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Abstract

Statistics of particles is one of the most fundamental aspects of quantum systems. Majorana

fermions in vortices on a two-dimensional plane obey novel statistics called non-Abelian

statistics. Non-Abelian statistics leads to the mixing of particle states, which will enable

quantum computation. It has been known that non-Abelian statistics exists in a system

of ‘Abelian’ vortices, in which zero-energy Abelian Majorana fermions are trapped. In this

article, we discuss vortices possessing a ‘non-Abelian’ internal symmetry; these vortices

are called non-Abelian vortices and have the zero-energy non-Abelian Majorana fermions

inside them. Considering the system of multiple non-Abelian vortices, we derive a novel

non-Abelian statistics that is different from the previously derived non-Abelian statistics.

This new non-Abelian statistics is given by a product of two different groups, namely the

non-Abelian statistics obeyed by the Abelian Majorana fermions and the Coxeter group.

The Coxeter group describes reflections and induces the geometry of polytopes in a high-

dimensional space. As the simplest non-Abelian symmetry, we consider the SO(3) group with

its vector representation, and we concretely present the Coxeter group and its geometry in

the high-dimensional Hilbert space spanned by non-Abelian Majorana fermions.

http://arxiv.org/abs/1010.3331v1
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I. INTRODUCTION

Majorana fermions proposed by Ettore Majorana in the 20th century have a peculiar property

in that an antiparticle is equivalent to a particle [1]. His original conjecture that neutrinos might be

such particles has been rejected; however, Majorana fermions are now attracting much attention in

condensed matter physics [2]. It has been recently recognized that Majorana fermions with exact

zero energy are trapped inside the core of half-quantized vortices in chiral p-wave superconductors

or p-wave superfluids and that they appear on the edge of topological superconductors/insulators

[3]. A system of multiple vortices provides an exchange statistics that is different from that of

bosons, fermions and anyons. Such statistics, called ‘non-Abelian statistics’ is mathematically

described by the braid group [4, 5]. More precisely, one Dirac fermion is defined by a set of two

Majorana fermions trapped in two different vortices, and the Hilbert space is constructed from

these Dirac fermions [5]. The dimension (2m) of the Hilbert space increases exponentially with an

increase in the even number (2m) of vortices. Consequently, non-Abelian statistics provides one

possible candidate for quantum computation [6], and hence, p-wave superconductors or superfluids

may be used as a device for quantum computers. This is why Majorana fermions and non-Abelian

statistics have attracted the attention of many researchers in recent years [2, 6]. Recently, it

has been proposed that even in three dimensions, non-Abelian statistics is realized by Majorana

fermions trapped on monopole-like objects [7].

Though the exchange statistics discussed above is non-Abelian, Majorana fermions on vortices

or other defects studied thus far are all ‘Abelian’ in the sense that only a single Majorana fermion

is trapped in each defect. On the other hand, if multiple Majorana fermions are trapped inside a

defect and can continuously mix with each other, one may be able to interpret them as a single ‘non-

Abelian Majorana fermion’, namely a Majorana fermion having a non-Abelian internal symmetry.

Then, these fermions must belong to representations of the underlying Lie group.

In this article, we show that non-Abelian Majorana fermions obey a novel non-Abelian exchange

statistics. Since Majorana fermions are real (i.e. not complex) fields, their group representation

must also be real. The simplest of such representation is the vector representation, triplet, of

the SO(3) Lie group. We explicitly construct the non-Abelian exchange statistics of non-Abelian

Majorana fermions belonging to the vector representation of SO(3). We not only show that the

Hilbert space for 2m vortices has dimension 23m much larger than 2m of Abelian fermions, but also

show that it contains a new component. In addition to the non-Abelian statistics already derived

by Ivanov [5], we find another structure, i.e. the Coxeter group [8, 9]: the entire non-Abelian
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statistics is a direct product of these two. The Coxeter group is a symmetry group of higher-

dimensional generalization of polytopes such as a triangle or a tetrahedron, which was found by

Harold Scott MacDonald ‘Donald’ Coxeter, one of the great Mathematicians in the 20th century.

