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In this work, Schrödinger and Dirac equations will be examined in geometries that confine the

particles to hypersurfaces. For this purpose, two methods will be considered. The first method is

the thin layer method which relies on explicit use of geometrical relations and the squeezing of a

certain coordinate of space (or spacetime). The second is Dirac’s quantization procedure involving

the modification of canonical quantization making use of thegeometrical constraints. For the Dirac

equation, only the first method will be considered. Lastly, the results of the two methods will be

compared and some notes on the differences between the results will be included.
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I. INTRODUCTION

Today, there are many problems concerning systems having spacetime dimensionality less than four.

These problems involve a wide variety of topics ranging fromcondensed matter physics to gravitation.

Some systems treated within this context are, however, onlyeffectively three or two dimensional while

indeed living in four spacetime dimensions. As an example, one can think of electrons within a carbon

nanotube having a single layer of carbon atoms [4]. These electrons are under the influence of the underlying

lattice, which is actually curved. At this point, one can askthe following questions: Does the geometry of

the lattice affect the motion of the electrons? If it does, how?

Such questions can be answered by using a suitable method which takes care of the geometry of the

system. We already know how to do this; the quantum mechanical central force problem is an example. If

we move one step further, and change the picture a little bit,more interesting things happen. Consider the

same example, the carbon nanotube, which has, say, a cylindrical shape, and let the length of the tube be

much greater than its thickness. Then, one can treat the electrons as if they are ‘constrained’ to move on

a cylindrical surface. So, how can this picture be viewed as the description of a constrained system, which

obeys the laws of quantum mechanics? This will be the main question that is to be addressed in out work.

One may well ask the following: We know that in classical mechanics, such constraints only reduce

the number of degrees of freedom, and we also know that some quantum systems are already treated as

two or one dimensional (like a two dimensional quantum gas, for example); so why should we expect

to obtain a different picture than we have already? Although we cannot give any experimental evidence

in our work, it is revealed that some interesting phenomena will occur under the influence of a curved

lattice. There are a number of interesting studies on this issue, which assert that we should expect small

quantum mechanical effects depending on geometry, see for example [4, 6]. What is more interesting is

that, people have obtained contradicting results [7] from different descriptions of the same system. Since

one can formulate a well defined physical problem, which can be realized at least in principle, there should

be one unique correct result involving possible geometrical effects. Up to now, people tried to understand

the differences between two methods which are most often addressed,and see in what circumstances those

different approaches gave the same result [8, 11].

In our work, we will try to explain those two approaches and re-derive some of the results present in

the literature (see [4, 6, 8, 10]). Firstly, some necessary information about geometry will be given. Then,

following the discussion in [4], we will analyze the first approach which can be classified as a geometri-

cal approach. This treatment relies on the geometrical relations which are valid in the three dimensional

Euclidean space, and begins with writing the relevant quantum mechanical equation of motion, which will
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be the well known Schrödinger equation at the first place. Itis of course possible to consider the problem

in N dimensional space, but for the sake of simplicity we will notdeal with the general case. Next, we

will explain a quantization procedure which has first been proposed by Dirac. As one can immediately

understand, the discussion will begin from classical mechanics, and we will try to obtain proper quantum

mechanical relations (if there are) via Dirac’s quantization procedure. This procedure is already formulated

for a generic number of dimensions, so our discussion will involve anN dimensional Euclidean space and

we will try to find the relevant Schrödinger equation again.Then, we will compare the results. As the last

point, we will try to apply the first approach to Dirac equation, which can be considered as the beginning of

a discussion for relativistic systems involving fermions.

II. GEOMETRICAL PRELIMINARIES

A. Curves in E3

In the next chapter, we will try to expand Schrödinger equation in powers of a coordinate inE3, and try

to decompose the equation into two equations; one involvingdynamics along a surface on which a particle

is supposed to be constrained, and another equation which involves the direction that is transverse to the

surface. This task requires the knowledge of some properties of curves and extrinsic and intrinsic geome-

tries of surfaces in Euclidean space. Furthermore, in orderto interpret the results of Dirac’s quantization

procedure, which has also been mentioned in the introduction, one needs some information about the ge-

ometry of surfaces. For this reason, we will briefly mention some properties of curves and surfaces inE3

relevant to our task, and give additional information when necessary.

One can identify curves as “...paths of a point in motion. The rectangular (Cartesian) coordinates

(x, y, z) of the point can then be expressed as functions of a parameter u inside a certain closed interval”[2]:

xi = xi(u), i = 1, 2, 3, u1 ≤ u ≤ u2. (1)

This representation is known as the analytic (or parametricin some texts) representation [2].

For the requirements of our discussion, we will assume that the parameteru is real and the rectangular

coordinatesxi under consideration are real functions ofu.

The following integral gives the arc length of the curve between two points on it as a function of the

parameteru [2]:

s(u) =
∫ u

u0

√∑

i

(
dxi

du′
)2 du′ =

∫ u

u0

√
dx
du′
· dx

du′
du′. (2)
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We assume here that
dx
du

is never zero within the given interval. With this assumption, one may parametrize

the curve equally well with the arc lengths. When this is the case, the vectort ≡ dx/ds is the unit tangent

vector of the curve [2]. There are two other important vectors attached to each point on a curve. The first

one is the principal normal vector, defined via the equationdt/ds ≡ κn, and the second one is the binormal

vector defined asb ≡ t× n. These vectors satisfy the well known Serret-Frenet formulae [9] (in some texts,

the formulae are included as the formulae of Frenet, see for example [2]):


dt/ds

dn/ds

db/ds


=



0 κ 0

−κ 0 τ

0 −τ 0


×



t

n

b


(3)

whereκ andτ are the curvature and torsion of the curve, respectively.

B. Surfaces in E3

There are various ways of representing a surface in the 3 dimensional Euclidean space (E3). One is the

familiar representation in which the surface is defined via an equation likef (x, y, z) = 0, wherex, y andz are

the Cartesian coordinates andf is a scalar function of those coordinates. One can also represent a surface

with the Cartesian coordinatesx, y, z being real functions of two independent real parametersu andv, called

the ‘analytic (parametric) representation’in a certain closed interval [2]:

xi = xi(u, v), u1 ≤ u ≤ u2, v1 ≤ v ≤ v2. (4)

Here,i = 1, 2, 3 stand forx, y, z, respectively.

It is generally assumed that the Cartesian coordinates are differentiable functions of the parameters up

to a sufficient order. In fact, for all practical purposes, one may assume here that they are differentiable to

all orders. This way one may expandxi around a certain point (u0, v0) [2]:

xi(h, k) = xi(u0, v0) + h

(
∂xi

∂u

)

0
+ k

(
∂xi

∂v

)

0
+

1
2!


(
h
∂

∂u
+ k

∂

∂v

)2

xi


0

+ · · ·

+
1
n!

[(
h
∂

∂u
+ k

∂

∂v

)n

xi

]

0
+ · · · . (5)

One also requires the parametersu andv to be independent so that the derivatives are independent. For this

reason, the coordinate transformation matrix [2]

M ≡ ∂(x, y, z)
∂(u, v)

, (6)

must have rank 2. Notice that we are dealing with a general coordinate transformation here.

There are two important objects which are now to be defined.
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1. First Fundamental Form

Consider some generic pointP which lies on a surfaceΣ and letΣ be parametrized byu andv. Let

r = r(u,v) be the position vector ofP. If we now consider the squared distance betweenP and someP′

which is in the neighborhood ofP, we write:

ds2
= dr · dr =

(
∂r(u, v)
∂u

du +
∂r(u, v)
∂v

dv

)
·
(
∂r(u, v)
∂u

du +
∂r(u, v)
∂v

dv

)

≡ gµν(q)dqµdqν, µ, ν = 1, 2, (7)

where we identifyu, v with q1, q2 respectively. gµν is the metric tensor ofΣ, and the expression fords2

is called the first fundamental form ofΣ [2]. Here we also use the Einstein summation convention, which

means that when an index appears twice in an expression thereis summation over it. Equation 7 completely

determines the intrinsic geometry of the surfaceΣ.

2. Second Fundamental Form

One immediately notices that linear combinations of the vectors
∂r
∂u

and
∂r
∂v

can be used for expressing

all vectors tangent toΣ at P, so they naturally form a basis for those vectors. This means, the plane tangent

to Σ at P, which is the tangent plane ofΣ at P [2], is spanned by these vectors. When a vector perpendicular

to Σ at P is added to the naturally arising basis under consideration, one obtains an alternative basis forE3.

This way, at least the points in the immediate neighborhood of the surfaceΣ can be expressed using this

basis. We are going to discuss this issue later.

The vector perpendicular toΣ at P which is of unit length and parallel to the vector∇ f (x, y, z) (where

f (x, y, z) = 0 definesΣ) is the unit normal vectorN(u, v) of Σ at P. Let us now consider the change in this

vector as it moves fromP to P′ along some curve onΣ:

dN(u, v) =
∂N(u, v)
∂u

du +
∂N(u, v)
∂v

dv. (8)

Notice thatdN(u, v) is tangent toΣ, just asdr(u, v) is. The second fundamental form is now defined to

be [2]:

dN(u, v) · dr(u, v) ≡ Hµν(q)dqµdqν (9)

[In [2], there is an overall minus sign in the definition, which does not affect the result included in this

work.] The equation 9 determines the extrinsic geometry of the surfaceΣ. Here,Hµν is a symmetric matrix.
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Since bothdN(u, v) anddr(u, v) are tangent toΣ, one may expressdN(u, v) in terms of
∂r(u, v)
∂u

and
∂r(u, v)
∂v

.

Remembering that we have identifiedu, v asq1, q2:

∂N(q)
∂qµ

≡ αµ ν ∂r(q)
∂qν

(10)

where the two equations for the two components of
∂N(q)
∂qµ

(µ = 1, 2) are known as Weingarten equations

[2, 5]. In some texts in the literature, the matrixα is called Weingarten curvature matrix [4], or the extrinsic

curvature [8].

There are a number of nice properties of the matrixα [4]:

M =
1
2

tr(α),

A = det(α). (11)

Hµν =
1
2

(αµ
λgλν + gµλα

λ
ν), (12)

whereM is the mean curvature andA is the Gaussian curvature ofΣ. These properties will be used in the

calculations in the following chapters.

