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We study electron-phonon interaction induced decoherence between two-electron singlet and
triplet states in a semiconductor double quantum dot using a spin-boson model. We investigate
the onset and time evolution of this dephasing, and study its dependence on quantum dot param-
eters such as dot size and double dot separations, as well as the host materials (GaAs and Si). At
the short time limit, electron-phonon interaction only causes an incomplete initial Gaussian decay
of the off-diagonal density matrix element in the singlet-triplet Hilbert space. A complete long-time
exponential decay due to phonon relaxation would eventually dominate over two-spin decoherence.
We analyze two-spin decoherence in both symmetric and biased double quantum dots, identifying
their difference in electron-phonon coupling and the relevant consequences.

I. INTRODUCTION

Significant experimental progresses in the study of
semiconductor spin qubits in the past few years1–12 have
reconfirmed the confined electron spins as one of the lead-
ing candidates for the building block of a solid state quan-
tum information processor. A decade of theoretical stud-
ies have mostly clarified single spin decoherence channels
and their relative importance in semiconductor quantum
dot (QD) and donor confined electrons,13–32 with hyper-
fine interaction to the lattice nuclear spins as the main
culprit for electron spin decoherence.

Decoherence of two-spin states in a coupled dou-
ble quantum dot is crucial to the operation and
scale-up of exchange-based spin quantum computer
architectures.33–38 Since nuclear spins are the main
sources of single spin decoherence in GaAs quantum dots,
where most experimental progress have been made, exist-
ing theoretical studies have focused on the decohering ef-
fects of the nuclear spins.39–42 In addition, since exchange
coupling is electrostatic in nature, exchange-coupled elec-
trons are vulnerable to charge noise and other orbital
fluctuations that have an electrical signature.40,43–47 For
example, we have shown how gate noise43 and back-
ground charge fluctuations44 lead to pure dephasing by
introducing noise into exchange splitting of a double dot.

Electron-phonon interaction is intrinsic to any solid
state system,48,49 and semiconductor nanostructures are
no exception. It is therefore important to consider the
role of electron-phonon interaction in electron spin de-
coherence. While electron-phonon interaction is gener-
ally not spin-dependent, it can affect spins when com-
bined with other interactions. For example, in a sin-
gle quantum dot, electron-phonon interaction can assist
single-electron spin flip or two-spin transitions in combi-
nation with spin-orbit interaction13,19,50–55 or hyperfine
interaction.15,39,42 In the case of donors, the strongly lo-
calized electron wave function and the resulting lattice
strain lead to a direct spin-lattice interaction, so that
electron-phonon interaction can cause pure dephasing for
a single spin.56

In this work we study decoherence effects of electron-
phonon interaction on two-electron-spin states in semi-
conductor double quantum dots (DQD). Singlet and
triplet states are two-spin eigenstates for exchange-
coupled electrons in the absence of spin-orbit interaction
and inhomogeneous magnetic fields (otherwise electron-
phonon interaction can lead to relaxations between sin-
glet and triplet states42,54,55). These two types of states
have different charge distributions because of their differ-
ent spin symmetry. We show that this difference in elec-
tron charge density distribution leads to different dress-
ing by the phonons, without the involvement of the ex-
cited states and/or spin-orbit interaction. This difference
in phonon dressing then leads to pure dephasing between
singlet and triplet states. The systems we consider in-
clude coupled quantum dots in GaAs and Si, both re-
garded as promising candidates for qubits in spin-based
quantum information processing.
The paper is organized as follows. In Section II we in-

troduce the electron-phonon interaction in GaAs and Si.
Combined with knowledge of two-electron states, we ob-
tain the effective interaction Hamiltonian in the form of
a spin-boson model, and calrify the dynamics of two-spin
dephasing. In Section III we present our results, quanti-
fying time scale of two-spin dephasing in both GaAs and
Si, and in both symmetric and biased double dots, and
identifying the most important types of electron-phonon
interaction. Finally, in Section IV we discuss the implica-
tions of our results on spin and exchange-based quantum
information processing, and give our conclusions.

