchies from a splitting
of a Lie algebra (cf. [57]).

Definition 7.1. Let L be a formal Lie group, L its Lie algebra, and L±

subgroups of L with Lie subalgebras L±. The pair (L+,L−) is called a
splitting of L if L = L+ ⊕ L− as a direct sum of linear subspaces and L+ ∩
L− = {e}, where e is the identity in L. We call the set O = (L+L−)∩(L−L+)
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the big cell of L. In other words, f ∈ O if and only if f can be factored
uniquely as f+f− and g−g+ with f±, g± ∈ L±.

Theorem 7.2. (Local Factorization Theorem) [42, 57]
Suppose L is a closed subgroup of the group of Sobolev H1- loops in a finite

dimensional Lie group G, and (L+,L−) is a splitting of the Lie algebra L.
Let V be an open subset in R

N , and g : V → L a map such that (x, λ) 7→
g(x)(λ) is smooth. If p0 ∈ V and g(p0) = k+k− = h−h+ with k±, h± ∈ L±,
then there exist an open subset V0 ⊂ V containing p0 and unique f±, g± :
V0 → L± such that g = g+g− = f−f+ on V0 and g±(p0) = k±, f±(p0) = h±.

Definition 7.3. A commuting sequence J = {Ji | i ≥ 1, integer} in L+ is
called a vacuum sequence of the splitting (L+,L−) if J is linearly indepen-
dent and each Jj is an analytic function of J1.

Construction of soliton hierarchy
Let (L+,L−) be a splitting of L, and {Jj | j ≥ 1} a vacuum sequence. For

ξ ∈ L, let ξ± denote the projection of ξ onto L± with respect to L = L++L−.
Set

M = {(g−1J1g)+ | g ∈ L−}. (7.1)

Assume that given smooth ξ : R → M, there is a unique Qj(ξ) ∈ L such
that

(1) [∂x + ξ,Qj(ξ)] = 0,
(2) Qj(ξ) is a function of ξ and the derivatives of ξ,
(3) Qj(ξ) is conjugate to Jj and Qj(J1) = Jj .

Claim that
∂ξ

∂tj
= [∂x + ξ, (Qj(ξ))+] (7.2)

is a PDE system on M. We only need to show that the right hand side is
tangent toM at ξ: Since [∂x+ξ,Qj ] = 0, the right hand side of (7.2) is equal
to −[∂x + ξ, (Qj)−]. But it should be in L+, so it is equal to −[ξ, (Qj)−]+,
which is tangent to M. Hence this defines a flow on M. We call (7.2) the
j-th flow and the collection of these flows the soliton hierarchy constructed
from (L+,L−) and {Jj | j ≥ 1}.

Proposition 7.4. The following statements are equivalent for ξ : R2 → M:

(1) ξ is a solution of the flow (7.2),
(2) [∂x + ξ, ∂tj + (Qj(ξ))+] = 0,
(3) ξ dx+ (Qj(ξ))+ dtj is a flat L+-valued connection 1-form.

So (3) is a Lax pair of the flow (7.2).

If L is a Lie subalgebra of the Lie algebra of formal power series A(λ) =
∑

i≥n0
Aiλ

i with Ai ∈ G a finite dimensional simple Lie algebra, then equa-

tion (7.2) is a PDE with a parameter λ. For examples given in this article,
it follows from [∂x+ ξ,Qj(ξ)] = 0 that (7.2) gives a determined PDE system
in ξ.
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Commuting flows on L−

Given a splitting (L+,L−) of L and a vacuum sequence {Jj | j ≥ 1}, we
consider a hierarchy of flows on the negative group L−:

∂M

∂tj
= −M(M−1JjM)−. (7.3)

A direct computation implies that (7.3) are commuting flows on L−, i.e.,

−(Pj)tk + (Pk)tj + [Pj , Pk] = 0

for all j, k, where Pj = −(M−1JjM)−. Use [J1, Jj ] = 0 and a straight
forward computation to get the following known results (cf. [57]) :

Proposition 7.5. If M(t1, tj) solves the first and the j-th flows (7.3) on
L−, then (M−1J1M)+ is a solution of the j-th flow (7.2).

Theorem 7.6. The flows in the soliton hierarchy constructed from a split-
ting and a vacuum sequence commute.

Formal inverse scattering [55]
Given an element f ∈ L−, we use the Local Factorization Theorem to

construct a solution of the flow in the soliton hierarchy generated by Jj as
follow: First note that J1 is in the phase space M defined by (7.1) and
(7.2) is satisfied, i.e., the constant map J1 is the solution of all flows in the
hierarchy. The Lax pair of the flow generated by Jj is J1 dx + Jj dtj . Let
E(x, tj) = exp(xJ1 + tjJj), i.e., E is the normalized parallel frame of the
solution on L+ satisfying

E−1Ex = J1, E−1Etj = Jj , E(0, λ) = I.

By Theorem 7.2, given f ∈ L−, we can factor

f−1E(x, tj) = Ẽ(x, tj)f̃(x, tj)
−1

with Ẽ(x, tj) ∈ L+ and f̃(x, tj) ∈ L− for (x, tj) in some open subset of the

origin. We claim that f̃ is a solution of (7.3) for the first and the j-th flow.

To see this, note that Ẽ = f−1Ef̃ and

Ẽ−1Ẽx = f̃−1J1f̃ + f̃−1f̃x, Ẽ−1Ẽtj = f̃−1Jj f̃ + f̃−1f̃tj .

Since the left hand sides are in L+ and f̃−1f̃x, f̃
−1f̃tj are in L−, the above

equation implies that
{

f̃−1f̃x = −(f̃−1J1f̃)−,

f̃−1f̃tj = −(f̃−1Jj f̃)−.

Hence f̃(x, tj) is a solution of (7.3) and this proves the claim. By Proposition

7.5, ξ = (f̃−1J1f̃)+ is a solution of the flow generated by Jj.
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Example 7.7. The G-hierarchy [1, 44, 63, 55]
Let G be a complex simple Lie group, and L(G) the group of smooth

loops f : S1 → G, L+(G) the subgroup of f ∈ L(G) that can be extended
holomorphically to |λ| < 1, and L−(G) the subgroup of f ∈ L(G) that can be
extended holomorphically to ∞ = |λ| > 1 and f(∞) = I. The corresponding
Lie algebras are

L(G) = {A(λ) =
∑

i

Aiλ
i | Ai ∈ G},

L+(G) = {A ∈ L(G) | A(λ) =
∑

j≥0

Ajλ
j},

L−(G) = {A ∈ L(G) | A(λ) =
∑

j<0

Ajλ
j},

where G is the Lie algebra of G. Then (L+(G),L−(G)) is a splitting of L(G)
Let A be a maximal abelian subalgebra of G, and A⊥ the orthogonal

complement of A with respect to the Killing form ( , ) of G. The dimension
of A is the rank of G. An element ξ ∈ G is regular if ad(ξ) is semi-simple
and the centralizer Gξ is a maximal abelian subalgebra. If ξ is regular, then

ad(ξ) is a linear isomorphism of G⊥
ξ . Let {a1, . . . , ar} be a basis of A such

that a1 is regular. Then

J = {Ji,j = aiλ
j | 1 ≤ i ≤ r, j ≥ 1}

is a vacuum sequence with J1 = J1,1 = a1λ. A direct computation shows
that M defined by (7.1) is

M = J1 + ([a1λ,L−])+ = J1 +A⊥.

To write down the flow generated by Ji,j , we construct

Qi(u) = aiλ+
∑

k≤0

Qi,k(u)λ
k

satisfying
{

[∂x + a1λ+ u,Qi(u)] = 0,

fj(Qi(u)) = fj(aiλ), 1 ≤ j ≤ r,
(7.4)

where f1, . . . , fr are free generators of the ring of invariant polynomials on
G (for example, if G = sl(n), then r = n− 1 and fj(A) can be chosen to be

tr(Aj) for 2 ≤ j ≤ n). Equate the coefficient of λk in the first equation of
(7.4) to get the recursive formula

(Qi,k)x + [u,Qi,k] + [a1, Qi,k−1] = 0. (7.5)

We use (7.5) and the second equation of (7.4) to prove that Qi,k is a poly-
nomial differential operator of u. Since M−1Ji,jM = λj−1M−1Ji,1M , the
flow generated by Ji,j is (7.2), i.e.,

∂(a1λ+ u)

∂ti,j
= [∂x + a1λ+ u, aiλ

j +Qi,0λ
j−1 + · · ·+Qi,1−j].
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Although the right hand side is a degree j + 1 polynomial in λ, it follows
from the recursive formula (7.5) that all coefficients of λk of the right hand
side are zero except the constant term. So the flow equation generated by
Ji,j is the following PDE for u:

uti,j = [∂x + u,Qi,1−j] = [Qi,−j, a1]. (7.6)

By Proposition 7.4, equation (7.6) has a Lax pair

θλ = (a1λ+ u) dx+ (aiλ
j +Qi,0λ

j−1 + · · ·+Qi,1−j) dti,j.

