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Abstract

It is long believed that steadily compressed hydrogen beyond 400GPa might undergo a tran-

sition from a proton-paired insulator to a monatomic metal, associating with dissociation of the

molecules.[1, 2] A systematic investigation of dense hydrogen structures with first-principles den-

sity functional theory (DFT) electronic-structure methods, including proton zero-point motion,

however, shows that no such kind of pressure-driven dissociation can be observed below 2TPa

(1TPa=1000GPa). A surprising rearrangement of protons into a tri-atomic phase and then into a

chained molecular configuration enhances the stability of covalent bonds, and a complete transition

into the metallic monatomic phase is estimated requiring at least a pressure of 5TPa.
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Having only a single electron, hydrogen is the simplest and most abundant element in

the universe. It shows characteristics of both the group I alkalis and the the group VII

halogens. At low pressures, hydrogen isotopes are halogenous, covalent diatomic molecules

that form insulators. Yet at high pressures, it is one of the most difficult to understand.

Experimentally it is known that hydrogen can exist as a low-temperature rotational crystal

(phase I) on a hexagonal close-packed lattice to high pressures (P < 110GPa), followed by a

transition into the broken-symmetry phase II (110GPa < P < 150GPa) which is marked by

a change to wide-angle libration and hence to a continuing incoherence of motion between

different molecules, and then to phase III at about 150GPa.[3] However, beyond the fact

that protons remain paired within this pressure range, their time-average locations are to

date experimentally unknown, mainly because hydrogen atoms scatter X-rays only weakly,

leading to low-resolution diffraction patterns. Experimental data at higher pressures are

scarce and the understanding of ultra-dense hydrogen structure is lack.

The theoretical prediction of stable crystalline structures of hydrogen is difficult because

of the need to search the very large space of possible structures, and the necessity of obtaining

accurate energies for each of these structures. First-principles DFT methods have proved

being efficient approaches of calculating quite accurate energies, and they have provided

many insights into the properties of various materials, including solid hydrogen. At present,

DFT offers the highest level of theoretical description at which we can carry out searches

over many possible candidate structures. Recent DFT calculations have predicted that

within the static-lattice approximation, the most stable phases of paired molecular hydrogen

are P63/m (<105GPa), C2/c (105-270GPa), Cmca-12 (270-385GPa), and Cmca (385-

490GPa), followed by I41/amd monatomic phase.[4]

On the other hand, at high enough pressures where electrons are fully ionized out of

the nuclei and form a uniform background, the material becomes one-component plasma. In

this regime the dominated Coulomb interactions arrange the nuclei in a regular lattice called

Wigner crystal, and stabilizes in a body-centered cubic (BCC) structure.[5] Unfortunately,

the intermediate pressure region between this and that above 400GPa is poorly understood

and has rare investigation. Does the monatomic I41/amd phase stabilize over a wide range

of pressure or do any new phases exist before a transition into the BCC Wigner crystal phase

occurs? Also it is unclear whether the proton-paired molecules dissociate and then enter a

liquid state or not at zero Kelvin driven purely by compression effects.
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FIG. 1: (color online) Enthalpy per proton as a function of pressure with respect to the ref-

erence state. Arrows indicate the phase transitions of the ground state and the shadow region

gives the maximum uncertainty due to harmonic zero-point motion of protons. Typical curves

are labeled as: open square–C2/c, open circle–Cmca-12, open triangle–Cmca, filled star–Pmmn,

filled square–C2/m(2), filled triangle–C2/m(1), filled circle–β-Hg, half-filled square–β-Sn, crossed

triangle–BCC, crossed circle–FCC, and crossed square–HCP.

With accurate first-principles calculations, we report here that novel states of dense hy-

drogen within this pressure range has been observed numerically, which is metallic but in tri-

atomic or chained molecular configurations. This lifts the transition pressure to monatomic

phases up to a much higher value than previously expected. It also suggests a continu-

ous transition into the BCC Wigner crystal from a highly compressed chained molecular

structure.

The calculations were performed with DFT as implemented in the Vienna Ab-initio Sim-

ulation Package (VASP) [6] with all-electron like projector augmented-wave [7, 8] potential

and the PBE exchange-correlation functional.[9] An energy cutoff of 900 eV and more than

1500 irreducible k-points were adopted, to converge the total energy to within 3meV per

proton. We carried out extensive random searches of molecular phases at pressures up to

3TPa, and the structures were fully relaxed to the energy minima at fixed volumes with

a force tolerance of 0.1meVÅ−1, meanwhile computed the pressure and then the enthalpy.