III. THIN LAYER METHOD

A. Treatment of Ferrari and Cuoghi

The name thin layer method for constraining the equation of motion of a quantum mechanical particle

to some surface is due to Golovnev [11]. The method has been used by da Costa [5] for a particle under

the influence of a constraining potential but free to move on asurface, and by Ferrari and Cuoghi [4] for

a particle under the influence of an external electromagnetic field, which is also constrained to move on a

surface. Both treatments involve the relevant Schrödinger equation ignoring the spin of the particle, and the

constraining procedure begins at the level of the Schrödinger equation, unlike Dirac’s procedure, which will

be discussed later.

Since the treatment of Ferrari and Cuoghi (given in [4]) is more general, it is useful to summarize this

procedure here.

We begin by making a general coordinate transformation inE3, and writing the metric with our new

coordinates in the vicinity of some surfaceΣ. Let us assume that two of our new coordinatesq1, q2 corre-

spond to the parametersu, v of the previous section, andq3 be defined as the distance fromΣ. Assuming

that allqµ, µ = 1, 2, 3 are independent, we have three coordinates which define points uniquely at least in

the vicinity of Σ. Let r(q1, q2) be the position vector of a generic pointP lying on Σ andN(q1, q2) be the



8

unit normal vector of the surface atP. Then, the position vector of some pointQ lying close toΣ and a

distanceq3 away fromP is R(q1, q2, q3) = r(q1, q2) + q3N(q1, q2). Then we have the following metric:

Gµν =
∂R
∂qµ
·
∂R
∂qν

Gi j =

(
∂r
∂qi
+ q3∂N

∂qi

)
·
(
∂r
∂q j
+ q3 ∂N

∂q j

)
, i, j = 1, 2

Gi3 = 0, G33 = 1, (13)

where the scalar product of the vectors is taken with respectto the Euclidean metricdiag(1, 1, 1). Now,

notice that the Weingarten matrixα enters into the expression forGi j:

Gi j =
∂r
∂qi
· ∂r
∂q j
+ q3

(
∂r
∂qi
· α j

k ∂r
∂qk
+ αk

i
∂r
∂qk
· ∂r
∂q j

)
+ (q3)2αi

kαl
j
∂r
∂qk
· ∂r
∂ql

= gi j + 2q3Hi j + (q3)2αi
kgklα

l
j, i, j = 1, 2, (14)

where we used the definitions of the first and second fundamental forms and the relation between them

(equations 7, 9, 12). Here one may argue that this expressionfor the metric tensor is atO((q3)2), while the

expression for the position vector ofQ is at O(q3). However, we did not begin with the Taylor expansion

for the position vector ofQ, which is also possible. So, with our choice of the curvilinear coordinatesqµ,

the expression forR is exact. One may still expandR in powers ofq3, but the metric tensor obtained by da

Costa [5] and Ferrari and Cuoghi [4] will be a special case then. We will see later that beginning with the

assumption that the third coordinate is orthogonal to our surface will bring some conditions on the terms

appearing in the expansion.

Now we are ready to write the Schrödinger equation. LetA(q) be the vector potential andΦ(q) be

the scalar potential corresponding to our external field. Let us define the gauge covariant derivative [4] as

Dν ≡ ∇ν −
iQ
~

Aν, where Q is the charge of our particle. We also definea gauge covariant derivative for the

time variable [4] asD0 ≡ ∂t +
iQ
~
Φ. Using the well known expression∇2

Ψ =
1
√

G
∂µ(
√

GGµν∂νΨ) for the

Laplacian of the functionΨ, whereG ≡ det(Gµν), we obtain, by direct substitution, the following equation

[4]:

i~D0Ψ =
1

2m

[
− ~

2

√
G
∂µ(
√

GGµν∂νΨ) +
iQ~
√

G
∂µ(
√

GGµνAν)Ψ + 2iQ~GµνAν∂µΨ + Q2GµνAµAνΨ

]
. (15)

First, notice that by direct calculation:

√
G =

√
g
(
1+ q3Tr(α) + (q3)2det(α)

)
, (16)

whereTr(α) = αi
i anddet(α) = det(αi

j).
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Now, let us consider the normalization integral:
∫

d3xΨ∗(x)Ψ(x) =
∫

d3q
√

GΨ∗(q)Ψ(q)

=

∫
d3q
√

g
(
1+ q3Tr(α) + (q3)2det(α)

)
Ψ
∗(q)Ψ(q) = 1 (17)

If we now define a new wave functionχ(q) such that [4]:

χ(q) = Ψ(q)
(
1+ q3Tr(α) + (q3)2det(α)

)1/2
, (18)

the normalization integral becomes:
∫

d3q
√

g
(
1+ q3Tr(α) + (q3)2det(α)

)
Ψ
∗(q)Ψ(q) =

∫
d2qdq3√gχ∗(q)χ(q). (19)

Notice the difference in the integral measure. This way, we also separate the normalization inte-

gral into two parts, which we will now try to do for the Schrödinger equation, using the new wave

function χ(q). Introducing an extra constraining potentialVλ(q3) and calculating the derivatives of
(
1+ q3Tr(α) + (q3)2det(α)

)1/2
, we get the following equation in the limitq3→ 0 [4]:

i~D0χ =
1

2m

[
−
~

2

√
g
∂i(
√

ggi j∂ jχ) +
iQ~
√

g
(
√

ggi jA j)χ + 2iQ~gi jAi∂ jχ + Q2(gi jAiA j + (A3)2)χ

− ~2(∂3)2χ + iQ~(∂3A3)χ + 2iQ~A3(∂3χ) − ~2

(
1
2

Tr(α)

)2

− det(α)

 χ
]
+ Vλ(q

3)χ, (20)

noticing that

lim
q3→ 0

(
1+ q3Tr(α) + (q3)2det(α)

)±1/2
= 1,

lim
q3→ 0

∂3

(
(1+ q3Tr(α) + (q3)2det(α)

)±1/2
) = ±Tr(α)/2,

lim
q3→ 0

∂2
3

(
(1+ q3Tr(α) + (q3)2det(α)

)±1/2
) = ±det(α),

lim
q3→ 0

∂i

(
(1+ q3Tr(α) + (q3)2det(α)

)±1/2
) = 0. (21)

Ferrari and Cuoghi call the termVs ≡
−~2

2m


(
1
2

Tr(α)

)2

− det(α)

 as the ‘geometric potential’. In order

to get rid of the terms that indicate the coupling of the surface coordinates and the coordinate normal to

the surface, one asks if a gauge transformation is possible.Ferrari and Cuoghi discuss that the equation

(2.3) is gauge invariant (see Appendix A), so one can choose agauge in whichA3 = 0 using the function

γ = −
∫ q3

0 A3(q1, q2, z)dz [4] for the gauge transformation. Then, the equation (2.8) can be split into two

equations, while the wave function is now written asχ(q) = χn(q3)χs(q1, q2) [4]:

i~D0χn = −
~

2

2m
(∂3)2χn + Vλ(q

3)χn, (22)

i~D0χs =
1

2m

[
− ~

2

√
g
∂i(
√

ggi j∂ jχs) +
iQ~
√

g
(
√

ggi jA j)χs + 2iQ~gi jAi∂ jχs + Q2gi jAiA jχs

]
+ Vsχs. (23)
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Having decoupled the dynamics on the surface and in the normal direction, one may now treat the above

equations separately to solve for the wave functionχ, and calculate the expectation value of any relevant

physical quantity on the surface without referring to the ‘external world’, that is, using only the quantities

defined onΣ being independent of the normal direction.

B. Taylor Expanding the Position Vector

As we noted, the squeezed coordinateq3 is chosen to be the distance from the surface to which the

particle is constrained in the analyses of da Costa and Ferrari and Cuoghi. Another possible approach

would be to consider a more general case of a coordinate transformation in which two of the coordinates

again parametrize the surface and the third one is again chosen to be orthogonal to the surface. In Euclidean

space, the distance from the surface coincides with the third coordinate of the curvilinear set if and only if

the coordinate curves ofq3 are straight lines. This can be understood by noticing the fact that in Euclidean

space, the shortest path between two points is a straight line and the distance between the points is the length

of that path. Then, when this is the case, the discussion simply reduces to the one given by da Costa and

Ferrari and Cuoghi. One may also ask whether the coordinateq3 corresponds to the arc length along the

coordinate curve, or not. Let us first consider the general case, then answer this question.

In general, assuming thatq3 is orthogonal to the surfaceΣ, one may expand the position vector of a point

in the neighborhood ofΣ as follows:

R = R0 + (∂3R)0q3
+

1
2!

(∂2
3R)0(q3)2

+
1
3!

(∂3
3R)0(q3)3

+ · · · , (24)

where the subscript 0 implies that the quantity is evaluatedat q3
= 0. Notice that the first derivative of

the position vector with respect toq3 is always perpendicular toΣ, since it measures the rate of change of

the position vector along a coordinate curve which is by assumption orthogonal toΣ. This expansion still

handles all three dimensions, so the coordinates are by definition independent from each other. This fact

will be useful soon. We have, for the metric tensorGµν = ∂µR · ∂νR, the usual definition. Now, our choice

(or assumption) that the third coordinate is orthogonal toΣ, combined with the trivial fact just mentioned,

brings the following conditions when one writes down the metric up to second order by direct calculation:

O(q3) : ∂i(R0) · R′′0 + ∂i((R′)0) · (R′)0 = 0, (25)

O((q3)2) : 2∂i(R′0) · R′′0 + ∂i(R0) ·R′′′0 + ∂i(R′′0 ) · R′0 = 0, (26)

where the primes denote differentiation with respect toq3. At this point, let us assume that the third co-

ordinate is chosen to be the arc length along the coordinate curve. Then, using the Serret-Frenet formulae
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mentioned in Chapter 1 Section 1, one has:

R = R0 + t0q3
+

1
2!

(κn)0(q3)2
+

1
3!

(−κt + τb)0(q3)3
+ · · · (27)

and for the above condition atO(q3):

∂i(R0) · (κn)0 + ∂i(t)0 · t0 = 0 (28)

Now, notice that the second term is zero by definition oft. So, the first term should also be zero. Now

notice that, for nonzeroκn, this is impossible, since by definitionn is perpendicular tot and hencen0 is

tangent toΣ. But a vector tangent toΣ cannot be perpendicular to both of the vectors spanningΣ at the

same time, which is required by the condition. The only possibility is that (κn)0 = 0. This may somehow

be satisfied locally on certain surfaces, but if we begin witha coordinate transformation which is globally

valid (or valid at least within a finite region of space), thenκn = 0 should hold globally (or within the finite

region considered). This means, one requires the coordinate curve ofq3 to be a straight line at least within

a relevant finite region, like the neighborhood ofΣ under consideration which is regarded as a finite region

of space at the beginning (before squeezing the system to thesurface). Conversely, if the coordinate curve

of q3 is a straight line, thenq3
= aλ + b, whereλ is the arc length parameter (and so the distance fromΣ)

anda andb are constants. This result reduces our problem to the case considered by da Costa and Ferrari

and Cuoghi.

