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We propose a holographic correspondence of the flat spacetime based on the behavior of the
entanglement entropy and the correlation functions. The holographic dual theory turns out to be
highly non-local. We argue that after most part of the space is traced out, the reduced density matrix
gives the maximal entropy and the correlation functions become trivial. We present a toy model for
this holographic dual using a non-local scalar field theory that reproduces the same property of the
entanglement entropy. Our conjecture is consistent with the entropy of Schwarzschild black holes
in asymptotically flat spacetimes.

I. INTRODUCTION

One of the most powerful tools to study quantum grav-
ity is the holographic duality conjecture: the quantum
gravity in spacetime M is equivalent to a quantum field
theory living on the boundary ∂M [1]. In particular, the
understanding of the quantum gravity in anti-de Sitter
space has been well-developed owing to the AdS/CFT
correspondence [2] from the string theory. However, to
understand our current universe and its creation, we need
to study quantum gravity in other spacetimes such as the
flat space, the big bang spacetime, and de Sitter space.
The purpose of this paper is to investigate holography
in the flat spacetime and to present a consistent outline
of its basic properties and mechanism. We will focus on
the Euclidean flat spacetime R

d+1 since the Euclidean
formulation is often simpler and better defined than the
Lorentzian version, as in the case of AdS/CFT [3].
In polar coordinates, the metric of the Euclidean space-

time R
d+1 is

ds2
Rd+1 = dρ2 + ρ2ds2Sd (1)

The holographic principle dictates that the boundary
dual theory of the gravity in R

d+1 lives on the sphere
Sd at ρ = ρ∞, where ρ∞ is the bulk cut-off radius and
is related to the UV cut-off in the boundary field theory
(as in AdS/CFT); and we take the limit ρ∞ → ∞.
The assumptions we adopt in this paper are: 1) the

dual field theory allows a path-integral formulation even
if it is non-local; and 2) the bulk-to-boundary correspon-
dence [3] holds, which implies that the partition function
of gravity in R

d+1 equals that of holographic dual the-
ory on Sd. In the Lorentzian version of the holography,
Sd is replaced by the d-dimensional de Sitter space (see
[4, 5] for an earlier study of the holography in the de
Sitter patch). See also [6–8] for different viewpoints of
holography in flat spacetime.

II. ENTANGLEMENT ENTROPY

When a quantum system is divided into two subsys-
tems: A and its complement B, the von Neumann en-
tropy SA = −TrρAlogρA (where ρA is the reduced density

matrix after tracing out B) is called the entanglement
entropy of the subsystem A. The scaling behavior and
certain universal coefficients of the entanglement entropy
encode important information on the degrees of freedom
and non-local correlations of the system.
More importantly, the entanglement entropy is a

general-purpose quantity since it can be defined in any
quantum many-body system that allows a path-integral
formalism — even in non-local field theories, as will be
shown later. Thus the entanglement entropy is partic-
ularly useful when we know little else about the holo-
graphic dual of a given gravity theory, such as the gravity
in the flat space considered in this paper.
On the gravity side, there is a general prescription

to compute the entanglement entropy holographically:
when the d-dimensional boundary system is divided into
two parts A and B, the holographic dual of the entangle-
ment entropy of the subsystem A is given by the following
area formula [9]

Shol.
A =

Area(γA)

4G
(d+1)
N

, (2)

where Area(γA) is the area of the minimal surface γA
that lies inside the (d+1)-dimensional bulk and borders

on the boundary ∂A of the subsystem A; G
(d+1)
N is the

(d+ 1)-dimensional Newton’s constant.
Now we apply (2) to compute the holographic entan-

glement entropy of a Euclidean field theory living on the
boundary of Rd+1. The Lorentzian version is a QFT in d-
dimensional de Sitter space. The metric of the boundary
sphere Sd is ds2Sd = dτ2+cos2 τdΩ2

d−1, where τ ∈ [−π
2 ,

π
2 ]

is regarded as the Euclidean time, and the spatial slice
of constant τ is Sd−1, whose metric can be written as
dΩ2

d−1 = dθ2 + sin2 θdΩ2
d−2. We divide the spatial slice

Sd−1 at τ = τ0 into two spherical caps A and B us-
ing a subsphere Sd−2 given by θ = θ0. The radius of
this Sd−2 in R

d+1 is ρ∞ cos τ0 sin θ0 ≡ ρ∞ sin α
2 , where

α ∈ [0, 2π] and ρ∞α is the geodesic distance in Sd of
antipodal points of Sd−2 (see Fig.1). The holographic
entanglement entropy is

Shol.
A = Shol.