Structural features are estimated to be converged to better than 0.2%, and the relative

energy difference between structures to within 1meV per proton. Candidate high-pressure

monatomic phases also were searched and their enthalpies were calculated, including cu-
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bic structures (SC, BCC, and FCC) and their low-symmetric distortions (β-Po, β-Hg, In-I,

and In-II), hexagonal (HCP and ω-Ti), diamond, and I41/amd (β-Sn and Cs-IV) phases,

respectively.[10]

The calculated enthalpy difference with respect to a reference state (defined with an en-

thalpy of H = −3.985 + 0.216P 0.55 eV/proton, P in unit of GPa) of the most stable phases

are shown in Fig.1. Below 400GPa, our results agree very well with previous theoretical

predications: C2/c is the groundstate at 100GPa and it transforms into Cmca-12 at near

270GPa.[4] At 370GPa, Cmca overtakes slightly, but soon becomes degenerate with Cmca-

12, which is stable until a new phase unknown before, triatomic Pmmn, becomes the most

stable at 650GPa. The groundstate then changes to C2/m(2) at 1900GPa, which keeps

stable beyond 3TPa and no other phase with lower enthalpy had been found. The main

transition points are indicated by arrows in Fig.1. Point B is an intersection point of several

molecular phases and the monatomic β-Sn. Previous DFT calculations with LDA approxi-

mation suggested Cs-IV being the ground state at around this pressure range.[4] However,

our calculations with higher precision gave a different result: Cs-IV has an enthalpy about

70meV/proton higher than the groundstate, almost coincides with the diamond phase (not

shown). Instead it is β-Sn that has a lower enthalpy, which touches the ground at point B.

But it soon becomes unfavorable, and the pressure window for this monatomic phase is as

narrow as just 50GPa.

Other simple monatomic phases, such as BCC, FCC, HCP and their distortions do not

approach the ground line until 2TPa (SC is always 50meV higher than others and not

shown here). One interesting phase is β-Hg, which caught no attention before. It enters

the shadow area at 600GPa in figure 1 and approaches to the groundstate line all the way

beyond 3TPa. Thus it might coexist with Pmmn and C2/m phases over a wide range

of pressure. In conventional sense it is a monatomic phase derived from BCC structure

with a shorter lattice length of c vector. But for hydrogen with a pressure beyond 600GPa

the lattice length is already short enough so that establishes covalent bonds along the c

direction and thus becomes a chained molecular state (see figure 2 in the supplementary

materials[11]). In fact it is exactly the formation of this kind of chained molecular bonds

that stabilizes the phase, which can be seen much clearly by comparing the enthalpy with

that of β-Sn (no covalent bond at all), Cmca (diatomic bonds), Pmmn (triatomic bonds),

and C2/m (molecular chains). Specifically, β-Hg constitutes only linear chains of H2 bonds,
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FIG. 2: (color online) Charge density of the C2/m(2) phase (in tetragonal Immm representation)

at about 2TPa in a unit of eÅ
−2

. The formation of molecular chains is evident.

whereas C2/m consists of chains of H3 clusters. C2/m(1) and C2/m(2) belong to the same

space group C2/m. The only difference is in the linkage pattern and the chain orientation.

Besides, C2/m(1) has a shorter interchain distance and trends to form a bond network,

whereas C2/m(2) has more localized bonds and thus its chains are much distinct and well

defined. Supplemental figure 5 and table I provide detailed structure information about

these phases.[11]

Investigation reveals that these structural transitions are driven by competition between

dispersion of the electron density induced by compression and the Coulomb attraction from

the nuclei. The former favors metallic bonds whereas the latter tries to form covalent bonds

with nearby atoms by overlapping the wavefunctions. Rearrangement of protons into tri-

atomic and chained molecular configurations is a compromise and thus lowers the enthalpy.

Point B is exactly a such kind of turning point that diatomic bonds lost competition to

metallic interactions, whereas the formation of triatomic bonds helps molecular phases re-

capture the ground state. It then transforms to chained molecules at higher pressures.

This complex behavior indicates the difficulty to ionize and dissociate hydrogen purely by

compression.

Fig.2 shows the charge density of C2/m(2) at about 2TPa (see supplementary materials

for that of Pmmn and C2/m(1) phases[11]). The chains built on H3 clusters are evident.