Now, we may concentrate on the other possible situation, in which q3 is not the arc length along its

coordinate curve. The metric tensor in this case becomes:

Gi j = ∂i

[
R0 + R′0q3

+
1
2!

R′′0(q3)2
]
· ∂ j

[
R0 + R′0q3

+
1
2!

R′′0(q3)2
]

= ∂i(R0) · ∂ j(R0) + q3
[
∂i(R0) · ∂ j(R′0) + ∂i(R′0) · ∂ j(R0)

]

+
1
2

(q3)2
[
∂i(R0) · ∂ j(R′′0) + ∂i(R′′0) · ∂ j(R0) + 2∂i(R′0) · ∂ j(R′0)

]
,

G33 = R′0 ·R′0 + 2q3R′0 ·R′′0 + (q3)2 [
R′′0 ·R′′0 + R′0 · R′′′0

]
, (29)

up toO((q3)2). Notice that theO(q3) term ofGi j is the same with the one obtained in the previous section,

since∂iR0 is tangent toΣ and so∂i(R0) · ∂ j(R′0) = ∂i(R0) · ∂ j(t0) = ∂i(R0) · ∂ j(N). But there are additional

terms in the second order term, and alsoG33 , 1. One may still handle the problem by calculating the

contributions to the determinant ofGµν, but the measure of integrations which arise in the normalization

and in the calculations for expectation values also changes, and takes the form:

d3q = dq3d2q
√

G33
√

gnew (30)
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Although one may still find the expansion in powers ofq3 corresponding to
√

gnew, the factor
√

G33 spoils

the separation of the integral into a surface integral and anintegral along the normal direction which are

independent of each other. This means, it is not guaranteed that we still have the chance for calculating

expectation values or carry out normalization on the surface without any reference to the ‘external world’.

C. Spin-Magnetic Field Interaction

It would be interesting to consider the spin-magnetic field interaction within the context of the thin layer

method. Let us consider the following interaction

ĤI = −
e

2mc
B · S (31)

wheree is the magnitude of the electron charge,m is the electron mass,c is the speed of light in vacuum and

S is the 2× 2 spin operator composed of the well known Pauli spin matrices. In terms of a vector potential

A, this term can be written as:

ĤI = −
e

2mc
∇ × A · S = −

e
2mc

ǫµνλ(∇µAν)S λ (32)

whereǫ123
= 1. In order to calculate the effects of the curvature ofΣ, we need to calculate the connection

coefficients in the coordinates used. Using the well known coordinate expression for the coefficients:

Γ
µ

νλ
=

1
2

Gµρ(Gρν,λ +Gρλ,ν −Gνλ,ρ), (33)

and the inverse ofGµν to O(q3):

Gi j
= gi j − 2q3Hi j, (34)

we get the following expressions:

Γ
3
ν3 = Γ

µ

33 = 0,

Γ
3
i j = −Hi j − q3αi

kgklα
l

j,

Γ
k
i3 = gklHli − q3HkmHmi,

Γ
k
i j = Γ̃

k
i j + q3

[
gkl(Hli, j + Hl j,i − Hi j,l) − Hkl(gli, j + gl j,i − gi j,l)

]
, (35)

whereΓ̃k
i j =

1
2

gkl(gli, j + gl j,i − gi j,l). We calculated the connection coefficients up toO(q3) since there are

only first derivatives present in the expression considered. Although the expression forGµν is exact in the

case analyzed by da Costa, the inverse is calculated to first order in q3 since we will at the end take the
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limits of everything atq3
= 0. Using these, we have the following expressions for∇ × A:

(∇iA j)0 = (∂iA j)0 − Γ̃k
i j(Ak)0 + Hi j(A3)0,

(∇3A j)0 = (∂3A j)0 − gklHl j(Ak)0,

(∇ jA3)0 = (∂ jA3)0 − gklHl j(Ak)0. (36)

So, finally, we get the following expression for the interaction term:

ĤI = −
e

2mc
[S 3B3

+ ǫi j3S i(∂ jA3 − ∂3A j)]0, (37)

by putting the above terms directly into (32). The result that can be derived from this expression is that spin-

magnetic field interaction always includes coupling with external world and this is unavoidable. Otherwise,

the interaction term will simply be zero, meaning that thereis no interaction at all.

IV. DIRAC’S QUANTIZATION PROCEDURE

1. Overview of the Procedure

Another method of handling geometrical constraints imposed on physical systems was discussed by

Dirac in 1950s [1] (see also the references therein). The method involved modification of canonical quanti-

zation procedure beginning from the Lagrangian level, and carrying the constraints properly to the Hamil-

tonian formalism. Dirac also modified the terminology, and used the word ‘constraint’ in a more general

manner. We will also follow this usage, and indicate the usual geometrical constraints explicitly where

necessary.

We will, in this section, briefly summarize the relevant parts of the first two chapters of [1], which cover

all issues relevant to the problem discussed in the previouschapters of our work. The discussion in [1]

about this issue begins with a reminder of the ideas of Lagrangian formalism and transition to Hamiltonian

formalism. Although the motivation is to formulate some Hamiltonian formalism for a field theory, Dirac

begins the discussion with particle dynamics.

As is well known, the classical equations of motion for a particle moving in anN dimensional space can

be obtained by extremizing the so-called action integral:

S =
∫

L(q, q̇, t)dt,

δS = 0, (38)

whereqn, (n = 1, · · · ,N) are the generalized coordinates of the particle, and the over dot denotes differen-

tiation with respect to timet. Transition to the Hamiltonian formalism begins by definingthe momentum
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variables conjugate to these coordinates as follows:

pn ≡
∂L
∂q̇n

. (39)

Usually, one assumes that the momenta are all independent from each other. Here, Dirac notes the following

[1]: “ We want to allow for the possibility of these momenta not being independent functions of the velocities.

In that case, there exist certain relations connecting the momentum variables, of the type φ(q, p) = 0.”

This statement seems to be rather implicit, since one cannotdirectly visualize what sort of relations can

appear while calculating the momenta. There is one easier way of revealing these relations via inserting the

geometrical constraints which are usually stated asf (q) = 0 as functions of coordinates into the Lagrangian

with the motivation to use the method of Lagrange multipliers, as used by other people in the literature

[6–8]:

Lnew = L + λs fs(q), (40)

where fs(q) = 0 are the functions defining the geometrical constraints andλs are the corresponding La-

grange multipliers, which are also treated as dynamical variables in the method of Lagrange multipliers.

We also adopt here the summation convention used in the previous chapters. One deals with this new La-

grangian and finds possible relations among the momenta. Butof course, this is not necessarily the most

general way of using Dirac’s procedure, and as we will see, the results predicted by the procedure will

depend on the explicit expressions of the geometrical constraints [8].

Having noted this fact, we may return to Dirac’s discussion.Dirac calls the relationsφm(q, p) = 0, m =

1, · · · , M as ‘primary constraints of the Hamiltonian formalism’ [1].Notice that they appear at the stage of

defining the momenta. Then, one defines the Hamiltonian in theusual way:

H ≡ pnq̇n − L. (41)

However, as is also well known, Hamiltonian defined in this way is not unique. One can equally well write

the following Hamiltonian, simply adding some ‘zeros’ to the usual one [1]:

H∗ = H + cmφm. (42)

As stated by Dirac, the coefficientscm can be functions ofqn andpn. The crucial point is the following [1]:

“H∗ is then just as good as H; our theory cannot distinguish between H and H∗. The Hamiltonian is not

uniquely determined.”

Remembering that the Hamiltonian equations of motion are

q̇n =
∂H
∂pn

, ṗn = −
∂H
∂qn

, (43)
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they now become [1]

q̇n =
∂H
∂pn
+ um

∂φm

∂pn
, ṗn = −

∂H
∂qn
− um

∂φm

∂qn
, (44)

as one decides to useH∗ instead ofH. Here,um are unknown coefficients (we might have kept thecm’s and

so their derivatives, but here we follow Dirac). Although wewill not use Hamilton’s equations of motion, it

is important to note how they are affected when certain constraints are imposed on the system.

In order to proceed more consistently and in a way which is suitable for quantum mechanics, one needs

to define Poisson brackets. As is well known, the Poisson bracket of a quantity with the Hamiltonian gives

the time evolution of that quantity in the Hamiltonian formalism in classical mechanics. In the canonical

quantization scheme which is already familiar to us, classical Poisson brackets are replaced by− i
~

times

the commutator of the entities involved, and also the functions representing physical entities are replaced

by operators. The usual definition of Poisson brackets is thefollowing:

[ f , g] ≡
∂ f
∂qn

∂g
∂pn
−
∂ f
∂pn

∂g
∂qn

(45)

and it satisfies the following important properties:

[ f , g] = −[g, f ], (46)

[ f1 + f2, g] = [ f1, g] + [ f2, g], (47)

[ f1 f2, g] = f1[ f2, g] + [ f1, g] f2, (48)

[ f , [g, h]] + [g, [h, f ]] + [h, [ f , g]] = 0 (Jacobi Identity). (49)

Here Dirac makes an important remark. With the above definition of Poisson brackets, one cannot write

the Poisson bracket of a quantity which may not be a function of qn and pn, but may be a function of time

[1]. This is the case for the unknown coefficientsum above. In order to avoid such a situation and express the

time evolution of any quantity in some Hamiltonian formalism on the same footing with the time evolution

of functions ofqn andpn, Dirac suggests to leave the usual definition of Poisson brackets and take the four

equations (46), (47), (48), (49) stated above as the definingproperties for Poisson brackets [1]. Now, notice

that:

ġ =
∂g
∂qn

q̇n +
∂g
∂pn

ṗn = [g,H] + um[g, φm], (50)

for someg = g(q, p) using the equations (44) and (45). Here, Dirac asks whetherone can write this equation

as:

ġ = [g,H + umφm], (51)
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and gives the answer that, this is possible if we use the equations (46)-(49) as the defining properties of the

brackets. Then, we obtain:

ġ = [g,H + umφm] = [g,H] + um[g, φm] + [g, um]φm. (52)

Now, we remember that indeedφm = 0 and the last term should vanish. So it does. But why did we usethis

fact at this point rather than at the very beginning? Dirac’sgives the answer and derives an important rule

of quantizing constrained systems [1]: “We have the constraints φm = 0, but we must not use one of these

constraints before working out a Poisson bracket. ... So we take it as a rule that Poisson brackets must all

be worked out before we make use of the constraint equations.”