The large Hilbert space spanned by non-Abelian Majorana fermions contains high-dimensional

internal spaces of various representations of SO(3), not only singlets and triplets but also quintets

and higher representations in general, where the Coxeter group acts on them to exchange multiple

states in the same representations.

One question arising immediately may be whether there exist physical systems realizing such

non-Abelian Majorana fermions in reality. The answer is yes, such systems probably exist in the

universe, i.e. in quark matter at extremely high density in neutron stars or quark stars, which are

expected to exhibit the so-called ‘colour superconductivity’ [10, 11]. These stars rotate rapidly,

and consequently, stable vortices are created; these vortices are non-Abelian vortices with colour

magnetic fluxes confined inside them [12]. We have shown in our previous paper [13] that non-

Abelian Majorana fermions of an SO(3) triplet indeed exist in the core of a non-Abelian vortex. The

origin of this SO(3) group is the ‘colour-flavour locked’ symmetry SU(3)C+F in the ground state of

a colour superconductor [10, 11], which is spontaneously broken down to its subgroup SU(2)×U(1)

in the core of a vortex [14]. Since there remains an unbroken symmetry SU(2) ∼ SO(3) inside the

core, the zero modes trapped in it must belong to the representations of SO(3). We have found

triplet and singlet Majorana fermions [13]; however, only the triplet is a new object to be considered

in this article. Theoretically, fermionic modes in vortices are treated by the Bogoliubov-de Gennes

equation, which is an equation for fermions coupled to the vortex profile. For example, the particle

(ϕ) and hole (η) components of the triplet zero modes (chirally right-handed) are approximately

given, in two-component Weyl spinor representation, as

ϕ(r, θ) = e−|∆CFL|r





J0(µr)

iJ1(µr) e
iθ



 , η(r, θ) = e−|∆CFL|r





−J1(µr) e−iθ

iJ0(µr)



 , (1)

where ∆CFL is the gap value of the bulk colour superconductor (in the colour-flavour locked phase),

µ is the chemical potential, and r, θ are the polar coordinates perpendicular to the z direction.

The triplet zero modes ψa (a = 1, 2, 3) are then compactly expressed as ψa ∝ (ϕ, (−1)a+1η)t,

and they satisfy the Majorana condition ψa = (ψa)C , where (ψa)C ∝ (ηC , (−1)a+1ϕC)t with C

being the charge conjugation. It should be noted that these zero-mode solutions (non-Abelian

Majorana fermions) are well localized around the centre of the vortex and do not depend on the

z coordinate, indicating that they are essentially local objects on a two-dimensional plane. Hence,
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FIG. 1: Schematic of n particles on a two-dimensional plane and exchange of the kth and (k+1)th particles

denoted by Tk (k = 1, · · · , n− 1).

the non-Abelian vortices appearing in high-density matter provide an example of realization of the

non-Abelian Majorana fermions.

However, it should be emphasized that our conclusion in this article does not rely on any specific

model; all that we need is non-Abelian Majorana fermions of an SO(3) triplet. Thus, our analysis

raises a possibility to realize such a statistics in table top samples, for instance in cold atomic

gasses that can be well controlled through experiments. It should also be noted that the SO(3)

group and its vector representation are chosen only for illustration as the simplest example and

that our method works for arbitrary Lie groups and arbitrary (real) representations, opening up a

new possibility of Majorana fermions, non-Abelian statistics, and quantum computations.