Note that the environmental charge density is nonzero and the chains are in fact submerging
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FIG. 3: (color online) Energy variation with the change of the c axial length of the β-Hg structure,

which passes through FCC, BCC and β-Hg phase in sequence. Inset: a simplified half-infinite

potential well that modeling the energy surface and the corresponding probability density profile.

in a sea of electrons that mediates metallic interactions. It is important to point out that

although C2/m and β-Hg are chained molecular crystals, they are natural conductors. We

do not need to perform a band structure calculation to confirm this, since these phases

have an odd number of electrons in their primitive cell, therefore there always has a half-

filled band. Pmmn has 6 electrons in its primitive cell, and a detailed DFT calculation

with GGA approximation showed that it is in a metallic state within its stable range of

pressure. However, it is unclear whether these novel states possess the superconductivity as

conjectured for monatomic metallic phases [1, 2] or not.

The zero point (ZP) motion contribution of protons to the energy and enthalpy can be

taken into account within quasi-harmonic approximation. It does not change the relative

stability of molecular phases very much. However, for highly compressed monatomic phases,

this treatment is inaccurate because of the strong anharmonic effects.[12] Thus this ZP

contribution only provides the uncertainty information of the phase stability that predicted

by static lattice calculations, rather than the relative stability between monatomic and

molecular states. It is estimated that the total error in enthalpy difference due to harmonic

ZP contribution is less than 20meV per proton for molecular phases (the shadow area shown

in Fig.1). Thus we have to treat all phases within this area in Fig.1 as degenerated with

this approximation.
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Within DFT formalism it is difficult to conduct a quantitative calculation on anharmonic

ZP effects. However, this problem still can be addressed in a qualitative but insightful way.

To illustrate the physics encountered here we computed a portion of the energy surface that

cross-cuts through the transition path from FCC to β-Hg at a constant density. Namely,

change the length c of the β-Hg structure while adjusting a and b accordingly at a fixed

density with rs equaling 1.12 (∼1TPa), 1.04 (∼1.5TPa), and 1.01 (∼2TPa), respectively

(see Fig.3. The enthalpy surface is quite similar, as can be perceived from Fig.1.) Here the

dimensionless parameter rs is defined as the radius of a sphere which encloses on the average

one electron in a unit of the Bohr radius.[5] The obtained energy surface is approximation

free, except those already introduced in the standard DFT formalism. ZP effects are thus

described by the movement of particles on this potential surface (in a mean field of electrons).

The surfaces as shown in Fig.3 are not necessarily the flattest ones (namely, with the largest

anharmonicity), but they are typical enough for providing a qualitative picture of the physics

we considered here. It is easy to find out that the harmonic approximation is completely

failed for monatomic phases: no potential well can even be defined for them. The flatness of

the energy surface perfectly reveals the origination of the unusual large anharmonic effects

in monatomic phases observed in QMC calculations.[12] Having such a flat energy surface,

the material should be in liquid state even at zero temperature.

The ZP energy of molecular hydrogen in harmonic approximation is about 0.13 eV per

proton, rising to about 0.42 eV per proton at 2TPa. This value is, however, inaccurate due

to the flattening of the potential well. On the other hand, the harmonic ZP root mean square

displacement (rMSD) gives a typical value of 0.2 Å for the β-Hg phase, which characterizes

a typical ZP motion range for protons. Thus at a pressure of 1TPa the ZP motion should

be confined within the potential well for the case shown in Fig.3. But it is comparable with

the well width at 1.5TPa, and exceeds it at 2TPa, where monatomic phases might appear.

In a view point of quantum mechanics, the ZP motion in monatomic phases could melt the

lattice, disperse the nuclei spatially, and modify the periodic potential in which the Bloch

waves of electrons propagate. This quantum behavior of the lattice grid can be described

approximately by a plane wave function eik·R when the change of the lattice parameter

R leads to only a flat energy variation, as shown in Fig.3 (where the wavefunction eik·R

describes a specific pattern of the collective motion that evolves the lattice vectors along

the assigned transition path.) Thus a possible phase equilibria between chained molecular
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and monatomic phases driven by ZP motion can be modeled phenomenologically by an

effective particle moving in a half-infinite potential well (the inset of Fig.3). When the ZP

energy is less than a critical value, bound states are developed in the well and the chained

molecular structures are stable. When the ZPE is greater than the threshold, however,

bound states disappear and monatomic phases have nonzero probability to exist. Using the

model of a simple half-infinite potential well, this is manifested by satisfying a condition

of 8MV x2 ≥ π2
~
2 where x(V ) is the potential width(depth), which confirms the existence

of a bound state below 1.5TPa for the case shown in Fig.3. Even when no bound state

exists, phase cancelation between reflected waves from the potential well also makes chained

molecular phases a high possibility to appear, as the probability density profile in the inset

shown. Here we considered only one motion pattern and only β-Hg phase. For the ground

state phases of Pmmn and C2/m(2), since their transition path to monatomic phases is

unknown, it is difficult to construct a meaningful energy surface as Fig.3. However, we can

qualitatively estimate the well depth by adding the corresponding enthalpy difference to

that of β-Hg. The obtained results predict that monatomic phases would not appear below

2TPa. At higher pressures, the potential wells become shallow enough and ZP motion could

expel protons dispersively out into liquid monatomic phases and the atoms would then flow

back, thus establishes a quantum dynamical equilibrium between the two states.