As a reminder, he devises the following notation:

φm ≈ 0 (53)

for the equations which are to be used after all Poisson brackets are worked out, and calls such equations as

weak equations; implying that the equations which are not of this sort arestrong equations. Then, the term

[g, um]φm vanishes, and the expressions for ˙g agree.

From now on, the quantityH+umφm will be called thetotal Hamiltonian [1] and will be denoted byHT .

At this point, it is necessary to state another important fact. The time evolution of the constraints should

also be taken into account, and all time derivatives of the constraints should vanish to ensure consistency.

For this reason, the equations stating that the time derivatives of the constraints vanish are calledconsistency

conditions [1]. An important question arises here: there can be an infinite number of consistency conditions,

because the constraint functions can be differentiable to all orders; so which equations are the relevant

consistency conditions to our problem?

Dirac gives the answer to this question by classifying the equations resulting from equating the time

derivatives of the constraint functions to zero [1]:

Case 0: An inconsistency may occur. This implies that Lagrangian equations of motion are inconsistent.

Dirac’s example is the equations resulting from the Lagrangian L = q which directly lead to 1= 0. So, the

relevant cases are those in which Lagrangian equations of motion are consistent.

Case 1: Some equations may reduce to 0= 0 with the help of primary constraints.

Case 2: Some equations may reduce to equations which are independent of the coefficientsum. They

are then equations likeχ = χ(q, p) = 0, which means they are indeed new constraint equations giving

new relations between the dynamical coordinates and their conjugate momenta. These are calledsecondary

constraints. For consistency, one should continue calculating the timederivatives of these functions to

ensure consistency; that is, new consistency conditions may result from these functions.
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Case 3: The equation may reduce to one which brings conditions onum. At this point, the procedure for

the relevant constraint (either primary or secondary) ends.

So, the procedure up to the present level can be summarized asfollows: write down the Lagrangian,

then define the momenta and the Hamiltonian, determine the primary constraints, construct the total Hamil-

tonian, calculate the time derivatives of the constraints,classify them using the above classification. Case

1 equations bring nothing new, so they are trivial in a manner. Case 2 equations imply new constraints, so

their time derivatives should be calculated and set equal tozero until Case 3 equations are reached.

As Dirac himself notes [1],

The secondary constraints will for many purposes be treated on the same footing as the

primary constraints. ... They ought to be written as weak equations in the same way as

primary constraints, as they are also equations which one must not make use of before one

works out Poisson brackets.

One may well ask the following question: Why do we terminate the procedure when Case 3 equations

are reached? Dirac gives a detailed discussion, but it will be sufficient to give only the idea. Case 3 equations

give um as functionsUm of qn and pn (because the Case 3 system of equations should have some solution

if the equations of motion are consistent [1]). But, after working out the Poisson brackets, one may treat

the constraint equations as strong equations; so, the constraint terms, together with their coefficients, will

vanish.

Of course, there will still be some arbitrariness in the Hamiltonian, because one may add terms which

are weakly equal to zero with arbitrary coefficients to the solutions forum obtained from Case 3 equations.

Those arbitrary coefficients may be functions of time, and will be totally arbitrary. Dirac takes this as the

reflection of some arbitrariness in the mathematical framework, like gauges in electrodynamics. Another

interpretation might be that the number of independent degrees of freedom is less than the number of

generalized dynamical coordinates, and there is still a freedom for observer choice.

Here we should also define the first class and second class quantities. A quantity which is a function of

qn and pn is labeled as first class if its Poisson bracket with all constraints vanishes at least weakly; and is

second class otherwise [1]. It is noted in the text [1] that primary first class constraints are the generating

functions of contact transformations, but it is not quite obvious that this fact can be made use of in the

analysis.

Now one is ready to define a bracket method for handling time evolution of quantities. For this, one

should first notice that the total Hamiltonian is a first classquantity. Here, it is necessary to follow Dirac’s

reasoning directly to see why the total Hamiltonian is a firstclass quantity, and what this brings to us.
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First, remember that Case 3 equations can be solved forum and thenum are obtained as functions of

qn and pn. Those Case 3 equations are indeed a system of non-homogeneous equations in the unknowns

um. But since the system is non-homogeneous, one may add the solutions of a homogeneous system of

equations likeVm[φ j, φm] = 0. Here, j = 1, · · · , J counts all constraints (primary and secondary). Then,

if the independent solutions ofVm[φ j, φm] = 0 areVam(q, p), a = 1, · · · , A, one may writeum(q, p) =

Um(q, p) + va(t)Vam(q, p). Notice that the coefficientsva can in general be functions of time, and are the

totally arbitrary coefficients mentioned above. Then, the total Hamiltonian becomes [1]:

HT = H + Umφm + vaVamφm ≡ H′ + vaφa. (54)

Notice that this total Hamiltonian is first class.H′ is first class since we impose [φ j,H′] = 0 for consis-

tency. φa = Vamφm are first class due to involving the solutions of the homogeneous system of equations

Vm[φ j, φm] = 0.

There is one more concept to be defined. It is what Dirac calls the ‘physical state’ of the system. In

classical mechanics, one solves the Lagrangian equations of motion and calculates the time evolution of

the system. This tells one that, what the observer should actually observe is described by the solutions of

those equations. This gives the understanding about the physical state; the ‘physical state’ of the system

concerns what the observers will actually observe. The solutions of the equations may seem to be different

quantitatively due to observer choice, but a proper transformation from one observer to another one will

reveal that different observers describe the same dynamics. Then, in Dirac’s approach, the arbitrary features

in the formalism should somehow not affect the state of the system, although they may change the values

of the dynamical variables. So the following question arises: Which constraints do not affect the physical

state of the system?

In classical mechanics, once the initial conditions of a system are completely known, all history of the

system can be worked out. In other words, the initial physical state of the system determines the past and

the future of the system completely. Now, consider some dynamical variableg, and letg(t = 0) = g0 be

given. After a short timeδt, g evolves as [1]:

g(δt) = g0 + ġδt = g0 + [g,HT ]δt = g0 + δt
(
[g,H′] + va[g, φa]

)
. (55)

If we now change the set ofva values (making use of their arbitrariness), we will have a differentġ. Taking

the difference, we get:

∆g(δt) = δt(va − v′a)[g, φa] = δtǫa[g, φa]. (56)

Now, notice thatφa are formed by primary constraints, and are also first class. If the physical state remains

unchanged, as we require, we are led to the conclusion that primary first class constraints do not affect
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the physical state of the system. Also Dirac notes that the above equation meansφa are generators of

infinitesimal contact transformations, and further, conjectures that secondary first class constraints do not

affect the physical state either. However, there are counterexamples of this conjecture, mentioned in the

literature [12]. In any case, we will not deal with such examples and construct the procedure as if Dirac’s

conjecture is correct. This will amount to adding the secondary first class constraints to the Hamiltonian

and defining the extended Hamiltonian [1]:

HE ≡ HT + v′a′φa′ . (57)

Now, all independent accessible constraints are included in the Hamiltonian, and the time evolution of any

system will be given as:

ġ = [g,HE]. (58)

The last point in the construction of the theory is defining a proper bracket formalism. Then, the idea is

simply converting the brackets into−i/~ times commutators, like canonical quantization.

In order not to deal with physically irrelevant degrees of freedom, Dirac defines a new bracket in terms

of Poisson brackets [1]:

[ f , g]∗ ≡ [ f , g] − [ f , φl]∆
−1
kl [φk, g], (59)

∆kl ≡ [φk, φl]. (60)

Here,k, l = 1, · · · , J, count all constraints. These brackets satisfy the four important properties of Poisson

brackets (46)-(49) (see Appendix B for proofs). After defining these brackets, since all Poisson brackets

have been worked out, one can treat the constraint equationsas strong equations. This new bracket is often

called the ‘Dirac bracket’.

The issues mentioned in this section gave an outline of the relevant parts of Dirac’s treatment in [1]. In

the following sections, we will investigate various cases which have been discussed in the literature.

A. Treatment of Ogawa, Fujii and Kobushkin

In this section, we will briefly summarize the discussion in [6] and give some comments on the proce-

dure.

The discussion concerns anN dimensional Euclidean space and begins from the Lagrangianlevel as

Dirac’s procedure requires. As we mentioned in the previoussection, there is some arbitrariness in express-

ing the constraints within the formulation of the problem, and one option is to make use of the method of
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Lagrange multipliers; this has been preferred by Ogawaet. al. The classical Lagrangian is then [6]:

L =
1
2

ẋa ẋa − V(x) + λ f (x), (61)

where the particle is assumed to have unit mass for simplicity, xa (a = 1, · · · ,N) are the Cartesian coor-

dinates ofEN and f (x) = 0 is the function expressing the geometrical constraint. Asusual, the overdot

denotes time derivative. In terms of the Cartesian coordinates, we havepa =
∂L
∂ẋa = ẋa as momenta conju-

gate toxa and pλ =
∂L

∂λ̇
≈ 0 as our primary constraint [6]. Following Dirac’s procedure, one obtains (see

Appendix B) [6]:

H =
1
2

pa pa
+ V(x), (62)

[xa, pb]D = δ
a

b − nanb,

[pa, pb]D = pc(nb∂cna − na∂cnb),

[xa, xb]D = 0, (63)

f (x) = 0,

pa∂a f = 0, (64)

wherena ≡
∂ f
∂xa is the unit normal vector of theN − 1 dimensional hypersurface defined byf (x) = 0.

Notice that we changed our notation for Dirac brackets [A, B]D, which was expressed as [A, B]∗ in the

previous section. Ogawaet. al. derive the classical equations of motion from Hamilton’s equations using

Dirac brackets and show that they are the expected equationsof motion given by the usual Hamiltonian

formalism (see Appendix B for details).