We call this hierarchy of flows the G-hierarchy. For example, for general G,
the flow generated by J1,j in the G-hierarchy is the PDE for u : R2 → A⊥:

ut1,j = ad(aj)ad(a1)
−1(ux) + [u, ad(aj)ad(a1)

−1(u)],

and its Lax pair is

θλ = (a1λ+ u) dx+ (ajλ+ ad(aj)ad(a1)
−1(u)) dt1,j.

Example 7.8. The U-hierarchy [55]
Let τ be a Lie group involution of G such that dτe : G → G (still denoted

by τ) is conjugate linear. Let U denote the fixed point set of τ , and U the
Lie algebra of U , i.e., U is a real form of G. Let Lτ (G) denote the subgroup
of all f ∈ L(G) satisfying the U -reality condition

τ(f(λ̄)) = f(λ), (7.7)

and Lτ
±(G) = Lτ (G)∩L±(G). Let L

τ (G) and Lτ
±(G) denote the correspond-

ing Lie algebras. Let {a1, . . . , an} be a basis of a maximal abelian subalge-
bra of U such that a1 is regular, and J = {Jij = aiλ

j | 1 ≤ i ≤ n, j ≥ 1}.
Then (Lτ

+(G),L
τ
−(G)) is a splitting and J is a vacuum sequence. The flows

generated by Jij ’s form the U -hierarchy and flows in the U -hierarchy are

evolution equations on C∞(R,A⊥ ∩ U). For example, for τ(g) = (ḡt)−1 on
sl(2,C). Then U = su(2). Let a = diag(i,−i). The flows are evolution PDE

on C∞(R, Y ), where Y =

{(

0 q
−q̄ 0

)

| q ∈ C

}

and the flow generated by

J1,2 = aλ2 in the su(2)-hierarchy is the NLS

Example 7.9. The U
K
-hierarchy [55]

Let τ, σ be commuting involutions of G such that the induced involutions
τ and σ on G are conjugate and complex linear respectively, and U the fixed
point set of τ on G and K the fixed point set of σ on U (so U

K
is a symmetric

space). Let P denote the −1 eigenspace of σ in U . Then we have U = K+P
and

[K,K] ⊂ K, [K,P] ⊂ P, [P,P] ⊂ K.

This is the Cartan decomposition for U
K
. Note that K acts on P by conju-

gation. An element b ∈ P is regular if the K-orbit of b in P is maximal. If
b is regular, then {ξ ∈ P | [b, ξ] = 0} is a maximal abelian subalgebra and
is the kernel of ad(b) : P → K.
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Let A be a maximal abelian subalgebra in P, and {a1, . . . , an} a basis of
A such that a1 is regular (i.e., ad(a1) is a linear isomorphism from K ∩K⊥

a1

onto P ∩A⊥, where Ka1 = {k ∈ K | [a1, k] = 0}. The dimension of A is the
rank of the symmetric space.

Let Lτ,σ(G) be the subalgebra of ξ ∈ L(G) satisfying the U
K
-reality condi-

tion

τ(ξ(λ̄)) = ξ(λ), σ(ξ(−λ)) = ξ(λ), (7.8)

and

Lτ,σ
± (G) = Lτ,σ(G) ∩ L±(G)).

Then (Lτ,σ
+ (G),Lτ,σ

− (G)) is a splitting and

J = {Jij = aiλ
j | 1 ≤ i ≤ n, j ≥ 1 odd integer}

is a vacuum sequence. The hierarchy constructed from these are called
the U

K
-hierarchy and the flows in this hierarchy are evolution equations on

C∞(R,K⊥
a1
), where K⊥

a1
= {y ∈ K | (y, k) = 0∀ k ∈ Ka1}. For example, the

symmetric space given by τ(g) = (ḡ−1)t and σ(g) = (gt)−1 on G = SL(2,C)

is SU(2)
SO(2) = S2. Let a = diag(i,−i). The flows in the SU(2)

SO(2) -hierarchy are for

u =

(

0 q
−q 0

)

and the flow generated by J1,3 = aλ3 is the mKdV.

Remark 7.10. If U
K

has maximal rank , i.e., the rank of U
K

is equal to the
rank of U , then:

• A maximal abelian subalgebra A in P is also a maximal abelian
subalgebra of U over R and is a maximal abelian subalgebra of G
over C.

• Fix a basis {a1, . . . , an} of A over R. The phase space for flows in
the G-hierarchy is C∞(R,A⊥).

• The flow generated by Ji,j in the G-hierarchy leaves C∞(R,A⊥ ∩U)
invariant and the restricted flows form the U -hierarchy.

• The flow generated by Ji,2j+1 of the U -hierarchy leaves the subspace

K⊥
a1

invariant and the restricted flows form the U
K
-hierarchy.

The matrix NLS hierarchy [31, 55]
Let τ(g) = (ḡt)−1 be the involution of G = GL(n,C) that defines the real

form U = U(n), and (Lτ
−(G),L−(G)) the splitting that gives the U -hierarchy.

Let a = iIk,n−k. Then

J = {aλj | j ≥ 1}

is a vacuum sequence. The flows constructed by this splitting and hierarchy
are equations for u : R2 → Mk×(n−k), and the flow generated by aλ2 is the

matrix NLS , qt =
i

2(qxx + 2qq̄tq).

The −1 flow associated to U
K

[51]
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We use the same notation as for the U
K
-hierarchy. Given b ∈ A, the −1

flow associated to U
K

is the equation for g : R2 → K:

(g−1gx)t = [a, g−1bg]. (7.9)

It is easy to check that g is a solution of (7.9) if and only if θλ is flat for all
λ 6= 0, where

θλ = (a1λ+ g−1gx) dx+ λ−1g−1bg dt. (7.10)

For example, the −1-flow associated to SU(2)
SO(2) defined by a = diag(i,−i) and

b = −a
4 is the equation for g =

(

cos q − sin q
sin q cos q

)

, (7.10) is (6.2), and (7.9)

gives the SGE.

Example 7.11. Twisted U
K1

-hierarchy [53]
Let τ be the conjugate involution of the complex simple Lie group G that

gives the real form U , σ1 and σ2 involutions of G such that σ1, σ2 and τ
commute, and

U = K1 + P1, U = K2 + P2

Cartan decompositions for σ1 and σ2 respectively. Let A be a maximal
abelian subalgebra in P1. Assume that

1. σ2(A) ⊂ A,
2. K1 ∩K2 = S1 × S2, K1 = S1 ×K ′

1, K2 = K ′
2 × S2 as direct product

of subgroups.

Let L = Lτ,σ1 denote the group of holomorphic maps f from ǫ < |λ| < ǫ−1

to G satisfying the U/K1-reality condition:

τ(f(λ̄)) = f(λ), σ1(f(−λ)) = f(λ).

Let L+ denote the subgroup of f ∈ L such that σ2(f(λ
−1)) = f(λ) and

f(1) ∈ K ′
2, and L− the subgroup of f ∈ L that can be extended holomor-

phically to ∞ ≥ |λ| > ǫ and f(∞) ∈ K ′
1. Then L+ ∩ L− = {e} and the Lie

algebras are:

L = {ξ(λ) =
∑

j

ξjλ
j
∣

∣ ξj ∈ K1 if k is even, ∈ P1, if k is odd.},

L+ = {ξ ∈ L | ξ−j = σ2(ξj), ξ(1) ∈ K′
2},

L− = {ξ(λ) =
∑

j≤0

ξjλ
j ∈ L | ξ0 ∈ K′

1}.

Let {a1, . . . , an} be a basis of A such that a1 is regular with respect to the
Ad(K1) action on P1, and J = {Ji,j | 1 ≤ i ≤ n, j ≥ 1 odd}, where

Ji,j = aiλ
j + σ2(ai)λ

−j .

Then (L+,L−) is a splitting of L and J is a vacuum sequence. We call
the hierarchy constructed from this splitting and vacuum sequence the U

K1
-

hierarchy twisted by σ2. The phase space of this hierarchy is C∞(R,M),
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where

M = {g−1a1gλ+ v + σ2(g
−1a1g)λ

−1 | g ∈ K ′
1, v ∈ S1}.

Example 7.12. A twisted O(n,n)
O(n)×O(n)-hierarchy [53]

Let G = o(n, n,C), τ(x) = x̄, and

σ1(x) = In,nxI
−1
n,n, σ2(x) = In+1,n−1xI

−1
n+1,n−1.

Then

U = o(n, n), K1 = o(n)× o(n), K2 = o(n, 1)× o(n − 1),

K1 ∩ K2 = S1 + S2, where S1 = o(n)× 0, S2 = 0× o(n− 1),

K′
2 = S1 + (P1 ∩ K2) = o(n, 1), K′

1 = 0× o(n).