II. THEORETICAL FORMALISM

A. Electron-phonon interaction in GaAs and Si

The general electron-phonon interaction Hamiltonian
in a semiconductor takes the form49

Hep =
∑

q,λ

Mλ(q)ρ(q)(aq,λ + a†−q,λ) , (1)
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where aq,λ and a†−q,λ are phonon annihilation and cre-
ation operators with lattice momentum q and branch in-
dex λ, and ρ(q) is the electron density operator. For
this work we consider the electron interaction with both
acoustic and optical phonons.
For semiconductors with polar characteristics, such as

GaAs and InAs, electron-phonon interaction is gener-
ally strong, including deformation potential (DP) inter-
action and piezoelectric (PE) interaction with acoustic
phonons, and polar (PO) interaction with longitudinal
optical (LO) phonons. Deformation potential interaction
in GaAs only couples electrons to longitudinal acoustic
(LA) phonons,

MDP
GaAs(q) = D

(

~

ρV ωq

)
1

2

|q| , (2)

where D is the deformation constant, ρ is the mass den-
sity, V is the volume of the crystal, and ωq is the angular
frequency of the phonon mode q. For GaAs D = 8.6 eV
and ρ = 5.3× 103 kg/m3. For piezoelectric interaction in
a zinc-blende lattice,

MPE
GaAs(q) = i

(

~

ρV ωq

)
1

2

2ee14 (q̂xq̂yξz + q̂y q̂zξx + q̂z q̂xξy) ,

(3)
where e is the elementary electric charge, e14 is an elas-

ticity tensor component, ξ̂ is the polarization vector, and
q̂ is the unit vector along q. For GaAs e14 = 1.38× 109

V/m. Notice that PE interaction can couple electrons to
both LA and transverse acoustic (TA) phonons. For po-
lar interaction with LO phonons in bulk polar materials
such as GaAs and InAs,

MPO
GaAs(q) =

√

2πe2~ωLO

q2V

(

1

ǫ∞
− 1

ǫ0

)

, (4)

where ǫ∞ and ǫ0 are the high- and low-frequency dielec-
tric constants, and ~ωLO is the zone-center LO phonon
energy. For GaAs, ǫ∞ = 10.89, ǫ0 = 12.9, and ~ωLO =
36.25 meV. In a quantum well with well width az, where
barrier materials have different dielectric constants than
the well itself, the LO phonons are confined, so that the
LO phonon wave vectors along the confinement direction
can only take discrete values of qz = nπ/az, with n being
positive integers.57

For Si, which has a vanishing PE interaction because
of the inversion symmetry of its lattice, the DP inter-
action has similar strength as in GaAs, and can couple
electrons to both acoustic phonon branches. There is
no interaction between conduction electrons and optical
phonons in Si though.49 The conduction band of bulk Si
has a six-fold degeneracy at its bottom,49 so that the DP
electron-phonon interaction takes on a more complicated

form.49 For an electron in a particular valley along the k̂
direction,

HDP
Si = ΞdTr{ε}+ Ξu(k̂ · ε · k̂) , (5)

where Ξd and Ξu are the dilation and shear deformation
potential constants, and ε is the strain tensor of the lat-
tice due to lattice vibrations. For Si, Ξd = 5.0 eV and
Ξu = 8.77 eV for electrons at the bottom of the con-
duction band.49,58 For a two-dimensional quantum dot
(in the xy-plain) whose electronic ground orbital state
involves only the z and −z valleys,

MDP,LA
Si (q) = Ξd

(

~

ρV ωq

)
1

2

|q|
(

1 +
Ξu

Ξd
q̂2z

)

, (6)

MDP,TA
Si (q) = Ξu

(

~

ρV ωq

)
1

2

ξzqz . (7)

Having obtained the explicit forms of the electron-
phonon interaction Hamiltonians in both GaAs and Si,
we can now project them onto specific electronic state ba-
sis. Below we discuss these projections in both symmetric
and biased double quantum dots with two electrons.