B = Vd−1 ·
ρd−1
∞

(

sin α
2

)d−1

4G
(d+1)
N

, (3)
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FIG. 1. The geometric computation of the entanglement
entropy SA in the flat space holography. The constant-time
slice Sd−1 of the boundary Sd is divided into A and B. The
entanglement entropy SA is proportional to the area of the
minimal surface γA, whose size is measured by the angle α.

where Vd−1 = π
d−1
2

Γ( d+1
2 )

is the volume of the unit (d − 1)-

ball.
First we notice that for a small subsystem A (α ≪ 1),

(3) approaches A’s volume instead of its area. Moreover,
SA with generic α is extensive since it is proportional to
the spatial volume of the full boundary system (see also
[10] for an earlier study). These two facts are in sharp
contrast with the behavior of SA in local field theories [11]
and with the holographic entanglement entropy in AdS
spaces [9]. In a local field theory at its ground state, the
leading divergence of the entanglement entropy is always
proportional to the surface area of the subsystem, hence
the so-called “area law” [11]. The entropy becomes ex-
tensive only when the system is in highly excited states
with energy around the UV cut-off [12, 13]. However,
the holographic dual of the gravity in flat space should
not be restricted to any particular type of states in the
boundary theory since this “volume law” applies to the
holographic entanglement entropy of any asymptotically
flat space. Taking all these into account, it is natural
to conjecture that the holographic dual is described by
a certain non-local field theory. Below we will construct
one such example based on the scalar field theory.
Also note that although our total system is in a pure

state as evidenced by SA = SB, because SA satisfies
the volume law and moreover saturates the holographic
bound [14] (here given by the volume of A in Sd) in
the α → 0 limit, the reduced density matrix ρA in the
α → 0 limit approaches the one with the maximal en-
tropy (=log dimHA where HA is the Hilbert space of the
subsystem A). In other words, the subsystem A is max-
imally entangled with B in the α → 0 limit.
Let us consider a generic (not necessarily local) free

scalar field theory on Sd defined by the action

Sboundary =

∫

ddx
√
g [φ · f(−∆) · φ] , (4)

where ∆ is the Laplacian on Sd and f(x) is an arbitrary

smooth function (see [15] for an analogous computation
for Rd). When f(x) = x, (4) reduces to the standard free
massless scalar action.
To see the extensive behavior of the entanglement en-

tropy, it suffices to consider the simplest configuration
with α = π. In this case, SA can be expressed as follows
(this is very similar to the geometric entropy introduced
in [16]).

SA =
∂

∂N
log

ZN

(Z1)1/N

∣

∣

∣

∣

∣

N=1

, (5)

where ZN is the partition function of the scalar theory
on the orbifold Sd/ZN ; the ZN action is defined by a
2π
N rotation of Sd: writing the Sd metric as a series of

spherical suspension (i.e., dΩ2
n = dϕ2

n+sin2 ϕndΩ
2
n−1 and

dΩ2
1 = dϕ2

1), ZN acts as ϕ1 → ϕ1 + 2π
N . The partition

function is evaluated using the Schwinger representation

logZN =
1

2

∫ ∞

ǫ

ds

s
Tr(N)e

−sf(−∆), (6)

where the cut-off ǫ is related to the UV cut-off in the field
theory.
Spherical harmonics on Sd are labeled by angular

momentum quantum numbers (l,m1, . . . ,md−1), which
range as l ≥ m1 ≥ . . . ≥ md−2 ≥ 0 and md−2 ≥ |md−1|.
The eigenvalues of the Laplacian ∆ are −l(l + d − 1).
The ZN orbifolding acts by multiplying a phase factor

e
2πi
N

md−1 . The relevant trace of the kernel is then:

Tr(N)e
−sf(−∆) − 1

N
Tr(1)e

−sf(−∆)

=
1

N

N−1
∑

k=1

∑

l

e−sf(l(l+d−1))g

(

l, d,
k

N

)

, (7)

where g(l, d, k
N ) ≡ ∑

{mi} e
2πi k

N
md−1 incorporates the

sum over all magnetic quantum momenta mi.
The relation g(l, d, k

N ) = g(l− 1, d, k
N ) + g(l, d− 1, k

N )

suggests us to solve g(l, d, k
N ) by first obtaining its gen-

erating function:

G(x, y, a) ≡
∞
∑

l=0

∞
∑

d=2

g(l, d,
k

N
) · xl · yd−2

=
1

1− x− y
· 1− x2

(1− x
ξ )(1− ξx)

, (8)

where ξ ≡ e2πi
k
N . Then expanding G(x, y, a) in terms of

x and y gives

g

(

l, d,
k

N

)

=

l
∑

n=0

(

n+ d− 3

d− 3

) l−n
∑

m=−(l−n)

e2πi
k
N

m, (9)

for d = 2, the binomial is δn,0.
Lower dimensional spheres have more compact results:

g(l, 2, k
N ) =

sin [πk
N

(2l+1)]

sin (πk
N

)
and g(l, 3, k

N ) =
(

sin [πk
N

(l+1)]

sin (πk
N

)

)2

and need to be treated separately.
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For higher dimensional spheres (d ≥ 4), g(l, d, k
N ) is a

(pseudo-)polynomial of degree-(d− 3) with respect to l;
its leading term is

g(l, d ≥ 4,
k

N
) =

ld−3

2(d− 3)! · sin2 πk
N

+O(ld−4) (10)

Summing over all twisted sectors using
∑N−1

k=1
1

sin2 πk
N

=

1
3 (N

2 − 1) and then applying limN→1
∂
∂N , we obtain the

leading divergence of the entanglement entropy:

Sd≥4
A =

1

6

∫ ∞

ǫ

ds

s

∞
∑

l=0

ld−3

(d− 3)!
e−sf [l(l+d−1)] + . . . . (11)

Now we impose the UV cutoff. For Sd with radius L
and lattice spacing a, the azimuthal angular momentum
l has an upper bound given by lmax = L

a . This translates
into a lower bound on the integration parameter s: s ≥
ǫ = 1

f(l2max)
.

First, let’s look at actions with f(x) = xp. Theories
of this type are always local; in particular, p = 1 cor-
responds to the standard massless scalar. The leading
divergence of the entanglement entropy is

SA =
Γ(d−2

2p )

6 · (d− 2)!

(

L

a

)d−2

. (12)

Although this result is obtained for d ≥ 4, an exact com-
putation for d = 2, 3 shows that it actually holds for all
d ≥ 2. In particular for d = 2, (12) gives SA = p

3 log
L
a

(after an infinite constant term is dropped). Therefore
theories with f(x) = xp always obey “area law”.
Now we make the theory non-local by choosing f(x) =

ex
q

. For all Sd with d ≥ 2, the leading divergence be-
comes

SA =
2q

6 · (d− 2)! · (d− 2 + 2q)

(

L

a

)d−2+2q

. (13)

In particular for d = 2, SA = 1
6

(

L
a

)2q
. Therefore SA

obeys the volume law when q = 1
2 , in any dimension d.

To summarize, we find that a non-local scalar field theory
defined by the action

Sboundary =

∫

ddx
√
g
[

φ(x) · e
√
−∆ · φ(x)

]

, (14)

gives rise to an entanglement entropy that exhibits the
volume law.
It is tempting to speculate that the holographic dual

of the flat spacetime is given by the non-local general-
ization of a non-abelian gauge theory on Sd: the theory
now has a non-local kinetic term like (14). Indeed, a
similar non-local structure is known to appear in open
string field theory (see e.g.[17]). Moreover, the uncon-
ventional kinetic term in (14) is natural when we rewrite

our flat space metric into ds2
Rd+1 = dr2

r2 +(log r)2dΩ2
d and

draw a parallel with AdS metric ds2AdSd+1
= dr2

r2 + r2d~x2:

the boundary kinetic terms of these two spaces scale the
same since e∂Ω ∼ r ∼ ∂x. This comparison also shows
that ρ = log r should be regarded as the energy scale,
thus ρ∞ is the UV energy cut-off — this corresponds to
the UV cut-off from the viewpoint of open string theory
[18]. This argument can be viewed as a logarithmic gen-
eralization of the holographic duals of Lifshitz-like fixed
points introduced recently in [19].

