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Abstract

Statistics of particles is one of the most fundamental aspects of quantum systems. Majorana
fermions in vortices on a two-dimensional plane obey novel statistics called non-Abelian
statistics. Non-Abelian statistics leads to the mixing of particle states, which will enable
quantum computation. It has been known that non-Abelian statistics exists in a system
of ‘Abelian’ vortices, in which zero-energy Abelian Majorana fermions are trapped. In this
article, we discuss vortices possessing a ‘non-Abelian’ internal symmetry; these vortices
are called non-Abelian vortices and have the zero-energy non-Abelian Majorana fermions
inside them. Considering the system of multiple non-Abelian vortices, we derive a novel
non-Abelian statistics that is different from the previously derived non-Abelian statistics.
This new non-Abelian statistics is given by a product of two different groups, namely the
non-Abelian statistics obeyed by the Abelian Majorana fermions and the Coxeter group.
The Coxeter group describes reflections and induces the geometry of polytopes in a high-
dimensional space. As the simplest non-Abelian symmetry, we consider the SO(3) group with
its vector representation, and we concretely present the Coxeter group and its geometry in

the high-dimensional Hilbert space spanned by non-Abelian Majorana fermions.


http://arxiv.org/abs/1010.3331v1

I. INTRODUCTION

Majorana fermions proposed by Ettore Majorana in the 20th century have a peculiar property
in that an antiparticle is equivalent to a particle H] His original conjecture that neutrinos might be
such particles has been rejected; however, Majorana fermions are now attracting much attention in
condensed matter physics [2]. It has been recently recognized that Majorana fermions with exact
zero energy are trapped inside the core of half-quantized vortices in chiral p-wave superconductors
or p-wave superfluids and that they appear on the edge of topological superconductors/insulators

|. A system of multiple vortices provides an exchange statistics that is different from that of
bosons, fermions and anyons. Such statistics, called ‘non-Abelian statistics’ is mathematically
described by the braid group [4, [5]. More precisely, one Dirac fermion is defined by a set of two
Majorana fermions trapped in two different vortices, and the Hilbert space is constructed from
these Dirac fermions [5]. The dimension (2) of the Hilbert space increases exponentially with an
increase in the even number (2m) of vortices. Consequently, non-Abelian statistics provides one
possible candidate for quantum computation [6], and hence, p-wave superconductors or superfluids
may be used as a device for quantum computers. This is why Majorana fermions and non-Abelian
statistics have attracted the attention of many researchers in recent years |2, B] Recently, it
has been proposed that even in three dimensions, non-Abelian statistics is realized by Majorana
fermions trapped on monopole-like objects [1].

Though the exchange statistics discussed above is non-Abelian, Majorana fermions on vortices
or other defects studied thus far are all ‘Abelian’ in the sense that only a single Majorana fermion
is trapped in each defect. On the other hand, if multiple Majorana fermions are trapped inside a
defect and can continuously mix with each other, one may be able to interpret them as a single ‘non-
Abelian Majorana fermion’, namely a Majorana fermion having a non-Abelian internal symmetry.
Then, these fermions must belong to representations of the underlying Lie group.

In this article, we show that non-Abelian Majorana fermions obey a novel non-Abelian exchange
statistics. Since Majorana fermions are real (i.e. not complex) fields, their group representation
must also be real. The simplest of such representation is the vector representation, triplet, of
the SO(3) Lie group. We explicitly construct the non-Abelian exchange statistics of non-Abelian
Majorana fermions belonging to the vector representation of SO(3). We not only show that the
Hilbert space for 2m vortices has dimension 2™ much larger than 2™ of Abelian fermions, but also
show that it contains a new component. In addition to the non-Abelian statistics already derived

by Ivanov [j], we find another structure, i.e. the Coxeter group |8, 9]: the entire non-Abelian



statistics is a direct product of these two. The Coxeter group is a symmetry group of higher-
dimensional generalization of polytopes such as a triangle or a tetrahedron, which was found by
Harold Scott MacDonald ‘Donald’ Coxeter, one of the great Mathematicians in the 20th century.
The large Hilbert space spanned by non-Abelian Majorana fermions contains high-dimensional
internal spaces of various representations of SO(3), not only singlets and triplets but also quintets
and higher representations in general, where the Coxeter group acts on them to exchange multiple
states in the same representations.