B. Charge distribution of two electrons in a

symmetric double quantum dot

For two electrons in a DQD, the electron density op-
erator ρ(q) in the general electron-phonon interaction
Hamiltonian Eq. (1) takes the form ρ(q) = eiq·r1 +
eiq·r2 .48 With the knowledge of electron orbital states,
we can calculate the matrix elements of ρ(q).
When two spin qubits are exchange-coupled in an un-

biased symmetric DQD, their orbital states are sym-
metric or anti-symmetric if their spin state is singlet
(| ↑↓ − ↓↑〉/

√
2) or triplet (| ↑↓ − ↓↑〉/

√
2, | ↑↑〉, | ↓↓〉).

Within the Heitler-London approximation, the two spa-
tial wave functions can be written as

|ψS〉 =
1

√

2(1 + S2)
|L(1)R(2) +R(1)L(2)〉 ,

|ψAS〉 =
1

√

2(1− S2)
|L(1)R(2)−R(1)L(2)〉 , (8)

where L and R refer to the ground single-electron orbital
states in the two dots, S = 〈L|R〉 is the overlap integral,
and 1 and 2 are indices for the two electrons.
Now we can project the electron-phonon interaction

into the singlet-triplet Hilbert space. All three triplet
states have the same orbital wave function and cannot
be differentiated by electron-phonon interaction. The
Hilbert space of interest is thus only two-dimensional,
with the corresponding basis states 1√

2(1+S2)
|L(1)R(2)+

R(1)L(2)〉 × 1√
2
| ↑↓ − ↓↑〉 and 1√

2(1−S2)
|L(1)R(2) −

R(1)L(2)〉 × 1√
2
| ↑↓ + ↓↑〉. Since the Hamiltonian has

no spin-dependence, the 2 × 2 electron-phonon interac-
tion Hamiltonian is diagonal:

Heff =
∑

q,λ

Mλ(q)Aφσz(aq,λ + a†−q,λ) , (9)
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where σz is a Pauli matrix in this two-dimensional two-
electron Hilbert space (it is not for single electron spins),
and the charge distribution difference Aφ is given by

Aφ =
1

2
[〈ψAS |ρ(q)|ψAS〉−〈ψS |ρ(q)|ψS〉] = Aφ(q‖)f(qz) .

(10)
Here f(qz) is determined by the z-direction (growth di-
rection) wave function, and there is no transition be-
tween subbands created by z-confinement. For an infi-
nite square well with width az and for acoustic phonons
(whose wave vectors are not limited by the quantum well
confinement),

f(qz) =
sin qzaz
qzaz

−π2

(qzaz)2 − π2
. (11)

For LO phonons, qz are discrete: qz = mπ/az, with
m = 1, 2, .... In the present calculation there is no in-
tersubband transition, so that

f(qz = 2nπ/az) = 0 , (12)

while for qz = (2n+ 1)π/az,

f

(

(2n+ 1)π

az

)

=
(−1)n+1

(n− 1/2)(n+ 1/2)(n+ 3/2)
. (13)

For a symmetric DQD, the singlet state has larger
charge density in between the two dots, while the triplet
has larger charge density at the far ends of the DQD.
The resulting difference in charge distribution has a fi-
nite electrical quadrupole moment and gives Aφ(q‖) its
q-dependence:

ASym
φ (q‖) =

2S2e−(q‖a)
2/4

1− S4

{

cos qxL− cosh

(

qya

2

La

l2B

)}

,

(14)

where lB =
√

~/eB is the magnetic length for a single
electron. At zero external field Aφ(q‖) takes on the sim-

plified form of

ASym
φ (q‖, B = 0) = −4S2e−(q‖a)