At this point, a general coordinate transformation is performed [6]:

dxa
=
∂xa

∂qµ
dqµ, (65)

whereµ = 0, · · · ,N − 1. The authors choose theq0 coordinate to be orthogonal to the hypersurface defined

by f (x) = 0. Then,f (x) = 0 simply becomesq0
= 0, andpa∂a f = ẋa∂a f = 0 becomes ˙xa∂aq0

= q̇0
= 0. In

terms of the new coordinates, we have the following metric:

gµν =
∂xa

∂qµ
∂xb

∂qν
δab, (66)

[gµν] =


g00 0

0 gi j

 (67)
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Here, gi j corresponds to the first fundamental form of the hypersurface (i.e. the metric induced on the

hypersurface). The classical equations of motion are againthe expected equations. In terms of the new

coordinates, the brackets are (see Appendix B for details):

[qµ, pν]D = δ
µ
ν − nµnν, (68)

[qµ, qν]D = [pµ, pν]D = 0. (69)

The important result at this point is that in classical mechanics, there is no effect of the ‘external world’

on the dynamics of our particle [6]. In the quantum mechanical treatment, the effect of this external world

depends on how quantization is performed [6, 8]. In Dirac’s procedure Dirac brackets are replaced by−i/~

times commutators, and this is a fixed ingredient of the recipe. However, the ordering of operators is not

fixed [8], and one needs to impose some ordering. The choice ofOgawaet. al. is to write the product

of any two operators (notice that this includes simple functions, coordinate transformation matrices, usual

momentum operators etc.) in a manifestly symmetric way:

{A, B} =
1
2

(AB + BA). (70)

It is important to stress that this ishypothesized in the work of Ogawaet. al.; different orderings may also

be chosen.

With this hypothesis and the above information, the Hamiltonian operator takes the following form [6]

(see Appendix B for details):

H =
1
2

g−1/4pig
1/2gi j p jg

−1/4
+ V(q) +

~

8
g00
Γ

i
i0Γ

j
j0 (71)

with the constraints

q0
= 0, p0 = 0. (72)

Here,g ≡ det(gi j). This result is obviously different from that of da Costa (and other people who treat the

problem in the same way as da Costa). The kinetic term is not simply −~2 times the Laplacian defined on

the hypersurface (i.e.g−1/2pig1/2gi j p j); and the additional potential term is also different. The difference

between this kinetic term (named as Laplace-Beltrami operator in [6]) and the usual Laplacian is not a scalar

function which may be added to the additional potential, butis another kinetic operator:

[g−1/4, pig
1/2gi j p jg

−1/4] = (−~2 × difference of Laplace-Beltrami and Laplacian)

=
i~
2

g−1/4(g1/4gi j
Γ

k
ki p j + p jg

1/4gi j
Γ

k
ki). (73)
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Let us also analyze the additional potential terms further.First, notice that there is a difference in the two

metric tensors, that of da Costa and Ogawaet.al. In order to compare the two additional terms, let us

now consider the case in whichg00 = 1. Then Ogawaet.al.’s additional term becomesΓi
i0Γ

j
j0; but the

additional potential derived by da Costa becomes somethingdifferent. Notice also that, one should consider

the connection coefficients in theq3
= 0 limit of da Costa’s treatment. Using the metric introducedby da

Costa and taking the relevant limit, one obtains (see 35):

Γ
k
i0 = α

k
i, (74)

Γ
k
k0 = α

k
k = αk

k
= Tr(α), (75)

VS (da Costa) ∼ 2Γk
i0Γ

i
k0 − Γ

k
k0Γ

i
i0, (76)

whereα is the Weingarten matrix. Notice thatα has previously been defined as an object inE3. However,

the same definition ofα applies to the general case, in which the constraint surfaceis anN − 1 dimensional

hypersurface, having unit normaln, of EN . In the above lines we have made use of this fact. The last lineis

valid only when one studies the problem inE3; the reason for this situation is given in the following section.

The difference between the two approaches is discussed in the literature (see for example [7, 8]), but it is

not clear which method is the correct one in a realistic problem.

B. Treatment of Ikegami, Nagaoka, Takagi and Tanzawa

In this section, we will briefly discuss the idea of Ikegamiet.al. explained in [8].

The idea proposed by the authors is a simple modification of Ogawaet.al.’s treatment. They replace the

geometrical constraintf (x) = 0 (defining anN − 1 dimnsional hypersurface ofEN) which is included in the

Lagrangian in the previous treatment, with its time derivative set equal to zero:

ḟ (x) = ẋa∂a f (x), (77)

L =
1
2

ẋa ẋa − V(x) + λẋa∂a f . (78)

With this Lagrangian, one obtains the following Hamiltonian and brackets (see Appendix B) [8]:

H =
1
2

pa(δab − nanb)pb + V(x), (79)

[xa, xb]D = [pa, pb]D = 0,

[xa, pb]D = δ
a

b. (80)

Notice that the kinetic part is the square of the momentum tangent to the hypersurface. When the usual

replacement of momenta with−i~ times partial derivatives is performed, the kinetic part becomes−~2
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times the Laplacian of the hypersurface [11] (this is what Golovnev directly suggests):

∇̂2
= (∇ − n̂(n̂ · ∇))2. (81)

At this point, the authors make a further modification, and relax the coordinate transformation hypothesis of

Ogawaet.al.; they suggest considering the most general linear combination of operators at the quantization

step [8]. With this suggestion, one writes the following kinetic term (the authors perform the calculation in

a somewhat different way, but our results here will coincide with theirs; see Appendix B for details):

H =
1
2

pa pa −
1
2

(
Ana panb pb + Bpana pbnb

+Cpananb pb

+Dna pa pbnb
+ E panb pbna

+ Fna pbnb pa

+Gpa pbnanb
+ Hnanb pa pb

)
, (82)

where the coefficients are arbitrary complex numbers, and the term including these coefficients is defined

asTn within the text. Since this operator is part of the Hamiltonian, that is, an observable, it should be

Hermitian. This condition gives:

A∗ = B, C∗ = C, D∗ = D, E∗ = F, G∗ = H. (83)

Now, in order to make a comparison with Ferrari and Cuoghi’s ‘geometric potential’, let us restrict the

discussion to three dimensions (i.e. toE3) and write the additional potential of da Costa in the following

way [4, 8]:

Vs = −
~

2

2

(
−

1
4

[Tr(α)]2
+

1
2

Tr(α2)

)
(84)

using the following fact (sinceα is a 2× 2 matrix)

det α =
1
2!
ǫi jǫi′ j′αi

i′α j
j′ , (85)

ǫi jǫi′ j′ = δ
i

i′δ
j

j′ − δi
j′δ

j
i′ , (86)

(Tr α)2 − Tr(α2) = 2det α. (87)

In order to be able to calculate the desired additional potential, one tries to find the necessary conditions on

the coefficients. If one also tries to obtain the Laplacian of the hypersurface in the kinetic part, one should

try to write (82) as
1
2

(pa pa − pananb pb) plus remaining terms, and try to generate da Costa’s potential

from the remaining terms. Our results concerning this task has put forward the following conditions on the

coefficients (see Appendix B):

2Re(A) + 2Re(G) + 2Re(E) +C + D = 1,

A +G∗ = −D, Im(E +G) = 0. (88)
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In our work, we found that Ogawaet.al.’s ordering hypothesis does not give the desired results (see Ap-

pendix B) and this is in agreement with Ikegamiet. al.’s result. The authors also assert that there should be

some condition imposed on the operators to fix the ordering. However, they takeTn as a purely quantum

mechanical object, which puts the resulting Hamiltonian inaccordance with that of da Costa’s [8].

Here, there is another important issue. The comparison of Ogawaet.al.’s and da Costa’s results leads

us to restrict the discussion toE3, because the form of the geometrical potential given by da Costa includes

Tr(α) anddet(α), while the other includesTr(α) andTr(α2), and da Costa’s expression is converted into

(84) by making use of (87). When higher dimensions are considered, the two expressions may not be

comparable in general. For example, in four dimensions (that is, whenα is a 3× 3 matrix):

det α =
1
3!

(
(Tr α)3 − 3Tr(α)2Tr α + 2Tr(α3)

)
, (89)

making use of

det α =
1
3!
ǫi jkǫi′ j′k′αi

i′α j
j′αk

k′ , (90)

ǫi jkǫi′ j′k′ =δ
i

i′δ
j

j′δ
k

k′ − δi
j′δ

j
i′δ

k
k′ + δ

i
j′δ

j
k′δ

k
i′

−δi
k′δ

j
j′δ

k
i′ + δ

i
k′δ

j
i′δ

k
j′ − δi

i′δ
j

k′δ
k

j′ . (91)

These together reveal that the values of the complex coefficients used in (82) depend on the number of

dimensions.

V. DIRAC EQUATION

A. Thin Layer Method Applied to Dirac Equation

Let us now try to apply the thin layer method to the Dirac equation. Extremizing the following action:

S =
∫

d4xψ(iγa∂a − m)ψ, (92)

one obtains Dirac equation in flat spacetime:

(iγa∂a − m)ψ = 0, (93)

in natural units and Cartesian coordinates.γa are vectors under general coordinate transformations and 4×4

matrices satisfying [14]:

[γa, γb]+ ≡ γaγb
+ γbγa

= 2ηab, (94)
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whereηab
= diag(1,−1,−1,−1). The solution of this equation,ψ is called a four spinor and is a scalar under

general coordinate transformations [3].

When one considers an arbitrary curved spacetime, or an arbitrary orthonormal curvilinear coordinate

system in flat spacetime, the partial derivative is replacedby some covariant derivativeDµ, and the action

becomes [3]:

S =
∫

ψ(iγaEa
µDµ − m)ψ

√
−Gd4q, (95)

where the quantityEa
µ will be defined below.

Let us now consider part of the discussion given in [14]. Under a general coordinate transformation to

some set of orthonormal curvilinear frame:

[γµ, γν]+ = [
∂qµ

∂xa γ
a,
∂qν

∂xb
γb]+ =

∂qµ

∂xa

∂qν

∂xb
[γa, γb]+ = 2Gµν (96)

is the relevant relation. Notice that sinceγa are constant matrices they commute with coordinate transfor-

mation matrix elements. One observes here thatγµ are coordinate dependent. Then, in some orthonormal

frame which is not necessarily Cartesian, (94) is the relevant relation again. But then, in this general curvi-

linear orthonormal frame, one has:

ea
= ea

µdqµ, (97)

satisfying

ds2
= Gµνdqµdqν = eaebηab, (98)

eaµ = ηabeb
µ, eaµ

= Gµνea
ν, (99)

as the basis one forms, which are not in general integrable, that is, they are not exact differentials of any

scalar function. Then, one has to introduce a proper connection for the covariant derivative.

There is one more condition to be met when working with the Dirac equation. One can apply a similarity

transformation to theγ matrices, and require the equation to remain invariant under such a transformation.