One question arising immediately may be whether there exist physical systems realizing such
non-Abelian Majorana fermions in reality. The answer is yes, such systems probably exist in the
universe, 7.e. in quark matter at extremely high density in neutron stars or quark stars, which are
expected to exhibit the so-called ‘colour superconductivity’ , ] These stars rotate rapidly,
and consequently, stable vortices are created; these vortices are non-Abelian vortices with colour
magnetic fluxes confined inside them ] We have shown in our previous paper ] that non-
Abelian Majorana fermions of an SO(3) triplet indeed exist in the core of a non-Abelian vortex. The

origin of this SO(3) group is the ‘colour-flavour locked’ symmetry SU(3)cr in the ground state of

a colour superconductor , ], which is spontaneously broken down to its subgroup SU(2) x U(1)

core, the zero modes trapped in it must belong to the representations of SO(3). We have found

in the core of a vortex [14]. Since there remains an unbroken symmetry SU(2) ~ SO(3) inside the
triplet and singlet Majorana fermions B], however, only the triplet is a new object to be considered
in this article. Theoretically, fermionic modes in vortices are treated by the Bogoliubov-de Gennes
equation, which is an equation for fermions coupled to the vortex profile. For example, the particle
(¢) and hole (1) components of the triplet zero modes (chirally right-handed) are approximately

given, in two-component Weyl spinor representation, as

—if
Folu) , n(r,0) = e~ |AcrLlr ~hlur)e : (1)

SD(T, 6) — e_‘ACFLh‘
iy (ur) e iJo(ur)

where Acpy, is the gap value of the bulk colour superconductor (in the colour-flavour locked phase),
1 is the chemical potential, and 7,6 are the polar coordinates perpendicular to the z direction.
The triplet zero modes ¥° (a = 1,2,3) are then compactly expressed as ¥® o (¢, (—1)% 1)t
and they satisfy the Majorana condition ¢ = ()¢, where (¢¥*)¢ o (%, (=1)2T1p%)* with C
being the charge conjugation. It should be noted that these zero-mode solutions (non-Abelian
Majorana fermions) are well localized around the centre of the vortex and do not depend on the

z coordinate, indicating that they are essentially local objects on a two-dimensional plane. Hence,



FIG. 1: Schematic of n particles on a two-dimensional plane and exchange of the kth and (k+ 1)th particles
denoted by Ty, (k=1,---, n—1).

the non-Abelian vortices appearing in high-density matter provide an example of realization of the
non-Abelian Majorana fermions.

However, it should be emphasized that our conclusion in this article does not rely on any specific
model; all that we need is non-Abelian Majorana fermions of an SO(3) triplet. Thus, our analysis
raises a possibility to realize such a statistics in table top samples, for instance in cold atomic
gasses that can be well controlled through experiments. It should also be noted that the SO(3)
group and its vector representation are chosen only for illustration as the simplest example and
that our method works for arbitrary Lie groups and arbitrary (real) representations, opening up a

new possibility of Majorana fermions, non-Abelian statistics, and quantum computations.

II. STATISTICS ON TWO-DIMENSIONAL PLANE

The exchange of particles on a two-dimensional plane is described by the braid group. Let us
suppose n particles (braids) and label them as shown in Fig.[Il The braid group is defined as a set
of operations Tj, (k =1, ---, n— 1) that involve the exchange of the positions of the neighbouring
kth and (k4 1)th braids in a way such that the kth braid always goes around the (k+ 1)th braid in
an anti-clockwise direction. The operations T}, satisfy the following braid relations: i) T},7; = 17T},
for |k — 1| > 1 and ii) TR T;T) = T;T}T; for |k — 1] = 1, which are schematically shown in Fig. 2
It should be noted that T}~ L £ T}, because the operation is directed. This simple definition of the
braid group allows for various representations with rich non-trivial structures, as we will see below.

The representation of the braid group is expressed by a linear group {7k = 1,--- ,n — 1}
acting on a vector space. Here, 71’s also satisfy the following braid relations: 1) 7,7y = 774 for

|k —1| > 1 and 2) 7py7y7) = 7y77; for |k — 1| = 1. The representations contain information about the



k k+1 | +1 k  k+1 +1

_/S,X_
[
X

k k+1 k+2 k k+1 k+2
Tk T1 TI Tk Tk Tk+1 Tk Tk+1 Tk Tk+1

FIG. 2: Schematic of the braid relations i) T,T; = T;T} with |k — 1| > 1 and ii) TxTk+1Tk = Thr1TkTh+1-

statistics on the exchange of particles. For example, the one-dimensional representation allows for
the anyon statistics, which gives a wave function a complex factor under the exchange of particles;
m=m=-=17,1=¢% with 0 <6 < 2r being a real number. Although the anyon statistics
is a characteristic statistics in two dimensions, it is still Abelian. More generally, the braid group
allows for non-Abelian statistics in which neighbouring 7;’s are non-commutative: [r3,7;] # 0 for

k-1 =1.