The space

A =

{(

0 D
D 0

) ∣

∣

∣

∣

D ∈ gl(n,R) is diagonal

}

is a maximal abelian subalgebra in P1 and σ2(A) ⊂ A. Choose a basis
{a1, . . . , an} of A such that a1 is regular. Then τ, σ1, σ2 satisfy all the

conditions given above and we obtain the O(n,n)
O(n)×O(n) -hierarchy twisted by

σ2.

Next we give a brief discussion of bi-Hamiltonian structure, conservation
laws, and formal inverse scattering for the U -hierarchy.

Bi-Hamiltonian structure for the U-hierarchy (cf. [27, 51])
Let ( , ) denote a bi-invariant non-degenerate bilinear form on U , and

〈u, v〉 =

∫ ∞

−∞

(u(x)v(x)) dx

the induced bi-linear form on V = S∞(R,A⊥) the space of Schwartz maps
from R to A⊥. Given a functional F on V , the gradient of F is defined by

dFu(v) = 〈∇F (u), v〉,

(i.e., ∇F (u) = 0 is the Euler-Lagrangian equation for F ). A Poisson struc-
ture on V is an operator J : V → L(V, V ), u 7→ Ju such that

{F1, F2}(u) = (Ju(∇F1(u)),∇F2(u))

defines a Lie bracket on V and { } satisfies the product rule. The Hamilton-
ian equation for F : V → R is

du

dt
= Ju(∇F (u)).

Two Poisson structures { , }1, { , }2 on V are compatible if

c1{ , }1 + c2{ , }2

is again a Poisson structure for any constant c1, c2.
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Given a smooth map u : R → A⊥, let Pu be the operator on C(R,A⊥)
defined by

Pu(v) = (ṽ)x + [u, ṽ], ṽ = v + T, T (x) = −

∫ x

∞

[u, v]0,

where ξ0 and ξ⊥ denote the projection of ξ ∈ U to A and A⊥ respectively.
By definition, Pu(v) ∈ A⊥. Let J0 and J1 be the operator from V to L(V, V )
defined by

(J0)u = −ad(a1), (J1)u = Pu.

Define

{F,G}0(u) = 〈[∇F (u), a1],∇G(u)〉, {F,G}1(u) = 〈[Pu(∇F (u)),∇G(u)〉.

The following are known (cf. [27], [51]):

(1) { , }0 and { , }1 are compatible Poisson structures on C(R,A⊥).
(2) Set

Fi,j(u) = −
1

j

∫ ∞

−∞

(Qi,−j(u), a1) dx. (7.11)

Then ∇Fi,j(u) = Qi,−j+1(u)
⊥ and the flow generated by Ji,j is

ut = J0(∇Fi,j+1) = J1(∇Fi,j).

(3) Both Poisson structures can be constructed from the natural Poisson
structures of co-adjoint orbits of Lτ

−(G).

8. The U
K
-system and the Gauss-Codazzi equations

We review the definition of the U
K
-system, the twisted U

K
-system, and the

−1 flow on the U
K
-system and see that SGE, GSGE, equations for isothermic

surfaces, for k-tuples in R
n of type R

k−ℓ,ℓ, and for flat Lagrangian subman-
ifolds in C

n are U
K
-systems.

The U
K
-system [51]

Let U
K

be a rank n symmetric space, U = K+P a Cartan decomposition,

A a maximal abelian subspace in P, and {a1, . . . , an} a basis of A. The U
K
-

system is the following over-determined first order non-linear PDE system
for v : Rn → A⊥ ∩ P:

[ai, vt1,j ]− [aj , vt1,i ] = [[ai, v], [aj , v]], 1 ≤ i 6= j ≤ n, (8.1)

It follows from the definition that the following statements are equivalent
for v : Rn → A⊥ ∩ P:

(1) v is a solution of (8.1),
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(2) the following connection 1-form on R
n is flat for all parameters λ ∈

C:

θλ =
n
∑

i=1

(aiλ+ [ai, v]) dxi (8.2)

(θλ is a Lax pair of the U
K
-system),

(3) θs is flat for some s ∈ R ∪ iR,
(4) if a1 is regular, then u = [a1, v] is a solution of the flow generated

by Ji,1 = aiλ in the U
K
-hierarchy.

Remark 8.1. If we use a different basis of A, the U
K
-systems differ by a

linear coordinate change. If two maximal abelian subalgebras A and Ã
are conjugated by an element in K, then the corresponding U

K
-systems are

equivalent. If U
K

is a Riemannian symmetric space, then any two maximal
abelian subalgebras in P are conjugate by an element of K, so there is a
unique U/K-system. But when U

K
is a pseudo-Riemannian symmetric space,

there may be more than one maximal abelian subalgebras in P modulo the
conjugation action of K on P. Hence there may be more than one non-
equivalent U

K
-system associated to U

K
.

Statement (4) given above means that the U
K
-system combines the com-

muting flows in the U
K
-hierarchy generated by J1,1 = a1λ, . . . , Jn,1 = anλ

together.

Curved flats in symmetric spaces
Recall that a flat of a symmetric space U

K
is a totally geodesic flat subman-

ifold of U
K
. If A is a maximal abelian subalgebra in P, then A = exp(A)K

is a flat through eK and gA is a flat through gK. Moreover, all flats are
obtained this way.

Definition 8.2. [29] A curved flat in U
K

is an immersed flat submanifold of
U
K

that is tangent to a flat of U
K

at every point.

Definition 8.3. [52] Let U
K

be a symmetric space, and U = K+P a Cartan
decomposition. A flat submanifold M of P is called an abelian flat subman-
ifold if TMx is a maximal abelian subalgebra of P for all x ∈ M . Here the
metric on P is the restriction of the Killing form ( , ) of U to P.

If we identify the tangent space of U
K

at eK to be P, then a flat subman-

ifold Σ in U
K

is a curved flat if and only if g−1TΣgK is a maximal abelian

subalgebra of P for all gK ∈ Σ. A curved flat Σ is semi-simple if g−1TΣgK

is a semi-simple maximal abelian subalgebra of P for all gK ∈ Σ.
Let U

K
be the symmetric space defined by τ, σ. Then the map U

K
→ U

defined by gK 7→ gσ(g)−1 is well-defined and gives an isometric embedding
of the symmetric space U

K
into U as a totally geodesic submanifold. This is

called the Cartan embedding of U
K

in U .
The following is known ([29, 52]):
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Theorem 8.4. Suppose v is a solution of the U
K
-system and E is its a

parallel frame. Then:

(1) Y = E(x, λ)σ(E(x, λ))−1

∣

∣

∣

∣

λ=1

= E(x, 1)E(x,−1)−1 is a curved flat.

Conversely, all local semi-simple curved flats can be constructed this
way. In other words, the U

K
-system can be viewed as the equation for

curved flats in U
K

with a “good coordinate system”.

(2) Z = ∂E
∂λ
E−1

∣

∣

λ=0 is an abelian flat in P. Conversely, locally all
abelian flats in P0 can be constructed this way, where P0 is the subset
of regular points in P0.

Example 8.5. The U(n)⋉Cn

O(n)×Rn -system [58]

Let U(n) ⋉ C
n denote the group of unitary rigid motions of Cn = R

2n,
and G the complexified u(n)⋉C

n, i.e.,

G =











b c x
−c b y
0 0 0





∣

∣

∣

∣

bt = −b, ct = −c, b, c ∈ gl(n,C), x, y ∈ C
n







.

Let τ, σ : G→ G be the involutions defined by

τ(g) = ḡ, σ(g) = TgT−1, whereT =





In 0 0
0 −In 0
0 0 1



 .

The fixed point set of τ is U(n)⋉C
n, σ and τ commute, and the correspond-

ing symmetric space is U(n)⋉Cn

O(n)⋉Rn . The Cartan decomposition is u(n)⋉C
n =

K+ P, where

K =











b 0 x
0 b 0
0 0 0





∣

∣

∣

∣

b ∈ o(n), x ∈ R
n







,

P =











0 −c 0
c 0 y
0 0 0





∣

∣

∣

∣

c = ct, c̄ = c, y ∈ R
n







.

Then {ai = en+i,i − ei,n+i | 1 ≤ i ≤ n} form a basis of a maximal abelian

algebra A in P. The U(n)⋉Cn

O(n)⋉Rn -system is the system for q =





0 β 0
−β 0 −h
0 0 0





given by the condition that

θλ =
n
∑

i=1

(aiλ+ [ai, q]) dxi =





[δ, β] λδ δh
−λδ [δ, β] 0
0 0 0



 (8.3)

is flat for all λ ∈ C. Note that this is the Lax pair (6.9) for flat Lagrangian
submanifolds in C

n.
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Example 8.6. The O(4,1)
O(3)×O(1,1) -system

The involutions that gives O(4,1)
O(3)×O(1,1) is τ(g) = ḡ and σ(g) = I3,2gI

−1
3,2,

and the Cartan decomposition is o(4, 1) = K + P with K = o(3) × o(1, 1)
and

P =

{(

0 ξ
−Jξt 0

)

∣

∣ ξ is a real 3× 2matrix

}

, J = diag(1,−1).