This transformation is called a spin transformation, and anequation remaining invariant under such a trans-

formation is called a representation invariant equation [14]. Now, let us consider the flat spacetime Dirac

equation in general curvilinear coordinates:

(iγµ∂µ − m)ψ(q) = 0. (100)



26

The spinor is a coordinate scalar, as mentioned above, then the covariant derivative simply becomes a partial

derivative. Now applying a similarity transformation to theγ matrices:

γ′µ ≡ N−1γµN, (101)

⇒ψ→ ψ′ ≡ N−1ψ, (102)

⇒(iN−1γµN∂µ − m)N−1ψ = N−1
(
iγµ

(
∂µ + NN−1

,µ

)
− m

)
ψ = 0. (103)

HereN is also a coordinate scalar. One immediately observes that the form of the equation is now different,

that is, the equation has not remained invariant. In order toovercome this problem, one introduces the so

called spin covariant derivative with its proper connection which leaves the equation invariant under both

general coordinate and spin transformations:

Dµψ(q) = ψ(q);µ + Γµ(q)ψ(q), (104)

whereΓµ are called Fock-Ivanenko coefficients. Although this representation will not be used in thefol-

lowing parts, the above discussion followed from [14] briefly gives the reasoning which lies under the

requirements that one should impose on the equation. The proper covariant derivative which is used in our

work has the following connection [3]:

ωµ =
1
8
ωabµ[γ

a, γb], (105)

ωa
bµ ≡ −Eb

ν∇µea
ν = −Eb

ν(∂µea
ν − Γλµνea

λ), (106)

where

ds2
= ea

µeb
νdqµdqν, (107)

ea
µEb

µ
= δa

b, ea
µEa

ν
= δν µ. (108)

ea
µ are called vierbeins (vielbein in general dimensions).

Now, let us try to apply the thin layer method to the Dirac equation. We assume that (similar to [4, 5]),

our particle is constrained to move on a surfacef (x, y, z) = 0. The metric in curvilinear coordinates is then:

[Gµν] =



1 0 0

0 −Gi j 0

0 0 −1


(109)

where the spatial part of the metric is−1 times the metric introduced by Ferrari and Cuoghi up toO(q3).

The reason is that Dirac equation has only first order derivatives, and an expansion to first order inq3 will

be enough. Then, we introduce the vierbeins:

ea
i = ∂ix

a
+ q3Hi jg

jk∂k xa, e0
0 = 1, ea

3 = Na, others= 0 (110)
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where the subscript zero denotes time coordinate andNa are the Cartesian components of the surface normal

(which is a unit vector), just as in Chapter 2. These give the inverse vierbeins:

Ea
i
= ηab(gi j − q3Hi j)∂ jx

b, E0
0
= 1, Ea

3
= Na, others= 0. (111)

In order to calculate the spin connection coefficients, Christoffel symbols are to be calculated. They have

already been in service, calculated in Chapter 2, equations(35). Using these and the definition of spin

connection, one obtains:

ωc
d0 = 0,

ωc
d3 = 0,

ωc
di = ω̃

c
di − NcHkiẼd

k
+ O(q3), (112)

by direct calculation. Since the connection coefficients are not differentiated, one does not need the ex-

plicit expression ofO(q3) term. The over tildes indicate that the quantity is calculated using only surface

coordinates, that is:

Ẽd
k
= ηdagklẽa

l,

ω̃c
di = −Ẽd

k(∂iẽ
c

k − Γ̃l
kiẽ

c
l),

Γ̃
l
ki =

1
2

gl j(glk,i + gli,k − gki,l). (113)

Next, one rescalesψ as in Chapter 2. This has been done in another article [10], and the rescaled spinor is:

χ ≡ ψ
√

F,

F ≡ 1+ q3Tr α. (114)

Notice that the rescaling factor isO(q3) this time. Now, varying the action (95) with respect toψ, one

obtains the curved spacetime Dirac equation:

(iγaEa
µDµ − m)ψ = 0. (115)

Putting everything into (115), one obtains:
(
iγ0∂0χ +

i
8
γaẼa

iηbc(ω̃
c

di − NcHkiẼd
k)[γb, γd]χ

+ iγaẼa
i∂iχ + iγaNa(∂3χ −

1
2

(Tr α)χ) − mχ

)

q3=0

= 0 (116)

in the q3
= 0 limit. Notice that this equation is also separable, that is, dynamics involving 2D surface

coordinates and the coordinate orthogonal to the 2D surfacecan be decoupled. But notice also that, the
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representation of Dirac matrices is still 4 dimensional, soone may search for an alternative representation

which is indeed written in 3 spacetime dimensions [10].

Another observation one makes here is that this equation includes an additional potential term,−
i
2
γaNaTr α

in natural units. This potential arises from the rescaling of the 4 spinorψ. There is one other additional

term in the equation, coming from the connection coefficients:
i
8
γaẼa

iηbcNcHkiẼd
k[γb, γd]. This term

can also be interpreted as an additional potential term, butwhether this term is a real scalar or not is to be

verified. Such a term did not appear in the treatment for Schr¨odinger equation. This difference arises from

the difference between the covariant derivatives.

VI. CONCLUSION

In our work, we have analyzed two different approaches [4, 6], that of da Costa and Dirac, and two

variants of Dirac’s approach [8]. Another approach, that ofGolovnev, has not been analyzed but derived

from the so called ‘conservative constraint condition’ of Ikegami (see [8, 11]). We have also discussed how

Dirac’s approach can be adjusted to give the same result withda Costa. The reason for doing so is that da

Costa’s approach is rather geometrical, and is independentfrom the quantization procedure; that is, whatever

the wave equation is, one can expand the equation in powers ofone coordinate (which essentially is small

compared to the length scales relevant to the system) and calculate the limiting equation as this coordinate

approaches to zero. This fact makes this approach to be closer to a correct description; whatever that

description is. However, Dirac’s procedure is algebraic, and involves the canonical formalism of classical

mechanics and canonical quantization. Such a procedure seems to be necessary for dealing with constrained

quantum systems, since the experimentally verified applications of quantum theory are based on certain

quantization procedures. Dirac’s work reveals some ambiguities in such a trial [1, 8]. As stated above,

the geometrical approach of da Costa seems to be closer to give the correct result, due to being a direct

expansion of the relevant Schrödinger equation; but the existence of geometrical constraints inevitably

imply physical interactions, for it is impossible to constrain a system geometrically without making use of

interactions; and as a result, Dirac’s procedure may predict different aspects of such an interaction which

may have not been taken into account before.

We have also tried to calculate the spin-magnetic field interaction and connection coefficients of the

Dirac equation using da Costa’s approach, which we have not been able to find in the literature. But this

discussion requires a more detailed analysis, which will possibly be given in the future. One should also

apply Dirac’s method to write a constrained Dirac equation,to compare the results with those of da Costa’s

approach, and possible interactions which can effectively be viewed as constraining mechanisms should be
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considered.

Appendix A: APPENDIX

1. Gauge Invariance of (15)

In [4], the following well known gauge transformation is mentioned:

A′µ ≡ Aµ + ∂µγ, A′0 ≡ A0 + ∂0γ, ψ
′ ≡ ψexp(

iQγ
~

), (A1)

where the subscript zero denotes time derivative andγ(t, qµ) is some scalar function. Putting these new

objects directly into (15) and taking the derivatives, one obtains the following:

i~∂0

(
Ψexp(

iQγ
~

)
)
+ QA0Ψexp(

iQγ
~

) + i~∂0γΨexp(
iQγ
~

) =

1
2m

[
−
~

2

√
G
∂µ

(√
GGµν∂ν

(
Ψexp(

iQγ
~

)
))
+

iQ~
√

G
∂µ

(√
GGµν

(
Aν + ∂νγ

)
Ψexp(

iQγ
~

)
)

+ 2iQ~Gµν
(
Aν + ∂νγ

)
∂µ

(
Ψexp(

iQγ
~

)
)
+ Q2Gµν

(
Aµ + ∂µγ

)(
Aν + ∂νγ

)
Ψexp(

iQγ
~

)

]
, (A2)

whereA0 = −V. Now, expanding derivatives, one obtains:

i~∂0

(
Ψexp(

iQγ
~

)
)
= i~(∂0Ψ) exp(

iQγ
~

) − i~ψQ(∂0γ) exp(
iQγ
~

), (A3)

∂µ
(
ψexp(

iQγ
~

)
)
= exp(

iQγ
~

)∂µψ +
iQ
~
∂µγ(

iQγ
~

)ψ, (A4)

∂µ
(√

GGµν∂ν
(
Ψexp(

iQγ
~

)
))
=

(
∂µ

(√
GGµν∂νΨ

)
+ 2

iQ
~
∂µ

(√
GGµν

Ψ

)
∂νγ

+
iQ
~

√
GGµν

Ψ∂µ∂νγ −
Q2

~2

√
GGµν

Ψ∂µγ∂νγ

)
exp(

iQγ
~

), (A5)

∂µ
(√

GGµν
(
Aν + ∂νγ

)
Ψexp(

iQγ
~

)
)
= exp(

iQγ
~

)

(
∂µ

(√
GGµνAνψ

)
+

iQ
~

√
GGµνAνψ∂µγ

+ ∂µ
(√

GGµνψ
)
∂νγ +

√
GGµνψ∂µ∂νγ +

iQ
~

√
GGµνψ∂µγ∂νγ

)
. (A6)

Then, putting the above terms into (15) and cancelling exponentials from both sides, one directly obtains

(15) again.