III. NON-ABELIAN STATISTICS OF MULTIPLE NON-ABELIAN VORTICES

Let us consider n non-Abelian vortices with the SO(3) symmetry. There are correspondingly
n non-Abelian Majorana fermions belonging to the triplet of SO(3) at each vortex site. Let us
introduce operators 7¢ (a = 1, 2, 3) for creation operators of the triplet non-Abelian Majorana
fermions in the kth non-Abelian vortex. These operators satisfy the anti-commutation relation
{78, 7%} = 261,69 and the self-conjugation relation v¢ = 4. This formulation is an extension of
the Abelian Majorana fermions discussed in E] to the non-Abelian case. An exchange operation of
neighbouring kth and (k+ 1)th non-Abelian vortices, denoted by T}, as shown in Fig. [l induces an
exchange of the non-Abelian Majorana fermions. Because the Majorana fermion turning around a
vortex changes the sign of the wave function owing to the odd winding number and the Majorana
condition, a cut should be introduced to keep the phase single valued |5]. Consequently, the

operation T}, induces the following transformation (see Fig. [3)):

a N a
Ty : Tk Tet1 , foralla (2)
Vi1 = Y
with the rest 7{* (I # k, k+ 1) unchanged. It should be noted that the presence of this minus sign

is crucial to satisfy the braid relations i) and ii).
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FIG. 3: Exchange of two non-Abelian Majorana fermions ;!

dotted lines denote the cuts attached to each non-Abelian

Majorana fermion.

and 7, ; on the two-dimensional plane. The

From the middle figure

to the rightmost figure, it can be seen that the non-Abelian Majorana fermion ¢ jumps the cut of the

(k + 1)th vortex, to obtain an extra minus sign. Therefore, T induces the transformation: v — i, and

a a
V1 = Vg

Now, we discuss the representation 74 for the exchange of non-Abelian Majorana fermions. First,
it should be noted that transformation (2]) can be realized by SO(3) invariant unitary operators 7 =
Pip7e, where 7 is made of non-Abelian Majorana operators vj and 7, as 7 = (L+7{7)/V?2
(not summed over a). It is easily verified that 7,77, Uindeed generates the above transformation.
Once the Hilbert space is defined, one obtains the representations of 7 as matrices. In order to
define the bases of the Hilbert space, we first introduce an operator of non-Abelian Dirac fermions
V¢ = (v8, , +i7%,)/2 (k =1, ---, n/2) using an even number (n) of non-Abelian vortices. The
non-Abelian Dirac fermions satisfy the anti-commutation relations {¥¢, \P?T} = 0109, {Wg, o) =
{@ZT,@?T} = 0, and the operators i’z and \iffT(# \ifz) correspond to annihilation and creation
operators, respectively. Then, we can construct the Hilbert space by acting successively creation
operators @ZT’S on the ‘vacuum state’ |0) defined by \i'%]m = 0. In what follows, we concretely
show representations 7 in two cases with two (n = 2) and four (n = 4) non-Abelian vortices.

First, we discuss the case with two non-Abelian vortices (n = 2), where we can define only one
operation T} and only one non-Abelian Dirac fermion \ilcf The Hilbert space is spanned by the
following four basis states: singlet-even |1g) = |0) (vacuum), singlet-odd |13) = %eabc\if‘fT@T\ifﬂO)
(filled by three Dirac fermions), triplet-even |39) = %e“be\i’?\ifﬁm) (occupied by two Dirac
fermions), and triplet-odd [3;) = \i/‘mm (occupied by one Dirac fermion), where the subscript
denotes the number of non-Abelian Dirac fermions. With these bases {|10), |13), [32), [31)}, we
find the representation 71 to be an 8 x 8 matrix; 71 = diag(e_i?”r/‘l, eiB3T/4 Qim/A, o e_m/413><3).
The 3 x 3 unit matrix I3x3 means the three components in each triplet state. The obtained matrix

71 is diagonal, and thus, the system of two non-Abelian Majorana fermions follows the (anyon-like)



Abelian statistics.

Second, we discuss the representation 7, (k = 1, 2, 3) for four non-Abelian vortices (n = 4). We
can construct the Hilbert space in a manner similar to that described above, and this is expressed
by singlet (1), triplet (3), and quintet (5) states, which are further specified by even (£) and
odd (O) numbers of Dirac fermions (see Appendix [A]). Then, we obtain the representations 7y

(k =1, 2, 3) as 64 x 64 matrices; 7, = diag(q}’g, Tkl’o, T,?’gfgxg, T]S"Ofgxg, T,?’€I5><5, T:’OI5X5).