Note that

A =







(

0 ξ
−Jξt 0

) ∣

∣

∣

∣

ξ =





c1 0
0 c2
0 0











is a maximal abelian subalgebra in P. Let {a1, a2} be a basis of A defined
by

ai =

(

0 Di

−JDt
i 0

)

, D1 =





1 0
0 0
0 0



 , D2 =





0 0
0 1
0 0



 .

The O(4,1)
O(3)×O(1,1) -system (8.1) is for v =

(

0 ξ
−Jξt 0

)

with ξ =





0 f1
f2 0
−r1 r2



.

Write down this system in terms of f1, f2, r1, r2 we get


















(f1)x2
= −(f2)x1

,

(f2)x2
− (f1)x1

− r1r2 = 0,

(r1)x2
= −f2r2,

(r2)x1
= f1r1.

(8.4)

Its Lax pair is

θλ =

(

−DJξt + ξJDt Dλ
−JDtλ −JDtξ + JξtD

)

, whereD =





dx1 0
0 dx2
0 0



 .

(8.5)
The first equation of (8.4) implies that there exists q such that f1 = qx1

and f2 = −qx2
. Write (8.4) in terms of q, r1, r2 we get the Gauss-Codazzi

equation (4.3) for isothermic surfaces. Moreover, the Lax pair (8.5) is the
Lax pair (6.11) for isothermic surfaces in R

3.

Example 8.7. The O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ)-system

We choose

ai =

(

0 −DiJ
Dt 0

)

, 1 ≤ i ≤ k, v =

(

0 −ξtJ
ξ 0

)

,

where Dt
i = (eii, 0) ∈ Mk×n, and eii is the diagonal k × k matrix with all

entries zero except the ii-th entry is 1. The O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ)-system is the PDE
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for ξ = (y, γ) : Rk → gl∗(k) × Mk,n−k with Lax pair θλ =
∑k

i=1(aiλ +
[ai, v]) dxi. We write θλ in terms of y, γ to get

θλ =

(

w −ληJ
ηtλ τ

)

, where (8.6)

w =

(

−δJy + ytJδ δJγ
−γtJδ 0

)

, τ = −δytJ + yδJ, ηt = (δ, 0),

and δ = diag( dx1, . . . , dxk).
Set F = −Jy and h = Jγ, then (8.6) is the same Lax pair (6.15) for

k-tuples in R
n of type R

k−ℓ,ℓ given in Theorem 6.1. So the O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ)-

system is the equation for k-tuples in R
n of type R

k−ℓ,ℓ.

Example 8.8. [11] The O(5)
O(3)×O(2) -system is the equation for

(1) 2-tuples in R
3 of type O(2),

(2) flat surfaces in S4 with flat and non-degenerate normal bundle,
(3) surfaces in S4 with constant sectional curvature 1 and flat and non-

degenerate normal bundle.

Moreover, if v is a solution of the O(5)
O(3)×O(2) -system, and E a parallel frame

of the Lax pair of v. Write E(x, 0) =

(

g1 0
0 g2

)

, and D =

(

δ
0

)

is M3×2

valued, where δ = diag( dx1, dx2). Then:

(1) g1Dg
−1
2 is closed, so there exists Y = (Y1, Y2) ∈ M3×2 such that

dY = g1Dg
−1
2 , and Y is a 2-tuple of surfaces in R

3 of type O(2).

(2) The first column of E(x, r)

(

g−1
1 0
0 I2

)

is a flat surface in S4 with

flat and non-degenerate normal bundle.

(3) The third column of E(x, r)

(

I3 0

0 g−1
2

)

is a surface in S4 with con-

stant curvature 1 and flat, non-degenerate normal bundle.

Analogous results hold for U
K
-system when U

K
is a real Grassmannian.

Example 8.9. [58]: The U(n)
O(n) -system is the equation for

(1) Egoroff orthogonal coordinate systems of Rn,
(2) flat Lagrangian submanifolds of Cn that lie in S2n−1,
(3) flat Lagrangian submanifolds of CPn−1.

Twisted U
K1

-system [30, 10, 53]

We use the same notation as for twisted U
K1

-hierarchy. The U
K1

-system

twisted by σ2 is the PDE for maps g : Rn → K ′
1 and vi : R

n → S1 such that
the connection 1-form

θλ =

n
∑

i=1

((gaig
−1)λ+ vi + σ2(gaig

−1)λ−1) dxi (8.7)
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is flat for all non-zero parameters λ ∈ C. So the U
K1

-system twisted by σ2 is

given by the collection of flows in the U
K1

-hierarchy twisted by σ2 generated

by aiλ+ σ2(ai)λ
−1 for 1 ≤ i ≤ n.

Example 8.10. A twisted O(n,n)
O(n)×O(n)-system [53]

We use the same notations as in Example 7.12, i.e, G = O(n, n,C), and

τ(g) = ḡ, σ1(g) = In,ngI
−1
n,n, σ2(g) = In+1,n−1gI

−1
n+1,n−1.

Let A be the maximal abelian subalgebra in P1 spanned by

ai =
1

2

(

0 eii
eii 0

)

, 1 ≤ i ≤ n,

Then K′
1 = 0 × o(n), S1 = o(n) × 0, and the Lax pair θλ of the O(n,n)

O(n)×O(n) -

system twisted by σ2 is (8.7) with

g =

(

I 0
0 A

)

: Rn → K ′
1, vi =

(

ui 0
0 0

)

: Rn → S1, 1 ≤ i ≤ n.

In other words,

θλ =
λ

2

(

0 δAt

Aδ 0

)

+

(

u 0
0 0

)

+
λ−1

2

(

0 δAtJ
JAδ 0

)

(8.8)

where A : Rn → O(n), δ = diag(dx1, . . . , dxn), J = diag(1,−1, . . . ,−1), and
u =

∑n
i=1 uidxi.

The flatness of θλ is equivalent to (A, u) satisfying the following system
{

dA ∧ δ +Aδ ∧ u = 0,

du+ u ∧ u+ δAt(λI2 + λ−1J
2 )2Aδ = 0.

. (8.9)

The first equation implies that there exists F = (fij) with fii = 0 for all
1 ≤ i ≤ n such that

A−1 dA = δF t − Fδ, u = δF − F tδ.

Since this is the Lax pair (8.8) for the GSGE, the twisted O(n,n)
O(n)×O(n) -system

is the GSGE.

The −1 flow on the U
K
-system

We combine the −1 flow and the flows in the U
K
-hierarchy generated by

aiλ for 1 ≤ i ≤ n to get the −1 flow on the U
K
-system. This is the equation

for v : Rn+1 → A⊥ ∩ P and g : Rn+1 → K:










−[ai, vxj
] + [aj , vxi

] + [[ai, v], [ai, v]] = 0, i 6= j,

[g−1gxi
− [ai, v], g

−1bg] = 0, 1 ≤ i ≤ n,

[ai, vt] = [ai, g
−1bg], 1 ≤ i ≤ n.

(8.10)
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Equation (8.10) has a Lax pair

θλ =

(

n
∑

i=1

(aiλ+ [ai, v]) dxi

)

+ λ−1g−1bg dt.

If Kb = {k ∈ K | [k, b] = 0} = 0, then the second equation of (8.10) gives
g−1gxi

= [ai, v] for 1 ≤ i ≤ n. If U
K

has maximal rank and a ∈ A is regular,

then the −1 flow on the U
K
-system becomes the following system:











−[ai, vxj
] + [aj , vxi

] + [[ai, v], [ai, v]] = 0, i 6= j,

g−1gxi
= [ai, v], 1 ≤ i ≤ n,

[a, vt] = [a, g−1bg].

(8.11)

Note that

(1) when U
K

is of rank one, the −1 flow on the U
K
-system is the −1 flow

for the U
K
-hierarchy by changing the dependent variable u = [a, v],

(2) (8.11) is an evolution equation on the space of solutions of the U
K
-

system.

Higher flows on the space of solutions of the U
K
-system

Assume a ∈ A is a regular element, and Q =
∑

j≤1Qjλ
j is constructed

from (7.4) using u = [a, v]. Note that Q satisfies the recursive formula

(Qj)x + [[a, v], Qj ] = [Qj−1, a],

Q1 = a, and fj(Q) = fj(aλ), where f1, . . . , fn are a set of free generators of

the ring of Ad(K)-invariant polynomials on P. The flow in the U
K
-hierarchy

generated by aλj written in v is

[a, vt] = (Q1−j)x + [[a, v], Q1−j ] = [Qj , a]. (8.12)

Recall that v is a solution of the U
K
-system if and only if [a, v(x1, . . . , xn)]

solves the flow generated by aiλ in the U
K
-hierarchy for 1 ≤ i ≤ n. Since all

flows in the U
K
-system commute, the space of solutions of the U

K
-system is

invariant under the evolution equation (8.12) for all odd j. In other words,
the following system for v : Rn ×R → A⊥ ∩ P,

{

−[ai, vxk
] + [ak, vxi

] + [[ai, v], [ak , v]] = 0, 1 ≤ i, k ≤ n,

[a, vt] = (Q1−j)xi
+ [[ai, v], Q1−j ], 1 ≤ i ≤ n,

(8.13)

has a Lax pair

(aλj +Q0λ
j−1 + · · ·+Q1−j) dt+

n
∑

i=1

(aiλ+ [ai, v]) dxi.