This transition confirms previous investigations that ZP motion of protons eventually

favors isotropic structures over low-symmetry geometries at high pressures,[12, 13] with

the difference that here the symmetric structure is in a liquid phase rather than a solid

state. The transition pressure is also higher than that predicted by QMC calculations.[12]

It is understandable since in that QMC calculations strong constraints had been applied

by assuming ideal crystalline lattices and a proton wave function that was constructed by

a product of Gaussian orbitals centered on lattice sites. This obviously overestimated ZP

effects and was incapable of describing possible atomic liquid phase.

A liquid state of hydrogen at zero temperature is physically interesting [14–16] and might

be a two-component superconductor for the protons and electrons, as well as a superfluid.[17]

Above discussion cannot conclude whether the equilibrium is a solid molecular-liquid

monatomic coexistence or a liquid-liquid mixture. Pressure driven melting at zero tem-

perature requires ZP motion to destabilize the structure. For rigid chained molecular state,

this also implies a destruction of the intra-molecule covalent bonds. Thus a 0K liquid state
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FIG. 4: (color online) The Lindemann ratio with respect to the next nearest neighbors as a function

of density for hydrogen, deuterium, and tritium, respectively.

of molecular chains is unlikely. The Lindemann ratio γ of the ZP motion rMSD with re-

spect to the next nearest protons (siting on the other chains) also suggests a solid state

of molecular chains, as shown in Fig.4. For a quantum state, a value of γ less than 0.3

seems cannot lead to melting [12, 18]. The γ with respect to the bond-connected protons is

also less than 0.25, indicates the stability of molecular bonds against compression (and ZP)

driven dissociation.

To summarize, we have carried out extensive calculations on structure stability of molec-

ular and monatomic phases of dense hydrogen up to 3TPa. A new ground state line beyond

400GPa has been found, which differs drastically from the expectation that monatomic

phases are favored under these pressures. It also diminishes the possibility to observe pure

monatomic phase in experiments at low temperatures in the near future. A triatomic molec-

ular state becomes favored when diatomic molecular phases lost competition to monatomic

β-Sn at about 650GPa. The ground state then shifts to a metallic chained molecular con-

figuration at 1.9TPa. This chained phase is stable up to a very high pressure, and might

equilibrate with liquid monatomic phase after 2TPa driven by ZP motion of protons that

favors isotropic structures.

Extrapolation suggests that β-Hg becomes the most stable phase over C2/m(2) at about

5TPa. It will continuously transform into BCC Wigner crystal when the lattice vectors

a and b are compressed close to twofold of the Bohr radius where the electrons would be

completely ionized out to form an even background and the system enters one-component

plasma regime. Thus triatomic and chained molecular phases bridge the familiar extremes
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of low-pressure diatomic crystals and high-pressure Wigner crystals. Between them it is

unlikely that there is any new monatomic phase to appear. The near degenerated molecular

phases over a wide range of pressure, especially near the point B, indicates the melting

temperature of dense hydrogen is very low.

As isotopes of hydrogen, the deuterium and tritium have almost the same electronic

behavior. The only difference is that due to their heavier ionic mass, the ZP effects are much

smaller. Therefore the uncertainty in the harmonic approximation should be narrower, the

stability of the chained molecular crystals should get enhanced, and the equilibrium with

monatomic phases should take place at a higher pressure than for hydrogen.

[1] E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935); C. Friedli and N. W. Ashcroft,

Phys. Rev. B 16, 662 (1977); T. W. Barbee et al., Phys. Rev. Lett. 62, 1150 (1989); H.

Chacham and S. G. Louie, Phys. Rev. Lett. 66, 64 (1991).

[2] J. H. Eggert et al., Phys. Rev. Lett. 66, 193 (1991); C. Narayana, H. Luo, J. Orloff, and A.

L. Ruoff, Nature 393, 46 (1998).

[3] H. K. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994).

[4] K. A. Johnson and N. W. Ashcroft, Nature 403, 632 (2000); C. J. Pickard and R. J. Needs,

Nat. Phys. 3, 473 (2007).

[5] E. Wigner, Phys. Rev. 46, 1002 (1934); W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961); M. D.

Jones and D. M. Ceperley, Phys. Rev. Lett. 76, 4572 (1996).

[6] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
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