II. STATISTICS ON TWO-DIMENSIONAL PLANE

The exchange of particles on a two-dimensional plane is described by the braid group. Let us

suppose n particles (braids) and label them as shown in Fig. 1. The braid group is defined as a set

of operations Tk (k = 1, · · · , n− 1) that involve the exchange of the positions of the neighbouring

kth and (k+1)th braids in a way such that the kth braid always goes around the (k+1)th braid in

an anti-clockwise direction. The operations Tk satisfy the following braid relations: i) TkTl = TlTk

for |k − l| > 1 and ii) TkTlTk = TlTkTl for |k − l| = 1, which are schematically shown in Fig. 2.

It should be noted that T−1
k 6= Tk because the operation is directed. This simple definition of the

braid group allows for various representations with rich non-trivial structures, as we will see below.

The representation of the braid group is expressed by a linear group {τk|k = 1, · · · , n − 1}
acting on a vector space. Here, τk’s also satisfy the following braid relations: 1) τkτl = τlτk for

|k− l| > 1 and 2) τkτlτk = τlτkτl for |k− l| = 1. The representations contain information about the
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FIG. 2: Schematic of the braid relations i) TkTl = TlTk with |k − l| > 1 and ii) TkTk+1Tk = Tk+1TkTk+1.

statistics on the exchange of particles. For example, the one-dimensional representation allows for

the anyon statistics, which gives a wave function a complex factor under the exchange of particles;

τ1 = τ2 = · · · = τn−1 = eiθ with 0 ≤ θ < 2π being a real number. Although the anyon statistics

is a characteristic statistics in two dimensions, it is still Abelian. More generally, the braid group

allows for non-Abelian statistics in which neighbouring τk’s are non-commutative: [τk, τl] 6= 0 for

|k − l| = 1.

III. NON-ABELIAN STATISTICS OF MULTIPLE NON-ABELIAN VORTICES

Let us consider n non-Abelian vortices with the SO(3) symmetry. There are correspondingly

n non-Abelian Majorana fermions belonging to the triplet of SO(3) at each vortex site. Let us

introduce operators γak (a = 1, 2, 3) for creation operators of the triplet non-Abelian Majorana

fermions in the kth non-Abelian vortex. These operators satisfy the anti-commutation relation

{γak , γbl } = 2δklδ
ab and the self-conjugation relation γak

† = γak . This formulation is an extension of

the Abelian Majorana fermions discussed in [5] to the non-Abelian case. An exchange operation of

neighbouring kth and (k+1)th non-Abelian vortices, denoted by Tk as shown in Fig. 1, induces an

exchange of the non-Abelian Majorana fermions. Because the Majorana fermion turning around a

vortex changes the sign of the wave function owing to the odd winding number and the Majorana

condition, a cut should be introduced to keep the phase single valued [5]. Consequently, the

operation Tk induces the following transformation (see Fig. 3):

Tk :







γak → γak+1

γak+1 → −γak
, for all a (2)

with the rest γal (l 6= k, k+ 1) unchanged. It should be noted that the presence of this minus sign

is crucial to satisfy the braid relations i) and ii).
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FIG. 3: Exchange of two non-Abelian Majorana fermions γa
k
and γa

k+1
on the two-dimensional plane. The

dotted lines denote the cuts attached to each non-Abelian Majorana fermion. From the middle figure

to the rightmost figure, it can be seen that the non-Abelian Majorana fermion γa
k
jumps the cut of the

(k + 1)th vortex, to obtain an extra minus sign. Therefore, Tk induces the transformation: γa
k
→ γa

k+1
and

γa
k+1

→ −γa
k
.

Now, we discuss the representation τk for the exchange of non-Abelian Majorana fermions. First,

it should be noted that transformation (2) can be realized by SO(3) invariant unitary operators τ̂k =

τ̂1k τ̂
2
k τ̂

3
k , where τ̂

a
k is made of non-Abelian Majorana operators γak and γak+1 as τ̂

a
k = (1+γak+1γ

a
k)/

√
2

(not summed over a). It is easily verified that τ̂kγ
a
l τ̂

−1
k indeed generates the above transformation.