III. CORRELATION FUNCTIONS

Another important quantity in establishing the holog-
raphy is the correlation function. Here we will compute
holographic correlation functions assuming a natural ex-
tension of the Euclidean bulk-to-boundary relation [3] to
our flat space (1). We impose the UV cut-off at ρ = ρ∞
as before.
Consider a massless scalar in the bulk:

Sbulk =
1

32πG
(d+1)
N

∫

dd+1x
√
g∂µφ∂

µφ, (15)

which is normalized similarly to Einstein-Hilbert action.
Now we follow the bulk-to-boundary procedure to com-
pute the boundary two-point functions. We impose the
Dirichlet boundary condition: φ(ρ∞,Ωd) = φ∞(Ωd).
The bulk-to-boundary propagator K defined by

φ(ρ,Ωd) = lim
ρ′→ρ∞

∫

K(ρ,Ωd; ρ
′,Ω′

d) · φ(ρ′,Ω′
d) · ρ′d dΩ′

d,

(16)
is given by the derivative of the bulk Green’s function
under Dirichlet boundary condition (G(ρ,Ωd; ρ

′,Ω′
d) = 0

at ρ = ρ∞ or ρ′ = ρ∞):

K(ρ,Ωd; ρ
′,Ω′

d) =
∂

∂ρ′

[ 1

(ρ2 + ρ′2 − 2ρρ′ cos∆θ)
d−1
2

− 1

(( ρρ
′

ρ∞

)2 + ρ2∞ − 2ρρ′ cos∆θ)
d−1
2

]

· 1

(d− 1)Ad
, (17)

where cos∆θ = ~Ωd · ~Ω′
d and Ad is the surface area of the

unit sphere Sd. Then the on-shell action is:

Son−shell
bulk = lim

ρ→ρ∞

1

32πG
(d+1)
N

∫

ρddΩdφ(ρ,Ωd)∂ρφ(ρ,Ωd)

= N · ρd−1
∞

G
(d+1)
N

∫

dΩddΩ
′
d

φ∞(Ωd)φ∞(Ω′
d)

(1− cos∆θ)
d+1
2

, (18)

where N ≡ (2
d+9
2 πAd)

−1. Therefore the boundary two-
point function is

〈Ô(Ωd)Ô(Ω′
d)〉 = N · ρd−1

∞

G
(d+1)
N

1

(1− cos∆θ)
d+1
2

. (19)

This agrees with the analysis in [20], though our interpre-
tations are slightly different. Note that the above result
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contains only a divergent term. Therefore we argue that
after adding non-local boundary counter-terms to cancel
the divergence, the physical two-point function is actu-
ally vanishing. Non-local counter-terms have also been
used in the holography of NS5-branes [4, 21].
Next consider a massive scalar defined by the action

on R
d+1

Sbulk =
1

32πG
(d+1)
N

∫

dd+1x
√
g(∂µφ∂

µφ+M2φ2). (20)

We impose Dirichlet boundary condition again and de-
compose the boundary scalar field as: φ∞(Ωd) =
∑

l, ~m cl, ~mYl, ~m(Ωd), where Yl, ~m(Ωd) are the orthonormal

spherical harmonics on Sd. Under this boundary condi-
tion, the equation of motion

(∆−M2)φ =
1

ρd
∂ρ(ρ

d∂ρφ)−
(

M2 +
l(l+ d− 1)

ρ2

)

φ = 0,

(21)
is solved as follows

φ(ρ,Ωd) =
∑

l, ~m

cl, ~m
ρ

1−d
2 Il+ d−1

2
(Mρ)

ρ
1−d
2∞ Il+ d−1

2
(Mρ∞)

Yl, ~m(Ωd), (22)

where the modified Bessel function of the first kind Iν(z)
was chosen to avoid singularity at ρ = 0. Then the same
bulk-to-boundary procedure produces the boundary two-
point function:

〈Ô(Ωd)Ô(Ω′
d)〉 =

ρd∞

32πG
(d+1)
N

∑

l, ~m

Fl(ρ∞)Ȳl, ~m(Ωd)Yl, ~m(Ω′
d)

(23)

where Fl(ρ) ≡ ∂ρ log
(

ρ
1−d
2 Il+ d−1

2
(Mρ)

)

First, (23) correctly reduces to the massless case (19)
when M = 0 since limρ∞→∞[ρ∞Fl(ρ∞)] |M=0= l. For
the massive scalar, we find that in the limit ρ∞ → ∞,
ρd∞Fl(ρ∞) takes a non-zero finite value after counter-
terms are added to cancel the divergence. Using the
asymptotic expansion of Bessel function we see that
this finite term is given by a degree-[d2 ] polynomial of
l(l+ d− 1), which is the eigenvalue of −∆. For example,
when d = 2,

ρ2∞Fl(ρ∞) ≃ Mρ2∞ − ρ∞ +
l(l+ 1)

2M
+O(ρ−1

∞ ). (24)

Then using the identity
∑

l, ~m Ȳlm(Ω1)Ylm(Ω2) = δ(Ω1 −
Ω2), we conclude that the two-point functions consist of
δ-functions and their derivatives by Laplacian. There-
fore, we argue that the holographic correlation functions
for a massive scalar are essentially zero.
Next one could explicitly compute higher-point func-

tions following the bulk-to-boundary principle. However,
assuming the dilaton-type massless scalar Lagrangian of
the form L = (∂µφ)

2P (φ) where P (φ) is a polynomial,
it is easy to see that the results always scale as ρd−1

∞ .