2. Dirac Brackets and (46)-(49)

We already know that Poisson brackets satisfy those four important properties. Then, all Poisson bracket

terms in the definition of Dirac brackets satisfy (46). The matrix entries∆kl = [φk, φl] also satisfy (46). Then,

both terms present in the definition of Dirac brackets satisfy this, so Dirac brackets satisfy (46).
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For (47), let us write the expression explicitly:

[ f + g, h]∗ = [ f + g, h] − [ f + g, φk]∆
−1
kl [φl, h]

= [ f , h] − [ f , φk]∆
−1
kl [φl, h] + [g, h] − [g, φk]∆

−1
kl [φl, h] = [ f , h]∗ + [g, h]∗. (A7)

For (48), let us again write the expression explicitly:

[ f g, h]∗ = [ f g, h] − [ f g, φk]∆−1
kl [φl, h]

= [ f , h]g + f [g, h] − ([ f , φk]g + f [g, φk])∆−1
kl [φl, h] = [ f , h]∗g + f [g, h]∗. (A8)

For (49), it is useful to follow the direct proof given in the Appendix of [13]:

[
f , [g, h]∗

]∗
=

[
f , [g, h]∗

]
− [ f , φm]∆−1

mn
[
φn, [g, h]∗

]

=
[
f , [g, h]

]
−

[
f , [g, φk]∆

−1
kl [φl, h]

]
− [ f , φm]∆−1

mn

([
φn, [g, h]

]
−

[
φn, [g, φk]∆

−1
kl [φl, h]

])

= [ f , [g, h]] − [ f , [g, φk]]∆−1
kl [φl, h] − [ f ,∆−1

kl ][g, φk][φl, h]

− [ f , [φl, h]]∆−1
kl [g, φk] − [ f , φm]∆−1

mn[φn, [g, h]]

+ [ f , φm]∆−1
mn[φn, [g, φk]]∆−1

kl [φl, h] + [ f , φm]∆−1
mn[φn,∆

−1
kl ][g, φk][φl, h]

+ [ f , φm]∆−1
mn[φn, [φl, h]]∆−1

kl [g, φk]. (A9)

It is obvious that the first term, which is an ordinary Poissonbracket, satisfies the Jacobi identity. Now, let

us consider the second, fourth and fifth terms. Whenf , g andh are permuted cyclically, and the nine terms

are summed, one obtains:

[h, φk]∆−1
kl

(
[ f , [g, φl]] + [φl, [ f , g]] + [g, [φl, f ]]

)
+ [g, φk]∆

−1
kl

(
[h, [ f , φl]] + [φl, [h, f ]] + [ f , [φl, h]]

)

+[ f , φk]∆−1
kl

(
[g, [h, φl]] + [φl, [g, h]] + [h, [φl, g]]

)
= 0. (A10)

Now, consider the sixth and eighth terms (withf , g, h permuted cyclically and the six terms summed):

[ f , φm]∆−1
mn∆

−1
kl [h, φl]

(
[φn, [g, φk]] + [φk, [φn, g]]

)

+[g, φm]∆−1
mn∆

−1
kl [ f , φl]

(
[φn, [h, φk]] + [φk, [φn, h]]

)

+[g, φm]∆−1
mn∆

−1
kl [g, φl]

(
[φn, [ f , φk]] + [φk, [φn, f ]]

)

= − [ f , φm]∆−1
mn∆

−1
kl [h, φl][g, [φk, φn]] − [g, φm]∆−1

mn∆
−1
kl [ f , φl][h, [φk, φn]]−

[h, φm]∆−1
mn∆

−1
kl [g, φl][ f , [φk, φn]] , (A11)
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using the Jacobi identity. Remembering that

∆
−1
kl [φn, φk] = δnl,

[F(q, p), δnl] = 0,

⇒[F,∆−1
kl ][φn, φk] = −[F, [φn, φk]]∆

−1
kl , (A12)

where one uses the Jacobi identity while passing to the last line. Then one obtains:

− [ f , φm]∆−1
mn∆

−1
kl [h, φl][g, [φk, φn]] − [g, φm]∆−1

mn∆
−1
kl [ f , φl][h, [φk, φn]]−

[h, φm]∆−1
mn∆

−1
kl [g, φl][ f , [φk, φn]] = −[ f , φk][h, φl][g,∆−1

kl ] − [g, φk][ f , φl][h,∆−1
kl ]

− [h, φk][g, φl][ f ,∆−1
kl ]. (A13)

Notice that whenf , g, h are permuted cyclically in the third term of (A9) and summed,the resulting expres-

sion cancels the above expression.

We are left with the seventh term of (A9). Permutingf , g, h cyclically and summing the three terms, one

obtains:

[ f , φm]∆−1
mn[φn,∆

−1
kl ][g, φk][φl, h] + [g, φm]∆−1

mn[φn,∆
−1
kl ][h, φk][φl, f ]

+[h, φm]∆−1
mn[φn,∆

−1
kl ][ f , φk][φl, g]

=[ f , φm][g, φk][φl, h]

(
∆
−1
mn[φn,∆

−1
kl ] + ∆−1

ln [φn,∆
−1
mk] + ∆

−1
kn [φn,∆

−1
lm ]

)
. (A14)

Now, remembering that [F(q, p),∆−1
mk][φk, φa] = −[F(q, p), [φk , φa]]∆−1

mk, one gets:

∆
−1
ab [F(q, p),∆−1

mk][φk, φa] = [F(q, p),∆−1
mb] = −[F(q, p), [φk, φa]]∆−1

mk∆
−1
ab . (A15)

Then, puttingF(q, p) = φn:

∆
−1
mn[φn,∆

−1
kl ] + ∆−1

ln [φn,∆
−1
mk] + ∆

−1
kn [φn,∆

−1
lm ]

= − [φn, [φa, φb]]∆−1
ka ∆

−1
bl ∆

−1
mn − [φn, [φa, φb]]∆−1

ma∆
−1
bk∆

−1
ln − [φn, [φa, φb]]∆−1

la ∆
−1
bm∆

−1
kn . (A16)

Since Jacobi identity applies to Poisson brackets, one can write the equivalent of [φn, [φa, φb]] using the

identity. But for [φn, [φa, φb]], applying the Jacobi identity is equivalent to permutingn, a, b in a cyclic

order. So, using the Jacobi identity for [φn, [φa, φb]] in one of the terms on the left hand side in this manner,

one sees that the expression equals to zero. This completes the proof of (49).
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3. Dirac Procedure with Geometrical Constraint

In order to make calculations one needs to calculate the Dirac brackets first. Using the usual transition

to Hamiltonian dynamics, one obtains:

H =
1

2m
pa pa + V(x) − λ f (x). (A17)

The procedure requires adding the primary constraints to this Hamiltonian and defining a new Hamiltonian

H∗:

H∗ = H + upλ, (A18)

whereu is some multiplier. Then, one needs to find the consistency conditions by calculating Poisson

brackets of the primary constraints with thisH∗ [1, 6]:

φ1 ≡ pλ ≈ 0, (A19)

φ2 ≡ [φ1,H
∗] = [pλ,H

∗] = −∂H∗

∂λ
= f (x) ≈ 0, (A20)

φ3 ≡ [φ2,H
∗] = [ f (x),H∗] = ∂a f (x)

∂H∗

∂pa
= pa∂a f (x) ≈ 0, (A21)

φ4 ≡ [φ3,H
∗] = [pa∂a f (x),H∗] = pa pb∂a∂b f (x) − ∂b

(
V(x) − λ f (x)

)
∂b f (x) ≈ 0. (A22)

The procedure terminates here since the last constraint includesλ and calculating the Poisson bracket of

this with H∗ and (weakly) equating to zero will bring a condition onu. Then, there are four constraints in

total. Now, Poisson brackets of the constraints with each other are to be calculated. Nonzero brackets are:

[φ1, φ4] = −∂b∂
b f (x), (A23)

[φ2, φ3] = ∂b∂
b f (x), (A24)

[φ2, φ4] = pb∂b

(
∂c f (x)∂c f (x)

)
, (A25)

[φ3, φ4] = 2pa pc
(
∂b∂a f (x)

)(
∂b∂c f (x)

)
− ∂a f (x)∂a

(
pa pb∂a∂b f (x)

− ∂b

(
V(x) − λ f (x)

)
∂b f (x)

)
. (A26)

Like Ogawaet. al., let us define:

[φ2, φ3] ≡ α, [φ2, φ4] ≡ −β, [φ4, φ3] ≡ γ. (A27)
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Then, one constructs the following matrix and calculates its inverse to find the Dirac brackets [1, 6]:

[∆kl] =



0 0 0 −α

0 0 α −β

0 −α 0 −γ

α β γ 0



, (A28)

with the inverse:

[∆−1
kl ] =



0 − γ
α2

β

α2

1
α

γ

α2
0 −

1
α

0

−
β

α2

1
α

0 0

−1
α

0 0 0



. (A29)

Now, employing the definiton (60) of Dirac brackets, one obtains the following fundamental bracket rela-

tions [6]:

[xa, pb]D = δ
a

b − nanb, (A30)

[xa, xb]D = 0, (A31)

[pa, pb]D = pc(nb∂cna − na∂cnb). (A32)

Notice that Ogawaet.al.’s notation for Dirac brackets is used again. The classical (Lagrangian) equations

of motion are:

ẍa = −∂aV(x) + λ∂a f (x), (A33)

f (x) = 0. (A34)

Notice that the second equation is obtained from
∂L
∂λ
− d

dt
(
∂L

∂λ̇
) = 0. Since Dirac brackets are defined, all

constraint equations can now be treated as strong equations. Then, the Hamiltonian equations of motion in

terms of Dirac brackets read:

ẋa
= [xa,H]D = pb(δa

b − nanb) = pa, (A35)

ṗa = [pa,H]D = pb pc(nb∂cna − na∂cnb) + (nand − δd
a)∂dV(x) = (nand − δd

a)∂dV(x), (A36)

ẍa
= [ ẋa,H]D = [pa,H]D = (nand − δd

a)∂dV(x), (A37)

using pana
= 0. To see the equivalance of those equations, one can solveφ4 = 0 for λ (using pa∂b∂a f =

∂b(pa∂a f ) = 0, sincepana = 0 fromφ2 = 0, and the definition ofna) and get:

λ =
∂bV(∂b f )
∂c f (∂c f )

, (A38)

ẍa = −∂aV(x) + λ∂a f (x) = −∂aV(x) + nanb∂b f (x). (A39)
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After the coordinate transformation, the brackets become (at the classical level):

[qµ, qν]D =
∂qµ

∂xa

∂qν

∂xb
[xa, xb]D = 0, (A40)

[qµ, pν]D =
∂qµ

∂xa [xa,
∂xb

∂qν
pb]D = δ

µ
ν − nµnν, (A41)

[pµ, pν]D = [
∂xa

∂qµ
pa,

∂xb

∂qν
pb]D

=
∂xa

∂qµ
[pa,

∂xb

∂qν
]D pb + [

∂xa

∂qµ
, pb]D pa

∂xb

∂qν
+
∂xb

∂qν
∂xa

∂qµ
[pa, pb] = 0. (A42)

To see that [pµ, pν]D = 0, first notice that:

[F(q), pµ]D = ∂µF(q)[qµ, pµ] − ∂µF(q)[qµ, φk]∆
−1
kl [φl, pν] = ∂µF(q)[qµ, pν]D, (A43)

∂

∂xb

(∂xa

∂qµ
)
=
∂qλ

∂xb

∂

∂qλ
(∂xa

∂qµ
)
. (A44)

Using (A44), the first and second terms cancel each other. In the third term, [pa, pb]D is antisymmetric ina

andb, but the coordinate transformation matrix elements are symmetric, so this term is zero, meaning that

the whole expression equals to zero.