Once the Hilbert space is defined, one obtains the representations of τ̂k as matrices. In order to

define the bases of the Hilbert space, we first introduce an operator of non-Abelian Dirac fermions

Ψ̂a
k = (γa2k−1 + iγa2k)/2 (k = 1, · · · , n/2) using an even number (n) of non-Abelian vortices. The

non-Abelian Dirac fermions satisfy the anti-commutation relations {Ψ̂a
k, Ψ̂

b†
l } = δklδ

ab, {Ψ̂a
k, Ψ̂

b
l } =

{Ψ̂a†
k , Ψ̂

b†
l } = 0, and the operators Ψ̂a

k and Ψ̂a†
l (6= Ψ̂a

k) correspond to annihilation and creation

operators, respectively. Then, we can construct the Hilbert space by acting successively creation

operators Ψ̂a†
k ’s on the ‘vacuum state’ |0〉 defined by Ψ̂a

k|0〉 = 0. In what follows, we concretely

show representations τk in two cases with two (n = 2) and four (n = 4) non-Abelian vortices.

First, we discuss the case with two non-Abelian vortices (n = 2), where we can define only one

operation T1 and only one non-Abelian Dirac fermion Ψ̂a
1. The Hilbert space is spanned by the

following four basis states: singlet-even |10〉 = |0〉 (vacuum), singlet-odd |13〉 = 1
3!
ǫabcΨ̂a†

1 Ψ̂b†
1 Ψ̂

c†
1 |0〉

(filled by three Dirac fermions), triplet-even |32〉 = 1
2!
ǫabcΨ̂b†

1 Ψ̂c†
1 |0〉 (occupied by two Dirac

fermions), and triplet-odd |31〉 = Ψ̂a†
1 |0〉 (occupied by one Dirac fermion), where the subscript

denotes the number of non-Abelian Dirac fermions. With these bases {|10〉, |13〉, |32〉, |31〉}, we
find the representation τ1 to be an 8 × 8 matrix; τ1 = diag(e−i3π/4, ei3π/4, eiπ/4I3×3, e

−iπ/4I3×3).

The 3×3 unit matrix I3×3 means the three components in each triplet state. The obtained matrix

τ1 is diagonal, and thus, the system of two non-Abelian Majorana fermions follows the (anyon-like)
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Abelian statistics.

Second, we discuss the representation τk (k = 1, 2, 3) for four non-Abelian vortices (n = 4). We

can construct the Hilbert space in a manner similar to that described above, and this is expressed

by singlet (1), triplet (3), and quintet (5) states, which are further specified by even (E) and

odd (O) numbers of Dirac fermions (see Appendix A). Then, we obtain the representations τk

(k = 1, 2, 3) as 64 × 64 matrices; τk = diag(τ1,Ek , τ1,Ok , τ3,Ek I3×3, τ
3,O
k I3×3, τ

5,E
k I5×5, τ

5,O
k I5×5).

The submatrices τM,P
k (M = 1, 3, 5, P = E , O) are found to have the following structure:

τM,P
k = σMk ⊗ hPk . (3)

Here, the first matrices σMk have different expressions depending on the multiplets:

σ11 =





−1 0

0 1



 , σ12 =
1

2





1
√
3

√
3 −1



 , σ13 =





−1 0

0 1



 , (4)

for the singlet states,

σ31 =











−1 0 0

0 1 0

0 0 1











, σ32 =
1

2











1
√
2 1

√
2 0 −

√
2

1 −
√
2 1











, σ33 =











1 0 0

0 1 0

0 0 −1











, (5)

for the triplet states, and

σ51 = σ52 = σ53 = 1, (6)

for the quintet states. On the other hand, the second matrices hPk are common for the multiplets:

hE1 = hO1 =





ei
π
4 0

0 e−iπ
4



 , hE2 = hO2 =
1√
2





1 −1

1 1



 , hE3 = hO†
3 = hE1 (7)