System (8.13) can be viewed as an evolution equations on the space of so-
lutions of U

K
-system as follows: Write a =

∑n
i=1 ciai and u = [a, v]. Then

{

uxi
= ad(ai)ad(a)

−1(
∑n

i=1 ciuxi
) + [u, ad(ai)ad(a)

−1(u)], 1 ≤ i ≤ n,

ut =
∑n

i=1 ci(Q1−j(u))xi
+ [u,Q1−j(u)],
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are commuting flows for u. The first set of equation in the above system
means that v = [a, u] is a solution of the U

K
-system. Hence

[a, vt] =

n
∑

i=1

ci(Q1−j(u))xi
+ [u,Q1−j(u)]

leaves the space of solutions of the U
K
-system invariant.

9. Loop group actions

We review the dressing action of Lτ,σ
− (G) on the space of solutions of the

U
K
-system, and explain the relation between the action of “simple” rational

elements in Lτ,σ
− (G) and geometric Bäcklund and Ribaucour transforms.

Let v be a solution of the U
K
-system, and E the normalized parallel frame

for the Lax pair θλ =
∑n

i=1(aiλ+ [ai, v]) dxi, i.e., E(x, λ) is the solution of
{

E−1Exi
= aiλ+ [ai, v], 1 ≤ i ≤ n,

E(0, λ) = I.

Since θλ is holomorphic in λ ∈ C and satisfies the U
K
-reality condition

τ(θλ̄) = θλ, σ(θ−λ) = θλ,

its frame E(x) ∈ Lτ,σ
+ (G), where E(x)(λ) = E(x, λ). Given f ∈ Lτ,σ

− (G), by
the Local Factorization Theorem 7.2, we can factor

fE(x) = Ẽ(x)f̃(x)

with Ẽ(x) ∈ Lτ,σ
+ (G) and f̃(x) ∈ Lτ,σ

− (G) in an open subset of x = 0 in R
n.

Expand

f̃(x)(λ) = I + f1(x)λ
−1 + · · · .

Then f1(x) ∈ P and we have

Theorem 9.1. [55]

Let f, v,E, f̃ , f̃1, Ẽ be as above. Then

(1) ṽ(x) := (f1)∗ is a solution of the U
K
-system, where (f1)∗ denotes the

projection of f1 ∈ P onto A⊥ ∩ P along A.
(2) Ẽ is the normalized parallel frame for ṽ.
(3) f ∗ v := ṽ defines an action of Lτ,σ

− (G) on the space of solutions of

the U
K
-system.

(4) f ∗E := Ẽ defines an action of Lτ,σ
− (G) on normalized parallel frames

of solutions of the U
K
-system.

(5) If f ∈ Lτ,σ
− (G) is rational, then f ∗v can be computed explicitly using

E and the poles and residues of f .
(6) If U is compact, a1 is regular and f ∈ Lτ,σ

− (G) is rational, then f ∗ 0
is globally defined and rapidly decaying as |x1| → ∞.

Remark 9.2.
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(1) We say f : S1 → C
∗×G satisfies the U

K
-reality condition up to scalar

functions if there is a φ : S1 → C such that

τ(f(λ̄)) = φ(λ)f(λ), σ(f(−λ)) = φ(λ)f(λ).

Since scalar functions commute with Lτ,σ(G), Theorem 9.1 works
for rational maps f that satisfy the U

K
-reality condition up to scalar

functions.
(2) Given f ∈ Lτ,σ

− (G), if E is a parallel frame of a solution v of the
U
K
-system and fE(0, ·) lies in the big cell of Lτ,σ(G) then Theorem

9.1(1) still holds and Ẽ is a parallel frame for f ∗ v (but may not be
normalized).

Bäcklund transformations for U(n)-system [55]
We use the U(n)-system as an example to demonstrate how to compute

explicitly the action of the subgroup Rτ
−(G) of rational elements in Lτ

−(G).
Note that Rτ

−(G) is the group of rational maps f : S2 → GL(n,C) that
satisfying the U(n)-reality condition and f(∞) = I. First we find a rational
element f ∈ Rτ

−(G) with only one simple pole, then use residue calculus to
compute the action of f on solutions of the U(n)-system.

Let α ∈ C, π a Hermitian projection of Cn, and π⊥ = I− π. Then

gα,π(λ) = π +
λ− ᾱ

λ− α
π⊥ = I +

α− ᾱ

λ− α
π⊥ (9.1)

satisfies the U(n)-reality condition g(λ̄)∗g(λ) = I.

Three methods to compute gα,π ∗ v

Method 1: Algebraic Bäcklund Transformation

Let A be the space of diagonal matrices in u(n), aj = iejj, v a solution of
the U(n)-system, and E the normalized parallel frame, i.e., E−1 dE = θλ =
∑n

i=1(aiλ+ [ai, v]) dxi and E(0, λ) = I. We claim that

gα,π ∗ v = v + (α− ᾱ)π̃∗,

where π̃(x) is the Hermitian projection of Cn onto E(x, α)−1(Imπ) and π̃∗
is the projection of u(n) onto A⊥ along A. To see this, we need to factor

gα,πE(x) = Ẽ(x)g̃(x) with Ẽ(x) ∈ Lτ
+(G) and g̃(x) ∈ Lτ

−(G). We make an
Ansatz that g̃ = gα,π̃(x) and solve π̃(x) by requiring that

Ẽ(x, λ) : = gα,π(λ)E(x, λ)g̃−1(x, λ)

= (I +
α− ᾱ

λ− α
π⊥)E(x, λ)(I −

α− ᾱ

λ− ᾱ
π̃(x)⊥)

lies in Lτ
+(G). Hence the residues of Ẽ(x, λ) at λ = α, ᾱ should be zero.

This implies that

π⊥E(x, α)π̃(x) = 0, πE(x, ᾱ)π̃(x)⊥ = 0.

Both conditions are satisfied if

Im(π̃(x)) = E(x, α)−1(Im(π)).
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This gives the formula for π̃(x). The formula for Ẽ implies that Ẽ−1 dẼ

has a simple pole at λ = ∞ and Ẽ−1 dẼ =
∑n

i=1 aiλ + [ai, ṽ], where ṽ =
v + (α− ᾱ)π̃∗. This proves the claim.

Method 2: ODE Bäcklund transformation
The new solution gis,π ∗ v can be also obtained by solving a system of

compatible ODEs: Set θλ = E−1 dE and θ̃λ = Ẽ−1 dẼ. Since Ẽ = gα,πEg
−1
α,π̃

and gα,π is independent of x, θ̃λ = g̃θλg̃
−1 − dg̃g̃−1; or equivalently,

θ̃λg̃ = g̃θλ − dg̃, (9.2)

where g̃ = gα,π̃. Multiply (9.2) by (λ− α) and compare coefficients of λi to
see that π̃ must satisfy

{

π̃xj
+ [αaj + [aj , v], π̃] = (α− ᾱ)[aj , π̃]π̃

⊥, 1 ≤ j ≤ n,

π̃(x)∗ = π̃(x). π̃2 = π̃,
(9.3)

and gα,π ∗ v = v + (α− ᾱ)π̃∗ Moreover, given v,

(1) system (9.3) is solvable for π̃ if and only if v is a solution of the
U(n)-system,

(2) if v is a solution of the U(n)-system and π̃ the solution of (9.3), then
ṽ = v + (α− ᾱ)π̃∗ is a solution of the U(n)-system, where π̃∗ is the
projection of π̃ onto A⊥ along A.

Method 3: Linear Bäcklund transformations
Suppose π is the Hermitian projection of Cn onto V = Cy0. Set

y(x) = E(x, α)−1(y0).

The normalized parallel frame of gα,π ∗ v is gα,πE(x, ·)g−1
α,π̃(x), where π̃(x) is

the projection onto Cy(x). Differentiate y to get

dy = −E−1 dEE−1y0 = −θαy.

So y is the solution of the following linear system
{

dy = −θαy = −
∑n

j=1(ajα+ [aj , v]) dxj ,

y(0) = y0.
(9.4)

In fact, given v : Rn → A⊥ ∩ P,

(1) system (9.4) is solvable if and only if v is a solution of the U
K
-system,

(2) if v is a solution of the U
K
-system and y is a solution of (9.4), then

gα,π ∗ v = v + (α − ᾱ)π̃∗, where π̃(x) is the Hermitian projection of
C
n onto Cy(x).