The submatrices 7‘,?4 P (M=1,3,5 P=E&, O) are found to have the following structure:

MP = oMo hl. (3)

Here, the first matrices Jé‘/‘ have different expressions depending on the multiplets:

-10 1{ 1 V3 -10
011 - ) U:2l = 5 ) U?} = ) (4)
0 1 V3 -1 0 1
for the singlet states,
-100 IRRVOR| 10 0
1
o= o010], @zg«ﬂ 0 —v2|. o3=|01 0 |, (5)
0 01 1 —v2 1 00 —1
for the triplet states, and
0P =05 =02 =1, (6)

for the quintet states. On the other hand, the second matrices h;: are common for the multiplets:

10 1 (1 =1
| S =ng=— . B =hgT=h{ (7)
0 e % v2 11

Wi =hf =

for even and odd numbers of Dirac fermions. These are our main results. We have obtained matrix
representations for the exchange statistics in the system of four non-Abelian vortices. It should be
noted that both the matrices aé\/l (M =1,3) and hf in the submatrices 7'2M ’P, and consequently
the matrix 79, are non-diagonal. Therefore, the system of four mon-Abelian Majorana fermions
follows the non-Abelian statistics. It should be emphasized that the non-Abelian matrices we have
derived are essentially new and are considered as the generalizations of the corresponding matrices
obtained by Ivanov. Indeed, while the matrices h;: (common for the multiplets) are the same
as those that Ivanov obtained for ‘Abelian’ vortices (thus we call them the Ivanov matrices), the

matrices aé\/‘ are new matrices that only appear in ‘non-Abelian’ vortices. Hence, the representation

matrices we have found are the direct products of the new matrices Jé‘/‘ and Ivanov matrices hf.



IV. COXETER GROUP

Unexpectedly, the new matrices akM are identified with the elements in the Coxeter group,

which is related to the operations of reflections shown below. The Coxeter group S is defined as
a group with generators s; € S (i = 1,2,3,---) satisfying the following two conditions: a) s? = 1
and b) (s;s;)™# =1 with a positive integer m; ; > 2 for ¢ # j. It should be noted that condition
a) gives m;; = 1. It is easy to check that the matrices 0! indeed satisfy conditions a) and b).

Elements m; j can be summarized as the Coxeter matrix (M);; = m; ;. In the present case, from

the matrices J,ﬁ‘/‘, we obtain the Coxeter matrix

132
Ms=1313], (8)
231

where the top-left submatrices correspond to each multiplet; the 1 x 1 submatrix (1) corresponds

13
to the quintet, the 2 x 2 submatrix corresponds to the singlet, and the 3 x 3 whole matrix

31
corresponds to the triplet.

The Coxeter group is closely related to the geometry in a high-dimensional space, because
conditions a) and b) can be interpreted as geometrical operations in the Hilbert space: the condition
a) corresponds to a reflection and the condition b) corresponds to a rotation by an angle 2w /m ;.
Therefore, the Coxeter group leads to the existence of several polytopes that are invariant under
reflections and rotations, such as a 2-simplex (triangle) under the reflections o and o for the
singlet and a 3-simplex (tetrahedron) under the reflections o, 03, and o3 for the triplet, as shown
in Fig. @l The fact that the Coxeter group appears in the exchange statistics of the system of
the non-Abelian vortices provides a new insight that the non-Abelian statistics of non-Abelian
Majorana fermions can be intuitively understood with the help of the geometry of polytopes.

We may extend our discussion to the system of any even number (n = 2m) of non-Abelian
vortices. From the analysis given above, we expect m;; = 3 for |i — j| = 1 and m,; = 2 for
|i — j| > 1 for the representation matrices o; (i = 1,---,2m — 1), which would be obtained from

the decomposition of 75. Therefore, the Coxeter matrix will be given by the (2m — 1) x (2m — 1)
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FIG. 4: 2-simplex (triangle) for the singlet and 3-simplex (tetrahedron) for the triplet induced from the
reflections o' (k = 1 and 2 for M =1, and k = 1, 2 and 3 for M = 3). These simplexes are invariant

under reflections by oM.

matrix as follows:

1322...
3132

Mop—1=12313 . (9)
2231

In other words, a product o;0; of reflections o; and o; makes a rotation by an angle 27 /3 for
li —j| = 1 and 27/2 = 7 for |i — j| > 1. Therefore, the system of an even number (2m) of
non-Abelian vortices would lead to the existence of a (2m — 1)-simplex as the highest-dimensional
object (see also Appendix [B]).