for even and odd numbers of Dirac fermions. These are our main results. We have obtained matrix

representations for the exchange statistics in the system of four non-Abelian vortices. It should be

noted that both the matrices σM2 (M = 1,3) and hP2 in the submatrices τM,P
2 , and consequently

the matrix τ2, are non-diagonal. Therefore, the system of four non-Abelian Majorana fermions

follows the non-Abelian statistics. It should be emphasized that the non-Abelian matrices we have

derived are essentially new and are considered as the generalizations of the corresponding matrices

obtained by Ivanov. Indeed, while the matrices hPk (common for the multiplets) are the same

as those that Ivanov obtained for ‘Abelian’ vortices (thus we call them the Ivanov matrices), the

matrices σMk are new matrices that only appear in ‘non-Abelian’ vortices. Hence, the representation

matrices we have found are the direct products of the new matrices σMk and Ivanov matrices hPk .
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IV. COXETER GROUP

Unexpectedly, the new matrices σMk are identified with the elements in the Coxeter group,

which is related to the operations of reflections shown below. The Coxeter group S is defined as

a group with generators si ∈ S (i = 1, 2, 3, · · · ) satisfying the following two conditions: a) s2i = 1

and b) (si sj)
mi,j = 1 with a positive integer mi,j ≥ 2 for i 6= j. It should be noted that condition

a) gives mi,i = 1. It is easy to check that the matrices σMk indeed satisfy conditions a) and b).

Elements mi,j can be summarized as the Coxeter matrix (M)ij = mi,j. In the present case, from

the matrices σMk , we obtain the Coxeter matrix

M3 =











1 3 2

3 1 3

2 3 1











, (8)

where the top-left submatrices correspond to each multiplet; the 1 × 1 submatrix (1) corresponds

to the quintet, the 2×2 submatrix





1 3

3 1



 corresponds to the singlet, and the 3×3 whole matrix

corresponds to the triplet.

The Coxeter group is closely related to the geometry in a high-dimensional space, because

conditions a) and b) can be interpreted as geometrical operations in the Hilbert space: the condition

a) corresponds to a reflection and the condition b) corresponds to a rotation by an angle 2π/ms,t.

Therefore, the Coxeter group leads to the existence of several polytopes that are invariant under

reflections and rotations, such as a 2-simplex (triangle) under the reflections σ11 and σ12 for the

singlet and a 3-simplex (tetrahedron) under the reflections σ31 , σ
3

2 , and σ
3

3 for the triplet, as shown

in Fig. 4. The fact that the Coxeter group appears in the exchange statistics of the system of

the non-Abelian vortices provides a new insight that the non-Abelian statistics of non-Abelian

Majorana fermions can be intuitively understood with the help of the geometry of polytopes.

We may extend our discussion to the system of any even number (n = 2m) of non-Abelian

vortices. From the analysis given above, we expect mi,j = 3 for |i − j| = 1 and mi,j = 2 for

|i − j| > 1 for the representation matrices σi (i = 1, · · · , 2m − 1), which would be obtained from

the decomposition of τk. Therefore, the Coxeter matrix will be given by the (2m − 1) × (2m − 1)
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FIG. 4: 2-simplex (triangle) for the singlet and 3-simplex (tetrahedron) for the triplet induced from the

reflections σM
k

(k = 1 and 2 for M = 1, and k = 1, 2 and 3 for M = 3). These simplexes are invariant

under reflections by σM
k

.

matrix as follows:

M2m−1 =























1 3 2 2 · · ·
3 1 3 2

2 3 1 3

2 2 3 1
...

. . .























. (9)

In other words, a product σiσj of reflections σi and σj makes a rotation by an angle 2π/3 for

|i − j| = 1 and 2π/2 = π for |i − j| > 1. Therefore, the system of an even number (2m) of

non-Abelian vortices would lead to the existence of a (2m− 1)-simplex as the highest-dimensional

object (see also Appendix B).