Note that the first and third methods are essentially the same because
solutions y of (9.4) is E(·, α)−1(y0), where E(·, α) is a parallel frame for θα.

If dim(Imπ) = k, then we first choose a basis y01, . . . , y
0
k of Imπ. Let yi be

the solution of (9.4) with yi(0) = y0i , Ṽ (x) the linear subspace spanned by
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y1(x), . . . , yk(x), and π̃(x) the Hermitian projection of Cn onto Ṽ (x). Then
the new solution is gα,π ∗ v = v + (α− ᾱ)π̃∗.

Permutability formula [55]
The permutability formulae for Bäcklund transformations for the SGE,

the GSGE, Ribaucour transforms for flat Lagrangian submanifolds in C
n

and for k-tuples in R
n of type Rk−ℓ,ℓ can be obtained in a unified way. This

is because

(1) geometric transforms on these submanifolds correspond to actions
of simple rational elements in the negative loop group,

(2) if gi have poles at αi for i = 1, 2, then we use residue calculus to
factor g1g2 = f2f1 such that fi have poles at αi for i = 1, 2.

Permutability formulae can then be obtained from the fact that the geomet-
ric transforms are actions.

We use U(n)-system as an example to explain this method: Given gα1,π1
,

gα2,π2
with α1 6= ±ᾱ2, let τ1, τ2 be the projections such that

Imτ1 = gα2,π2
(α1)(Imπ1), Imτ2 = gα1,π1

(α2)(Imπ2). (9.5)

Then

gα2,τ2 ◦ gα1,π1
= gα1,τ1 ◦ gα2,π2

. (9.6)

This gives a relation for rational elements in Rτ
−(G) with only one simple

pole.
Formula (9.6) leads to a Bianchi type permutability formulae for Bäcklund

transformations as follows: Let v0 be a solution of the U(n)-system, and
E0(x, λ) its normalized parallel frame. Let π̃j(x) denote the Hermitian pro-
jections of Cn onto E0(x, αj)

−1(Imπj) for j = 1, 2. Then

Ej(x, λ) = gαj ,πj
(λ)E0(x, λ)gαj ,π̃j(x)(λ)

−1

is the normalized parallel frame for

vj = gαj ,πj
∗ v0 = v0 + (αj − ᾱj)(π̃j)∗, j = 1, 2.

Use the fact that Lτ
−(G) acts on the space of solutions and the permutability

formula (9.6) to get

v3 = gα2,τ2 ∗ v1 = gα2,τ2 ∗ (gα1,π1
∗ v0) = gα1,τ1 ∗ (gα2,π2

∗ v0) = gα1,τ1 ∗ v2.

But

v3 = v1 + (α2 − ᾱ2)(τ̃2)∗ = v2 + (α1 − ᾱ1)(τ̃1)∗, where

Imτ̃2 = E1(x, α2)
−1(Imτ2), Imτ̃1 = E2(x, α1)

−1(Imτ1).

So v3 can be given by an explicit formula in terms of v0, v1, v2. This gives
the permutability formula for the U(n)-system.

Action of Rτ
−(G)
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The method we used to construct the action of gα,π ∗ v works for the
action of any f ∈ Rτ

−(G) on v as follows: First we write

f(λ) = I +

k,ni
∑

i=1,j=1

Pij

(λ− αi)j

for some constants αi ∈ C and Pij ∈ gl(n). Let E be the normalized parallel

frame of a solution v of the U
K
-system. We assume fE(x) = Ẽ(x)f̃(x) where

f̃(x) has poles at α1, . . . , αk with order n1, . . . , nk respectively, i.e.,

f̃(x, λ) = I +

k,ni
∑

i=1,j=1

P̃ij(x)

(λ− αi)j

Reality condition gives f̃(x, λ)−1 = f̃(x, λ̄)
t
. Then f(λ)E(x, λ)f̃ (x, λ)−1 =

f(λ)E(x, λ)f̃(x, λ̄)∗ should have no poles at λ = αi for 1 ≤ i ≤ k. We

can use these conditions to solve P̃ij(x). This computation is long and
tedious. However, if we find a set of generators of the negative rational
loop group Rτ

−(G) with minimal number of poles then we can simplify the
computation by using permutability formulas (relations) for these generators
or the algebraic BT.

Simple elements and generators
Let U

K
denote the symmetric space constructed from two commuting invo-

lutions τ, σ, and Rτ,σ
− (G) denote the subgroup of rational maps f : S2 → G

that are in Lτ,σ
− (G). A f ∈ Rτ,τ

− (G) is called a simple element if f can not be
factored as product of f1f2 with both f1 and f2 in Rτ,σ

− (G). The following
are known:

(1) Uhlenbeck [59] proved that

{gα,π | α ∈ C, π∗ = π, π2 = π}

generates the negative rational loop group satisfying the U(n)-reality
condition.

(2) Note that

(a) gis,π satisfies the U(n)
O(n) reality condition if s ∈ R and π̄ = π.

(b) if α ∈ C \ iR, π is a Hermitian projection of Cn, and Imρ =
gα,π(−ᾱ)(Imπ̄), then

fα,π = g−ᾱ,ρgα,π

satisfies the U(n)
O(n) reality condition.

Terng and Wang [58] proved that these elements generate the nega-

tive rational loop group satisfying the U(n)
O(n) -reality condition.

(3) Donaldson, Fox, and Goertsches [24] construct a set of generators
for Rτ,σ(G) when G is a classical group.
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Bäcklund transforms for U(n)
O(n)-system [55]

The methods described above for constructing algebraic and analytic BT
and permutability formula for U(n)-system work the same way for general
U
K
-system. For example, gis,π satisfies the U(n)

O(n) reality condition. If v is a

solution of the U(n)
O(n) -system and E is its normalized parallel frame for the

Lax pair of v, then:

(1) E(x, ·) satisfies the U(n)
O(n) reality condition.

(2) Since θis =
∑n

i=1(isai+[ai, v]) dxi and ai is diagonal in u(n), θis is a
sl(n,R)-valued 1-form. Hence E(x, is) ∈ SL(n,R) and E(x, is)(Imπ)
is real.

(3) gis,π ∗ v = v + 2isπ̃∗ is a solution of the U(n)
O(n) -system, where π̃ is the

orthogonal projection of Rn onto E(x, is)−1(Imπ).

10. Action of simple elements and geometric transforms

Suppose a class of submanifolds in Euclidean space admits a local coor-
dinate system and an adapted frame such that its Gauss-Codazzi equation
is the U

K
-system (or twisted U

K
-system) for some symmetric space U

K
. If

the adapted frame and the immersion of the submanifold can be obtained
from the parallel frame of the Lax pair of the corresponding solution of the
U
K
-system, then the action of a simple rational loop on the parallel frame

of a solution of the U
K
-system gives rise to a geometric transform of these

submanifolds. We explain how this is done for K = −1 surfaces in R
3,

flat Lagrangian submanifolds in C
n, and k-tuples in R

n of type R
k−ℓ,ℓ. We

have given a unified method to construct Permutability formula for actions
of simple elements on the space of solutions and normalized parallel frames
of U

K
-systems in section 9. Hence if we know how to read geometric trans-

forms from the action of simple elements on parallel frames then we can
obtain an analogue of Bianchi’s Permutability Theorem for these geometric
transforms.

BT for K = −1 surfaces in R
3 and action of gis,π

Let gis,π be the rational map defined by (9.1) with s ∈ R and π real. It
was noted by Uhlenbeck in [60] that the dressing action of gis,π on solutions
SGE gives rise the Bäcklund transforms for K = −1 surfaces in R

3.
Let q be a solution of the SGE, 2qxt = sin 2q, and E(x, t, λ) the normalized

parallel frame for the Lax pair

θλ =

(

λ

(

−i 0
0 i

)

+

(

0 −qx
qx 0

))

dx+
i

4λ

(

cos 2q − sin 2q
− sin 2q − cos 2q

)

dt.

Then

f =
∂E

∂λ
E−1

∣

∣

∣

∣ λ= 1

2

(10.1)
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is the immersion of a K = −1 surface in su(2) (identified as R
3) corre-

sponding to the solution q of SGE. We have seen that Ẽ = gis,πEg
−1
is,π̃ is the

normalized parallel frame for gis,π∗q, where π̃(x) is the orthogonal projection
of R2 onto E(x, is)−1(Imπ). Then

Ê =

(

λ+ is

λ− is

)
1

2

Eg−1
is,π̃. (10.2)

is a parallel frame for gis,π ∗ q, and

f̂ =
∂Ê

∂λ
Ê−1

∣

∣

∣

∣

λ= 1

2

(10.3)

is the immersion of a K = −1 surface in su(2) corresponding to gis,π ∗ q.