2/4

1− S4
sin2

(

qxL

2

)

. (15)

C. Charge distribution of two electrons in a biased

double quantum dot

In the case of a singlet-triplet qubit,1 the DQD is bi-
ased. The interdot bias is in the regime where the ground
triplet state remains in the (11) configuration, while the
ground singlet state is generally a superposition of the
(11) [denoted as S(11)] and (02) [denoted as S(02)] sin-
glets. In S(11), the two electrons are symmetrically dis-
tributed across the two dots. In S(02), the two electrons
are both in the ground orbital state of the lower-energy
dot. S(11) and S(02) are tunnel coupled, and the com-
position of the ground singlet state |S〉 depends on the
detuning ǫ between the two singlets in the absence of the
tunnel coupling. Here ǫ = 0 is defined as the anticrossing
point of S(11) and S(02). For negative (positive) ǫ, S(11)
[S(02)] has lower energy.

|S〉 = α|S(11)〉+ β|S(02)〉 (16)

|S(11)〉 = ψS × 1√
2
|↑↓ − ↓↑〉 (17)

|S(02)〉 = |R(1)R(2)〉 × 1√
2
|↑↓ − ↓↑〉 (18)

|T〉 = ψAS × 1√
2
|↑↓ + ↓↑〉 (19)

Here for simplicity we assume α and β to be real. Both
are functions of the interdot detuning ǫ. With the |S〉 and
|T〉 states given and the respective charge distributions
known, we can calculate the charge distribution differ-
ence for a biased DQD as a function of α and β:

ABiased
φ (q‖) = −iβ2e−(q‖a)

2/4 sin qxL− αβ

√
2S√

1 + S2
e−(q‖a)

2/4

{

eiqxL + cosh

(

qya

2

La

l2B

)}

+

[

1− β2

2
(1− S2)

]

2S2

1− S4
e−(q‖a)

2/4

{

cos qxL− cosh

(

qya

2

La

l2B

)}

(20)

Similar to the case of a symmetric DQD, at zero magnetic field the expression of Aφ is simplified:

ABiased
φ (q‖, B = 0) = −αβ 2

√
2S√

1 + S2
e−(q‖a)

2/4 cos2
qxL

2
−
[

1− β2

2
(1− S2)

]

4S2

1− S4
e−(q‖a)

2/4 sin2
qxL

2

−i
[

β2 + αβ

√
2S√

1 + S2

]

e−(q‖a)
2/4 sin qxL (21)

The finite interdot bias, which leads to all the addi-
tional terms in Aφ when β 6= 0, has some important

consequences. One distinct feature of Eq. (21) is the
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FIG. 1: (Color online) Charge density difference ABiasedφ as
a function of phonon wave vector qx and interdot bias ǫ in
a biased DQD. Notice that as soon as ǫ moves away from
the S(11)-S(02) anticrossing point (where ǫ = 0) toward the
negative bias, Aφ has similar characteristics in the form of a
peak determined by the inter-dot distance L. In this regime
the two electrons are in the (11) configuration, essentially the
same as the case of a symmetric DQD. Close to ǫ = 0, the
two-electron singlet state acquires a (02) component, while
the peak of Aφ shifts toward qx = 0.

first term on the right hand side, which does not go
to zero when qx → 0. It implies that low-frequency
phonons are more efficient in causing dephasing for a bi-
ased DQD compared to a symmetric DQD. In Fig. 1 we
show ABiased

φ as a function of qx for various detuning ǫ.

As discussed above, as ǫ approaches 0, the S(02) compo-
nent increases in the ground singlet state, and ABiased

φ
acquires a finite value at qx = 0. On the other hand,
for ǫ ≪ 0 so that β → 0, the biased DQD system ap-

proaches the symmetric case, so that ABiased
φ → ASym

φ .
Furthermore, for the more symmetric DQDs, Aφ has a
peak around qx ∼ 1/L, as can be seen from the functional

form of ASym
φ . Another interesting feature of Eq. (21) is

the last term on the right hand side, which apparently
does not go to zero when overlap S → 0 as long as β is
finite. This term is again due to the charge distribution
difference between (11) and (02) configurations. We will
explore the consequence of this term at the end of next
Section.