It is known that the Coxeter group is classified into several types [9]. The Coxeter group

summarized by the matrix (9) is called A2m−1. Then, it would be interesting to ask whether the

system of non-Abelian Majorana fermions can lead to other types of Coxeter groups, such as Bl

(l ≥ 2), Dl (l ≥ 4), El (l = 6, 7, 8), F4, G2, Hl (l = 3, 4), I2(l) (l = 5, l ≥ 7), or which new

symmetry of the non-Abelian Majorana fermions would be connected to them. These questions

would open an extensive view about the novel relationship between the non-Abelian Majorana

fermions and the Coxeter groups.



9

Acknowledgments

This work is supported in part by a Grant-in-Aid for Scientific Research on Priority Areas

‘Elucidation of New Hadrons with a Variety of Flavors (E01: 21105006)’ (S. Y.) and by Grant-in-

Aid for Scientific Research No. 20740141 (M. N.) from the ministry of Education, Culture, Sports,

Science and Technology of Japan.

Appendix A: Bases of the Hilbert space for the system of four non-Abelian vortices

We explicitly present the bases of the Hilbert space of four non-Abelian vortices. There are four

bases,

|100〉 = |0〉,

|133〉 = i
1

3!
ǫabc

1

3!
ǫdef Ψ̂a†

1 Ψ̂b†
1 Ψ̂

c†
1 Ψ̂d†

2 Ψ̂e†
2 Ψ̂f†

2 |0〉,

|111〉 = i
1√
3
Ψ̂a†

1 Ψ̂a†
2 |0〉,

|122〉 =
1√
3

1

2!
ǫabc

1

2!
ǫadeΨ̂b†

1 Ψ̂c†
1 Ψ̂

d†
2 Ψ̂e†

2 |0〉, (A1)

for the singlet-even (1, E) states, and

|103〉 =
1

3!
ǫabcΨ̂a†

2 Ψ̂b†
2 Ψ̂

c†
2 |0〉,

|130〉 = −i 1
3!
ǫabcΨ̂a†

1 Ψ̂b†
1 Ψ̂

c†
1 |0〉,

|121〉 = − 1√
3

1

2!
ǫabcΨ̂a†

1 Ψ̂b†
1 Ψ̂

c†
2 |0〉,

|112〉 = i
1√
3

1

2!
ǫabcΨ̂a†

1 Ψ̂b†
2 Ψ̂c†

2 |0〉, (A2)

for the singlet-odd (1, O) states. There are six bases,

|302〉 =
1

2!
ǫabcΨ̂b†

2 Ψ̂c†
2 |0〉,

|331〉 = −i 1
3!
ǫbcdΨ̂b†

1 Ψ̂c†
1 Ψ̂

d†
1 Ψ̂a†

2 |0〉,

|322〉 =
1√
2
ǫabc

1

2!
ǫbde

1

2!
ǫcfgΨ̂d†

1 Ψ̂e†
1 Ψ̂f†

2 Ψ̂g†
2 |0〉,

|311〉 = i
1√
2
ǫabcΨ̂b†

1 Ψ̂c†
2 |0〉,

|320〉 = − 1

2!
ǫabcΨ̂b†

1 Ψ̂c†
1 |0〉,

|313〉 = i
1

3!
ǫbcdΨ̂a†

1 Ψ̂b†
2 Ψ̂c†

2 Ψ̂
d†
2 |0〉, (A3)
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for the triplet-even (3, E) states, and