It is known that the Coxeter group is classified into several types B] The Coxeter group
summarized by the matrix (@) is called Ag,,—1. Then, it would be interesting to ask whether the
system of non-Abelian Majorana fermions can lead to other types of Coxeter groups, such as B;
(1>2),D (l>4), E,(1=6,7,8), Fy, Go, H (I = 3, 4), I(l) (I = 5,1 > T7), or which new
symmetry of the non-Abelian Majorana fermions would be connected to them. These questions
would open an extensive view about the novel relationship between the non-Abelian Majorana

fermions and the Coxeter groups.
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Appendix A: Bases of the Hilbert space for the system of four non-Abelian vortices

We explicitly present the bases of the Hilbert space of four non-Abelian vortices. There are four

bases,

[Lo0) = 10),

L) = iy eI g o),

1) = i%‘i’iﬁ‘i’g”o%

o) = = e e 0 51 ), (A1)

for the singlet-even (1, £) states, and

1 acA[l = bt 5.¢
[1o3) = 3¢ bwgtwshws0),

1 s at bt
130) = —zgeabc\If‘fT Wt |o),

11 D
|121> = _%EeabC\PTT\PT\PSHO%
0 RN
115) = Zﬁgeabcwquwgnm, (A2)

for the singlet-odd (1, O) states. There are six bases,

302) = %Eabc‘i’?‘i’?\o%

331) = —i%edeﬁ/l{T@?@fT@gﬂm,

822) = %eafw%ebde%ecmw@;T@g*@g*|o>,
Bn>=i§§ﬁ“@?@§m%

Ba0) = — e 0105 o).

1 pegsatsbtects
Bw>:z§&mm?m§m§m§m% (A3)
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for the triplet-even (3, &) states, and
[301) = @;‘*rm
‘332> o 23 bcd\I/bT\I/cT\I,dT aef\I,eT\I/fT‘(»

1
[821) = —=¢* C—ebdewwi*wswox

V2o 2
1 e
‘312> = —Z%e 2 Cde\I/bT\I/gT\I’ T‘O>
1 acAb T C e > df s et s
|303) = o€ b \IllTlllnged P wshwlt ),
1310) = i{1]0), (A4)

for the triplet-odd (3, O) states. There are two bases,

1 1 cetagr 1 NPT
’522> ZN|: { acd\I/cT\I/dT bef\I,eT\I/fT_’_ o bcd\I,iqucllTﬁeaef\I,;T\I/gT}

5ab 1 ecde ity ET Cfg It 9t
e gt (o),
70T 3,b T bt 1,0 5 T ctg,C

for the quintet-even (5, £) states, and

5ab 1 A
et o),

[521) = —iN [ { “cd\IfCTfodT\I/bT+2 bcd\IJCTfodeIf“T} T3

a 1 & TCTT, 5ab 1 TCTAT T, €
’512> — _N |: {\I’1T2' bcd\I, T\I/dT + \I/bT acd\I/;\I,gT} o ?EGCde\PlT\I’gT\I’QT} ‘O>, (AG)
for the quintet-odd (5, O) states with ' = /3/2 for a = b and N = /2 for a # b. With these
bases we obtain the matrices 7, (k =1, 2, 3) as presented in Eqgs. @)—(0).

Appendix B: Coxeter matrix for arbitrary number of non-Abelian vortices

In the text, we show the direct-product structure of the matrices 7, = O']é\/( ® hf (M =1,
3,5, and P = &, O) obtained in the Hilbert space with bases presented in Subsec. [Al In
fact, such a product structure holds even at the operator level. The operator 7, = %,i%g%g’ with

7= (1+7¢,171)/V2 is expressed as a product of two SO(3) invariant unitary operators, i.e.
T = Olu , (B1)
where

A 1 1 2 1.2 2 3 2 3 3 1 3.1
Ok = BY (1 = V1 Vo176V — Ve 1 Ve+1 Ve Ve — ’Yk+1’Yk+1’Yk’Yk) (B2)
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and
- 1
h:_(l_l 2 .3 123)_ B3
k NG V41 Ve4+1Ve4+1VEVE Tk (B3)
It is easily verified that operators 6 satisfy relations a) and b) of the Coxeter group, such that

O'k. = 1,
(6p67)% = 1 for |k —1| =1,

(6161)> = 1 for |k —1] > 1. (B4)

Therefore, we confirm the Coxeter matrix () for an arbitrary number of non-Abelian vortices.
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