At this point quantization is performed; that is, Dirac brackets, satisfying the defining properties and

(A43), are replaced by−i/~ times commutators. Making use of the coordinate transformation hypothesis of

Ogawaet. al., one obtains (usingpana → {pa, na}):

[qµ, qν] = 0, (A45)

[qµ, pν] = [qµ, {
∂xa

∂qν
, pa}] =

1
2

(∂xa

∂qν
[qµ, pa] + [qµ, pa]

∂xa

∂qν
)

=
∂xa

∂qν
∂qµ

∂xb
[xb, pa] = i~(δµ ν − nµnν) (A46)

[pµ, pν] = [{
∂xa

∂qµ
, pa}, {

∂xb

∂qν
, pb}]

=
1
4

(
∂xb

∂qν
[
∂xa

∂qµ
, pb]pa +

∂xa

∂qµ
(
[pa,

∂xb

∂qν
]pb +

∂xb

∂qν
[pa, pb]

)
+

(
[pa,

∂xb

∂qν
]pb

+
∂xb

∂qν
[pa, pb]

)∂xa

∂qµ
+ pa

∂xb

∂qν
[
∂xa

∂qµ
, pb] + [

∂xa

∂qµ
, pb]

∂xb

∂qν
pa +

∂xa

∂qµ
(
[pa, pb]

∂xb

∂qν

+ pb[pa,
∂xb

∂qν
]
)
+

(
[pa, pb]

∂xb

∂qν
+ pb[pa,

∂xb

∂qν
]
)∂xa

∂qµ
+ pa[

∂xa

∂qµ
, pb]

∂xb

∂qν

)
= 0. (A47)

Within the last equation, there are some obvious cancellations. Using (A44), the first term cancels the

second, and the eleventh term cancels the twelfth. Since [pa, pb] is antisymmetric ina and b, but the

coordinate transformation matrix elements are symmetric,third and tenth terms vanish. Then, one realizes
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that:

[pa,
∂xb

∂qν
]pb

∂xa

∂qµ
+ pa

∂xb

∂qν
[
∂xa

∂qµ
, pb]

=[pa,
∂xb

∂qν
][ pb,

∂xa

∂qµ
] + [pa,

∂xb

∂qν
][
∂xa

∂qµ
, pb] + [pa,

∂xb

∂qν
]
∂xa

∂qµ
pb + pb

∂xa

∂qµ
[pa,

∂xb

∂qν
]. (A48)

Notice that the first and second terms on the right hand side of(A48) cancel each other, while the third and

fourth terms cancel the seventh and sixth terms of (A47) (using (A44)) respectively. Then, what is left is

the following:

[pµ, pν] =
∂xb

∂qν
[pa, pb]

∂xa

∂qµ
+
∂xa

∂qµ
[pa, pb]

∂xb

∂qν
. (A49)

One immediately observes that the left hand side is antisymmetric in µ andν, while the right hand side is

symmetric. The only possibility is then [pµ, pν] = 0.

What is rather interesting about this procedure is thatq0 and p0 commute with every other operator,

indicating that uncertainty relations are violated in the normal direction.

It is now time to derive the Hamiltonian found in [6]. Remembering thatH =
1
2

pa pa
+ V(x) after Dirac

brackets are defined, andV(x) simply becomesV(q) after a general coordinate transformation, one has:

H =
1
2
δab{∂qµ

∂xa , pµ}{
∂qν

∂xb
, pν} + V(q), (A50)

H − V(q) ≡ K, (A51)

K =
1
8
δab

(
2[
∂qµ

∂xa , pµ]
∂qν

∂xb
pν + 2pµ

∂qµ

∂xa [pν,
∂qν

∂xb
] + [

∂qµ

∂xa , pµ][ pν,
∂qν

∂xb
] + 4pµ

∂qµ

∂xa

∂qν

∂xb
pν

)

=
1
2

pig
i j p j +

1
4
δab

(
[
∂qµ

∂xa , pµ]
∂qν

∂xb
pν + pµ

∂qµ

∂xa [pν,
∂qν

∂xb
]

)
+

1
8
δab[

∂qµ

∂xa , pµ][ pν,
∂qν

∂xb
]. (A52)

Let us first concentrate on the following expression:

[g−1/4, pi] = −
1
4

g−5/4∂ jg[q j, pi], (A53)

∂ jg = ggikgik, j, (A54)

Γ
i
i j =

1
2

gikgik, j, (A55)

⇒[g−1/4, pi] = −
i~
2

g−1/4
Γ

k
ki, (A56)
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whereg ≡ det(gi j). Now, consider the fourth term of (A52):

1
8
δab[

∂qµ

∂xa
, pµ][ pν,

∂qν

∂xb
]

=
~

2

8
∂xa

∂qα
∂xb

∂qβ
gαβ

∂

∂qλ
(∂qµ

∂xa

)
(δλ µ − nλnµ)

∂

∂qσ
(∂qν

∂xb

)
(δσ ν − nσnν), (A57)

∂xa

∂qα
∂qµ

∂xa = δα
µ, (A58)

⇒∂xa

∂qα
∂

∂qλ
(∂qµ

∂xa

)
= −∂qµ

∂xa

∂

∂qλ
(∂xa

∂qα
)
= −Γµ

λα
, (A59)

⇒1
8
δab[

∂qµ

∂xa
, pµ][ pν,

∂qν

∂xb
] =
~

2

8

(
g00
Γ

i
i0Γ

j
j0 + gkl

Γ
i
ikΓ

j
jl

)
. (A60)

Now, making use of the above results and the strong equationsq0
= 0, p0 = 0, one obtains:

H =
1
2

g−1/4pig
1/2gi j p jg

−1/4
+
~

2

8
g00
Γ

i
i0Γ

j
j0 + V(q). (A61)

4. Calculations for Ikegami et. al.’s Work

In this treatment, the Lagrangian is (78). Momentum variables then appear to be [8]:

pa = ẋa − λ∂a f (x), (A62)

and the primary constraint is again:

φ1 ≡ pλ ≈ 0. (A63)

Then,

H∗ =
1
2
δab(pa + λ∂a f (x))(pb + λ∂b f (x)) + V(x) + upλ. (A64)

There is one secondary constraint in this case:

φ2 ≡ [pλ,H
∗] = ∂a f (x)(pa − λ∂a f (x)) ≈ 0. (A65)

Notice that we are still at the classical level, so the brackets are ordinary Poisson brackets.φ1 has zero

Poisson brackets with bothxa and pb, and the matrix∆kl used in the definition of Dirac brackets is an-

tisymmetric. This means, the term involving∆kl in the definition of Dirac bracket is zero for both; the

fundamental brackets are then those obtained from ordinaryPoisson brackets:

[xa, xb]D = [pa, pb]D = 0, [xa, pb]D = δ
a

b. (A66)
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Now, solvingφ2 = 0 for λ, one obtains:

λ =
(∂a f (x))pa

∂b f (x)(∂b f (x))
. (A67)

This gives the following classical Hamiltonian [8]:

H =
1
2

pa(δab − nanb)pb + V(x). (A68)

Let us now concentrate onTn.

Tn ≡
1
2

(
Ana panb pb + Bpana pbnb

+CPananb pb + Dna pa pbnb
+

E panb pbna
+ Fna pbnb pa +Gpa pbnanb

+ Hnanb pa pb

)

=(A + B +C + D + E + F +G + H)pananb pb + Bpana[pb, n
b]

+A[na, pa]nb pb + F[na, pb]nb pa + E panb[pb, n
a] + D[na, pa]pbnb

+Dpana[pb, n
b] +Gpa[pb, n

b]nb
+Gpana[pb, n

b] + Hna[nb, pa]pb

+H[na, pa]nb pb. (A69)

Now, let us try to write the geometric potential of da Costa interms of the commutators ofna and pa

(assuming theq3→ 0 limit of the metric given in [4, 5]):

∂ana
=
∂qµ

∂xa ∂µna
=
∂qi

∂xaαi
j∂xa

∂q j
+
∂q0

∂xa ∂0na. (A70)

Notice that we used the definition of the Weingarten matrix. Now, one should notice that∂0na corresponds

to the change in the Cartesian components ofn along the direction ofn. Sincen is by definition a unit

vector, in the coordinates that are chosen,∂0n = 0. Then:

∂ana
= αi

i
= Tr α. (A71)

Using a similar reasoning, one notices that:

(∂anb)(∂bna) =
∂qµ

∂xa ∂µnb ∂qν

∂xb
∂νn

a
=
∂qi

∂xa∂in
b ∂q j

∂xb
∂ jn

a

=
∂qi

∂xaαi
j ∂xb

∂q j

∂qk

∂xb
αk

l ∂xa

∂ql
= αi

jα j
i
= Tr(α2). (A72)

So, one searches for:

VS = −
~

2

8

(
2Tr(α2) − (Tr α)2

)
= −

1
8

(
2[pa, n

b][na, pb] − [pa, n
a][nb, pb]

)
. (A73)
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Hermiticity requires (88). Using these conditions, one has:

2Tn =(2Re(A) +C + D + 2Re(E) + 2Re(G))pananb pb + [na, pa]
(
(A +G∗)nb pb + Dpbnb

)

+(A∗ + D +G)pana[pb, n
b] + (E +G)panb[pb, n

a]

+(E∗ +G∗)[[na, pb], nb pa] + (E∗ +G∗)nb pa[na, pb]. (A74)

First, notice that:

[[na, pb], nb pa] = nb[[na, pb], pa] (A75)

sincenb is only a function of coordinates and so is [na, pb]. Then:

[[na, pb], nb pa] = −nb[[ pa, n
a], pb] (A76)

since [pa, pb] = 0. Notice here the following:

nb[[ pa, n
a], pb] = ~2nb∂bTr α = ~2nµ∂µTr α = ~2n0∂0Tr α = 0, (A77)

sinceTr α is an object which is evaluated atq3
= 0. Now imposing

A +G∗ = −D, E +G = E∗ +G∗, 2Re(A) +C + D + 2Re(E) + 2Re(G) = 1, (A78)

one obtains

Tn =
1
2

(
pananb pb + ~

2
(
D(Tr α)2 − (E +G)Tr(α2)

)
. (A79)

This result implies that there are two purely arbitrary constants,D andE +G in this approach, so one has to

impose some other conditions on the complex numbers to fix theordering. Including the number of purely

arbitrary coefficients, this is the result obtained by Ikegamiet. al.

Now, let us consider the ordering hypothesis of Ogawaet. al.

Tn =
1
2
{{na, pa}{nb, pb}}

=
1
2

pa pa −
1
4

(
− pana pbnb

+ panb pbna
+ pa pbnbna

+nanb pa pb + na pbnb pa − nb pbna pa − 2nb pb pana
)
. (A80)

Here one expects to find

D = −
1
4
, E +G = −

1
2
. (A81)

Here, the corresponding results are:

D = 1, E +G = −1, (A82)

which mean that this ordering does not give the desired result.
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