|301〉 = Ψ̂a†
2 |0〉,

|332〉 = i
1

3!
ǫbcdΨ̂b†

1 Ψ̂
c†
1 Ψ̂d†

1

1

2!
ǫaef Ψ̂e†

2 Ψ̂f†
2 |0〉,

|321〉 =
1√
2
ǫabc

1

2!
ǫbdeΨ̂d†

1 Ψ̂e†
1 Ψ̂c†

2 |0〉,

|312〉 = −i 1√
3
ǫabc

1

2!
ǫcdeΨ̂b†

1 Ψ̂
d†
2 Ψ̂e†

2 |0〉,

|323〉 =
1

2!
ǫabcΨ̂b†

1 Ψ̂
c†
1

1

3!
ǫdef Ψ̂d†

2 Ψ̂e†
2 Ψ̂f†

2 |0〉,

|310〉 = iΨ̂a†
1 |0〉, (A4)

for the triplet-odd (3, O) states. There are two bases,

|522〉 = iN
[

1

2

{

1

2!
ǫacdΨ̂c†

1 Ψ̂
d†
1

1

2!
ǫbef Ψ̂e†

2 Ψ̂f†
2 +

1

2!
ǫbcdΨ̂c†

1 Ψ̂d†
1

1

2!
ǫaef Ψ̂e†

2 Ψ̂f†
2

}

−δ
ab

3

1

2!
ǫcdeΨ̂d†

1 Ψ̂e†
1

1

2!
ǫcfgΨ̂f†

2 Ψ̂g†
2

]

|0〉,

|511〉 = −N
[

1

2

{

Ψ̂a†
1 Ψ̂b†

2 + Ψ̂b†
1 Ψ̂

a†
2

}

− δab

3
Ψ̂c†

1 Ψ̂c†
2

]

|0〉, (A5)

for the quintet-even (5, E) states, and

|521〉 = −iN
[

1

2

{

1

2!
ǫacdΨ̂c†

1 Ψ̂d†
1 Ψ̂b†

2 +
1

2!
ǫbcdΨ̂c†

1 Ψ̂d†
1 Ψ̂a†

2

}

− δab

3

1

2!
ǫcdeΨ̂c†

1 Ψ̂d†
1 Ψ̂e†

2

]

|0〉,

|512〉 = −N
[

1

2

{

Ψ̂a†
1

1

2!
ǫbcdΨ̂c†

2 Ψ̂d†
2 + Ψ̂b†

1

1

2!
ǫacdΨ̂c†

2 Ψ̂d†
2

}

− δab

3

1

2!
ǫcdeΨ̂c†

1 Ψ̂d†
2 Ψ̂e†

2

]

|0〉, (A6)

for the quintet-odd (5, O) states with N =
√

3/2 for a = b and N =
√
2 for a 6= b. With these

bases we obtain the matrices τk (k = 1, 2, 3) as presented in Eqs. (3)–(7).

Appendix B: Coxeter matrix for arbitrary number of non-Abelian vortices

In the text, we show the direct-product structure of the matrices τk = σMk ⊗ hPk (M = 1,

3, 5, and P = E , O) obtained in the Hilbert space with bases presented in Subsec. A. In

fact, such a product structure holds even at the operator level. The operator τ̂k = τ̂1k τ̂
2
k τ̂

3
k with

τ̂ak = (1 + γak+1γ
a
k)/

√
2 is expressed as a product of two SO(3) invariant unitary operators, i.e.

τ̂k = σ̂kĥk , (B1)

where

σ̂k =
1

2

(

1− γ1k+1γ
2
k+1γ

1
kγ

2
k − γ2k+1γ

3
k+1γ

2
kγ

3
k − γ3k+1γ

1
k+1γ

3
kγ

1
k

)

(B2)
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and

ĥk =
1√
2

(

1− γ1k+1γ
2
k+1γ

3
k+1γ

1
kγ

2
kγ

3
k

)

. (B3)

It is easily verified that operators σ̂k satisfy relations a) and b) of the Coxeter group, such that

σ̂2k = 1,

(σ̂kσ̂l)
3 = 1 for |k − l| = 1,

(σ̂kσ̂l)
2 = 1 for |k − l| > 1. (B4)

Therefore, we confirm the Coxeter matrix (9) for an arbitrary number of non-Abelian vortices.
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