Note that Ê ∈ SU(2). To see the properties of the transform f 7→ f̂ , we use
(10.2) and (10.3) to get

f̂ = f +
2is

1
4 + s2

E(·,
1

2
)(π̃⊥ −

1

2
I)E(·,

1

2
)−1.

Let (cos y(x), sin y(x))t denote the unit direction of the real line Imπ̃(x) ⊂
R
2. Then a direct computation then implies that

f̂ = f + sin θe1,

where sin θ = s
1

4
+s2

and

e1 = cos 2y E 1

2

(

−i 0
0 i

)

E−1
1

2

− sin 2y E 1

2

(

0 i
i 0

)

E−1
1

2

is tangent to f , where E 1

2

= E(·, 12). Use (10.2) to see that f̂ − f is tangent

to f̃ . In other words, f 7→ f̂ is a BT with angle θ.

n-submanifolds in R
2n−1 with constant curvature −1

Let L± denote the positive and negative groups defined in Example 7.11

for the O(n,n)
O(n)×O(n) -system twisted by σ2. First we construct a simple rational

map satisfies the O(n,n)
O(n)×O(n) -reality condition up to scalar functions. A direct

computation shows that if g(λ) =

(

1 0
0 β

)

+ s
λ−s

P satisfies the O(n,n)
O(n)×O(n) -

reality condition up to scalar functions, then

P =

(

1 Ct

C 1

)(

1 0
0 β

)

.

In other words, g must be of the form

gβ,C(λ) =

(

1 0
0 β

)

+
s

λ− s

(

1 Ctβ
C β

)

=
1

λ− s

(

λ sCtβ
sC λβ

)

,

where β,C ∈ O(n).
Let A be a solution of the GSGE, and E(x, λ) the normalized parallel

frame for the corresponding Lax pair θλ defined by (6.4). Note that E(x, ·) ∈
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L+. Suppose gβ,I(λ)E(x, λ) = Ẽ(x, λ)g
β̃(x),C̃(x)(λ) with β̃(x), C(x) ∈ O(n)

and Ẽ(x, ·) ∈ L+. Then

Ẽ(x, λ) = gβ,I(λ)E(x, λ)g
β̃(x),C̃(x)(λ)

−1

is holomorphic for λ ∈ C. So the residue at λ = s is zero, i.e.,

(1, β)E(x, s)

(

1 −C̃t

−β̃tC̃ β̃t

)

= 0.

This implies that

β̃tC̃ = (η2 + βη4)
−1(η1 + βη3), where E(·, s) =

(

η1 η2
η3 η4

)

.

Set

(P,Q) := (1, β)E(·, s).

Then d(P,Q) = (P,Q)θs = (P,Q)

(

w δAtDs

DsAδ 0

)

, Ds =
1
2(sI + s−1J),

or equivalently,
{

dP = Pw +QDsAδ,

dQ = PδAtDs.

If X := −Q−1P , then we get the BT given in Theorem 3.8:

dX = XδAtDsX −Xw −DsAδ.

This explains the following Theorem of [6] in terms of the action of gβ,C :

Theorem 10.1. Let s be a non-zero real constant. Consider the linear
system for y : Rn → Mn×2n:

dy = y

(

w δAtDs

DsAδ 0

)

, Ds =
1

2
(sI + s−1J). (10.4)

Then

(1) System (10.4) is solvable if and only if A is a solution of the GSGE.
(2) If y = (P,Q) is a solution of (10.4) with Q ∈ GL(n), then X =

−Q−1P is a solution of BT (3.16) for GSGE and X is a solution of
GSGE.

In other words, (10.4) can be viewed as the Linear Bäcklund transform
for GSGE.

Definition 10.2. Ribaucour transform for submanifolds [21]

Let M and M̃ be two n-dimensional submanifolds in R
n+k with flat

normal bundle. A Ribaucour transform is a vector bundle isomorphism
Φ : ν(M) → ν(M̃) covers a diffeomorphism φ : M → M̃ satisfying the
following conditions:

(1) Φ maps parallel normal fields of M to parallel normal fields of M̃ ,
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(2) for each p ∈M and v ∈ ν(M)p, the normal line p+ tv intersects the
normal line φ(p) + tΦ(v) at equal distance r(p, v),

(3) dφp maps common eigenvectors of shape operators of M at p to

common eigenvectors of shape operators of M̃ at φ(p),
(4) the tangent line through p in a principal direction v meets the tan-

gent line through φ(p) in the direction of dφp(v) at equal distance,

LetM be a submanifold in R
n+k, and (e1, . . . , en+k) an orthonormal frame

on M such that (e1, . . . , en) are principal directions (i.e., a common eigen-
frame for the shape operator ofM) and (en+1, . . . , en+k) is a parallel normal

frame. Let M̃ be another n-submanifold with flat normal bundle, φ :M →
M̃ a diffeomorphism, (ẽn+1, . . . , ẽn+k) a parallel normal frame for M̃ , and
ẽi is the direction of dφ(ei) for 1 ≤ i ≤ n. Then φ is a Ribaucour transform
if

(a) ẽi is a principal direction for M̃ for 1 ≤ i ≤ n,
(b) there exist functions h1, . . . , hn+k on M such that

φ(p) + hi(p)ẽi(p) = p+ hi(p)ei(p), 1 ≤ i ≤ n+ k

for all p ∈M .

Flat Lagrangian submanifolds in C
n

Let (β, h) be a solution of the U(n)⋉Cn

O(n)⋉Rn -system, θλ its Lax pair (6.9), and

F =

(

E X
0 1

)

the normalized parallel frame of θλ. We have seen in section

6 that for each r ∈ R, X(·, r) is a flat Lagrangian immersion in C
n corre-

sponding to solution (β, h) (the associated family). We review the action of

two types of simple elements on the space of solutions of the U(n)⋉Cn

O(n)⋉Rn -system

and derive the corresponding geometric transformations ([58]).

The action of hα,π
We compute the action of hα,π on flat Lagrangian submanifolds in C

n,
where

hα,π =

(

giα,π 0

0 λ+iα
λ−iα

)

with α ∈ R and π̄ = π. Note that hα,π satisfies the U(n)⋉Cn

O(n)⋉Rn reality condition

up to scalar functions.
We claim that the action of hα,π gives a Ribaucour transform for flat

Lagrangian submanifolds in C
n. To see this, first we factor gF = F̃ f̃ with

F̃ =

(

Ẽ X̃
0 1

)

, f̃ =

(

giα,π̃ ξ

0 λ+iα
λ−iα

)

,

where ξ = −2iα
λ−iα

π̃η, η(x) = E(x,−iα)−1X(x,−iα), and π̃(x) is the Hermitian

projection onto ỹ(x) = E(x, iα)−1(Imπ). It follows from reality conditions
that both π̃ and η are real.
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We assume Imπ is of one dimension and is equal to Ry0. Let

ỹ(x) = E(x, iα)−1(y0).

Then

π̃ =
ỹỹt

||ỹ||2
. (10.5)

Equate the 12-entry of fF = F̃ f̃ to get gX = Ẽξ + λ+iα
λ−iα

X̃. This implies
that

X = g̃−1Ẽξ +
λ+ iα

λ− iα
g−1X̃,

where g = giα,π and g̃ = giα,π̃. Set X̂ = λ+iα
λ−iα

g−1
iα,πX̃. Then

X̂ = X +
2iα

λ− iα
Eπ̃η (10.6)

is a flat Lagrangian submanifold in C
n corresponding to the solution (β̃, h̃),

where β̃ = β − 2α(π̃)∗ and h̃ = h− 2απ̃η.
Claim that (10.6) is a Ribaucour transform. To see this we first note that

Ê =
λ+ iα

λ− iα
g−1
iα,πẼ = E(I +

2iα

λ− iα
π̃) (10.7)

is a parallel frame for the Lax pair of (β̃, h̃). Hence

Ê − E =
2iα

λ− iα
Eπ̃. (10.8)

Write E = (e1, . . . , en) and Ê = (ê1, . . . , ên). By (10.5), we see that the j-th
column of 2iα

λ−iα
Eπ̃ is equal to ỹjZ, where

Z =
2iα

λ− iα

Eỹ

||ỹ||2
.

By (10.6) and (10.8), we get

êj − ej = ỹjZ, (10.9)

X̂ −X =
(ỹ, η)

ỹi
(êi − ei) (10.10)

It remains to compute the relation between parallel normal fields of X and
X̂. The parallel tangent frames for X and X̂ are V = EA−1 and V̂ = ÊÂ−1

respectively, where A(x) = E(x, 0) and Â(x) = Ê(x, 0). By (10.7), Â =
A(I− 2π̃). Compute directly to see that

V̂ = ÊÂ−1 = E(I +
2iα

λ− iα
π̃)(I− 2π̃)A−1

= E(I−
2λ

λ− iα
π̃)A−1 = EA−1 −

2λ

λ− iα
Eπ̃A−1

= V −
2λ

λ− iα
Eπ̃A−1.
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Thus we have

v̂j − vj =
iλ

α
(

n
∑

k=1

ajkỹk)Z, (10.11)

where ṽj and vj are the j-th column of V̂ and V respectively. Since X, X̂ are
Lagrangian, vn+j = ivj and v̂n+j = iv̂j are parallel normal fields for X and

X̂ respectively. As a consequence of (10.11), (10.9) and (10.10), we have

X̂ −X = −
α(η, ỹ)

λ
∑n

k=1 ajkỹk
(v̂n+j − vn+j).