Following the same argument as before, they can all be
eliminated by adding boundary counter-terms.
In summary, we argue that all n-point correlation func-

tions vanish after counter-terms are added to cancel the
divergences. This seems surprising until one recalls our
previous observation from the holographic entanglement
entropy: A is maximally entangled with B when the size
of A approaches zero. Define an infinitesimally small sub-
system A as the sum of the n points in the correlation
function: A = x1 ∪ . . . ∪ xn. Our previous result implies
that in this case the entropy SA for ρA becomes maximal,
therefore the matrix ρA factorizes into a direct product
ρA = ρx1 ⊗ . . .⊗ ρxn

, as in a system at an infinitely high
temperature. Thus all correlation functions vanish:

〈Ô(x1) . . . Ô(xn)〉 ≡ Tr[ρAÔ(x1) . . . Ô(xn)] = 0. (25)

IV. DISCUSSION

In the Lorentzian version of (1) given by ds2 = dρ2 +
ρ2(−dt2 + cosh2 t dΩ2

d−1), a static observer at ρ = ρ0
detects a thermal state at the Unruh temperature TU =

1
2πρ0

. From this viewpoint we can rewrite the entangle-

ment entropy SA for maximal size A (α = π) as follows

SA =
2−d−1π

1−d
2

Γ(d+1
2 ) ·G(d+1)

N · T d−1
U

, (26)

The UV cut-off is shifted to a finite value now. Since
SA measures the amount of information hidden in the
subsystem B, which is inaccessible to an observer in
A, one expects that it is closely related to the entropy
of Schwarzschild black hole with temperature TBH =
TU . Indeed, the entropy of the (d + 1)-dimensional
Schwarzschild black hole is

SBH =
2−2d+1π

2−d
2 (d− 2)d−1

Γ(d2 ) ·G
(d+1)
N · T d−1

BH

,

which agrees with SA up to a numerical constant. Thus
our holographic interpretation is consistent with black
hole entropies. This consideration also suggests a string
theory interpretation of our holography. In AdS/CFT
[2], the holographic dual theory comes from the D-branes
that originally sit at the horizon r = 0. In our flat space-
time, in the limit of ρ → 0, the Unruh temperature TU

becomes infinitely large and the corresponding observer
will detect pair creations of many D-branes. Therefore it
is tempting to speculate that the open string theory for
them is the non-local field theory that we conjecture to
be the holographic dual of the flat spacetime.
Finally, let us examine the connection between UV

cut-off in the field theory and the cut-off radius of the
bulk more closely. Matching the entanglement entropy
obtained from the holographic computation ((3) with
α = π) and the field theory one ((13) with q = 1

2 ), we see
that if we switch to dimensionless coordinates defined by
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ρ̃ ≡ ρ
R where R is a length unit, and accordingly consider

the boundary theory on a unit sphere Sd with dimension-
less lattice spacing ã = a

R , we can identify:

ã =
1

ρ̃∞
. (27)

Now SA, interpreted as the entanglement entropy for the
holographic dual on the unit sphere Sd, scales as

SA ∼ Rd−1

G
(d+1)
N

· (ρ̃∞)d−1 ∼ n

ãd−1
, (28)

where the dimensionless number n ∼ Rd−1

G
(d+1)
N

counts the

number of fields in the holographic dual. Since the bulk
metric ds2 = R2(dρ̃2 + ρ̃2dΩ2

d) is invariant under the
rescaling (R, ρ̃) → (Rλ, ρ̃/λ) for arbitrary λ, there ex-
ists a corresponding symmetry in the holographic dual

theory:

(n, ã) → (λd−1n, λã). (29)

Note that the total number of degrees of freedom in the
boundary field theory is proportional to n

ãd−1 therefore
remains unchanged. This symmetry suggests that the
theory is highly non-local and entangled and will be use-
ful when we go on to identify the precise holographic
dual. We leave these questions for future study.
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