This proves that X 7→ X̂ is a Ribaucour transform. In fact, this is the
Ribaucour transform found in [20].

The action of kiα,b
We claim that the action of kiα,b gives an Combescure O-transform for

flat Lagrangian submanifolds in C
n, where

kiα,b(λ) =

(

I ib
λ−iα

0 1

)

.

First factor

kiα,bF = F̃ k̃ =

(

E Y
0 1

)

(

I
iE−1

iα
b

λ−iα

0 1

)

.

Then

Y = X +
i(b− EλE

−1
iα b)

λ− iα
.

Moreover, if λ ∈ R then Y is a flat Lagrangian submanifold of Cn corre-
sponding to the solution (β, h̃), where h̃ = h + E(·, iα)−1b. Note that the
transform X 7→ Y is a Combescure O-transform.

k-tuples in R
n of type R

k−ℓ,ℓ

It is known that the Darboux (or Ribaucour) transforms for Christoffel
pairs of isothermic surfaces in R

3 and for Christoffel pairs of isothermic
surfaces in R

n can be derived from the action of a simple rational map by
dressing actions (cf. [16, 34] and [11, 12] respectively). Ribaucour transforms
are constructed for k-tuples in R

n of type R
k−ℓ,ℓ in [11, 25] using dressing

action of a simple rational loop. Recall that Christoffel pairs of isothermic
surfaces in R

n (for n ≥ 3) are 2-tuples in R
n of type R1,1. So the construction

of Ribaucour transforms for k-tuples in R
n of type Rk−ℓ,ℓ contains the surface

case.

Simple elements for the O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ)-system

Let W ∈ R
n and Z ∈ R

k−ℓ,ℓ with length 1, i.e., W tW = ZtIk−ℓ,ℓZ = 1,

and π the projection of Cn+k onto C

(

W
iZ

)

, i.e.,

π =
1

2

(

WW t iWZt

iZW t ZZt

)

.
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Note that ππ̄ = π̄π = 0. Let s ∈ R. Then

pis,π = (π +
λ+ is

λ− is
(I− π))(π̄ +

λ− is

λ+ is
(I− π̄))

=
λ+ is

λ− is
π̄ +

λ− is

λ+ is
π + I− π − π̄

satisfies the O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ)-reality condition.

Theorem 10.3. [11, 25]

Let ξ = (F, γ) be a solution of the O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ)-system, and E(x, λ) a

parallel frame for the Lax pair θλ defined by (8.6). Let W ∈ R
n and Z ∈

R
k−ℓ,ℓ be unit vectors, π the projection of Cn+k onto C

(

W
iZ

)

. Then:

(1) E(x, is)−1

(

W
iZ

)

is of the form

(

W̃ (x)

iZ̃(x)

)

with W̃ ∈ R
n, Z̃ ∈ R

k−ℓ,ℓ,

and W̃ tW̃ = Z̃tIk−1,1Z̃.

(2) The action pis,π ∗ ξ = (F, γ) + 4s(ẐŴ t)∗, where η∗ = η−
∑k

i=1 ηiieii
for k×n matrix η = (ηij) and Ŵ (x) and Ẑ(x) are the unit directions

of W̃ (x) in R
n and Z̃(x) in R

k−ℓ,ℓ respectively.

(3) Ê(x, λ) := E(x, λ)pis,π̂(x)(λ) is a parallel frame for the Lax pair of

pis,π ∗ ξ, where π̂ is the projection onto C(Ŵ , iẐ)t.

We use Theorem 10.3, Ê = Epis,π̂ and a straight-forward computation to

write down the geometric transform on k-tuples of type Rk−ℓ,ℓ corresponding
to the action of pis,π. We state the results for the case n = k+1, and similar
results hold for higher co-dimension.

Theorem 10.4. Ribaucour transform for k-tuples [11, 25]

Let E, pis,π̂, Ê be as in Theorem 10.3, and n = k + 1. Then:

(1) There are M(k+1)×k valued maps Ξ, Ξ̂ such that

∂E

∂λ
E−1

∣

∣

∣

∣

λ=0

=

(

0 Ξ
−ΞtJ 0

)

,
∂Ê

∂λ
Ê−1

∣

∣

∣

∣

λ=0

=

(

0 Ξ̂

−JΞ̂t 0

)

,

where J = Ik−ℓ,ℓ = diag(ǫ1, . . . , ǫk).

(2) Given a non-zero vector c ∈ R
k−ℓ,ℓ, Ξ(x)c is a hypersurface in R

k+1

with flat normal bundle, x is a line of curvature coordinate system,

and the first fundamental form I =
∑k

i=1 gii dx
2
i satisfies the condi-

tion that
∑n

i=1 ǫigii is equal to the length of c in R
k−ℓ,ℓ. In particular,

if c is a null vector in R
k−ℓ,ℓ then Ξc is an isothermicℓ hypersurface

(as defined in 5.12).
(3) For any c1, c2 ∈ R

k−ℓ,ℓ, Ξ(x)c1 7→ Ξ(x)c2 is a Combescure O-
transform.

(4) Let C = (c1, . . . , ck) be a constant matrix in GL(k), and

Y = (Y1, . . . , Yk) = ΞC, Ŷ = (Ŷ1, . . . , Ŷk) = Ξ̂C.
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Then:
(a) Y, Ŷ are k-tuples in R

k+1 of type R
k−ℓ,ℓ,

(b) If all columns of C are null vectors in R
k−ℓ,ℓ, then Yi, Ŷi are

isothermicℓ hypersurfaces in R
k+1 for 1 ≤ i ≤ k.

(c) E(x, 0), Ê(x, 0) ∈ O(k + 1)×O(k − ℓ, ℓ).

(d) Write E(·, 0) =

(

g1 0
0 g2

)

, Ê(·, 0) =

(

ĝ1 0
0 ĝ2

)

,

g1 = (e1, . . . , ek+1), ĝ1 = (ê1, . . . , êk+1),

and Ŵ = (q1, . . . , qk+1)
t. Then

Ŷi = Yi −
ẐtJg−1

2 ci
s

k+1
∑

j=1

qjej .

(e) Yi(x) 7→ Ŷi(x) is a Ribaucour transform for 1 ≤ i ≤ k. In fact,
we have

Ŷi −
Ẑtg−1

2 ci
sqj

êj = Yi −
Ẑtg−1

2 ci
sqj

ej

for all 1 ≤ i, j ≤ k + 1.

Note that a solution of the O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ)-system gives rise to a family of

isothermicℓ k-submanifolds in R
n parametrized by the null cone of Rk−ℓ,ℓ

and any two submanifolds in this family are related by Combescure O-
transforms. But for the converse, we need to have k or k − 1 isothermicℓ
k-submanifolds in R

n related by Combescure O-transforms to construct a

solution of the O(n+k−ℓ,ℓ)
O(n)×O(k−ℓ,ℓ) -system. This is because Theorem 6.1 (1)-(3)

hold for any Combescure O-map Y = (Y1, . . . , Ym) : Rk → Mn×m. So the
connection o(k−ℓ, ℓ)-valued 1-form τ = δF t−JFδJ has m parallel sections,
and τ is flat if m = k − 1 or m = k.
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[16] Cieśliński, J., The Darboux-Bianchi transformation for isothermic surfaces. Classical
results versus the soliton approach, Differential Geom. Appl. 7 (1997), 1-28.
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[49] Tenenblat, K., Terng, C.L., Bäcklund’s theorem for n-dimensional submanifolds of
R

2n−1, Ann. Math. 111 (1980), 477-490
[50] Terng, C.L., A higher dimensional generalization of the sine-Gordon equation and its

soliton theory, Ann. Math. 111 (1980), 491-510
[51] Terng, C.L., Soliton equations and differential geometry, J. Differential Geometry, 45

(1997), 407-445
[52] Terng, C.L., Geometries and symmetries of soliton equations and integrable elliptic

systems, Advanced Studies in Pure Mathematics, 51 (2008), Survey on Geometry
and Integrable systems, 401-488

[53] Terng, C.L., Soliton Hierarchies from involutions, to appear in the Proceedings of
2007 ICCM at Hangzhou, China.



58 CHUU-LIAN TERNG∗

[54] Terng, C.L., Uhlenbeck, K., Poisson actions and scattering theory for integrable sys-
tems, Surveys in Differential Geometry: Integrable systems (A supplement to J. Dif-
ferential Geometry), 4 (1998), 315-402
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