D. Two-spin dephasing due to electron-phonon

interaction with a dissipative bosonic reservoir

The effective electron-phonon interaction Hamiltonian
of Eq. (9) is a typical spin-boson Hamiltonian that leads
to decay in the off-diagonal element of the 2× 2 density
matrix:59

ρST(t) = ρST(0)e
−B2(t) , (22)

where the dephasing factor is positive definite:59

B2(t) =
V

π3~2

∫

d3q
|M(q)Aφ(q)|2

ω2
q

sin2
ωqt

2
coth

~ωq

kBT
.

(23)
It has long been pointed out that bosonic reservoirs

with vanishing density of state at low frequencies do not
cause complete decay of the off-diagonal element of a two-
level system density matrix,56,60–68 in other words B2(t)
of Eq. (23) does not diverge with time, because bosonic
modes with ω → 0 determine the long-time behavior for
the two-level system. This absence of complete dephas-
ing can be traced back to the assumptions made when
the dephasing formula Eq. (23) is derived. While it does
account for the fact that the bosonic reservoir is in a
thermal equilibrium before getting into contact with the
spin,59 it treats the harmonic modes in the Bosonic reser-
voir as completely coherent. However, these harmonic
modes, in the present case the phonons, also belong to an
open system, and could lose their coherence to their en-
vironments. When relaxations of the bosonic modes are
taken into account, it is expected that pure dephasing of
the two-level system would eventually become complete.
For example, in a spin-boson model study of localization,
Ref. 69 showed how anharmonicity of the bosonic reser-
voir, in the form of two-phonon scattering, would lead to
complete decoherence of the two-level system considered.
In the present study, we account for phonon re-

laxation by assuming that each phonon mode couples
to a continuum of bosonic modes. This is identi-
cal to the description of a cavity photon mode cou-
pling to a continuum.70 Such a model is grounded in
the development of phonon cavities in semiconductor
heterostructures.71,72 The Hamiltonian for the phonon
modes and their reservoirs takes the form

H = Hs +Hr +Hint

Hs = ~ωqa
†
q
aq

Hr =
∑

j

~ωjb
†
jbj

Hint = ~

∑

j

(

gjqa
†
q
bj + g∗jqaqb

†
j

)

,

where aq is the phonon annihilation operator, bj is the
annihilation operator of the jth mode of the bosonic
reservoir, and gjq is the coupling strength between the
phonon mode and the reservoir modes. With this inter-
action with the reservoir, the Langevin equation for the
phonon annihilation operator (in the Heisenberg picture)
takes the form

d

dt
aq(t) = −iωqaq(t)−

γq
2
aq(t) + Fq(t)e

−iωqt (24)

Fq(t) = −i
∑

j

giqbj(t0)e
(ωq−ωj)(t−t0)

γq = 2πD(ωq) |g(ωq)|2 .
Notice that the noise operator Fq(t) here is assumed to
be independent of the initial time t0. In the definition
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of the decay rate γq the sum over reservoir mode j has
been replaced by an integration over energy, with D(ω)
being the density of state for the reservoir, and gj is
assumed to be smooth in any narrow energy range so that
it can be replaced by g(ω). Compared to a dissipationless
phonon mode, now we have the additional 2nd and 3rd
terms on the right hand side of Eq. (24), representing

the dissipation and fluctuation caused by the coupling
to the reservoir. Indeed we expect that whatever the
exact form of interaction and spectrum of the reservoir
are for the phonons, the effects on the phonons can be
characterized by terms similar to these two. We include
these two terms and rederive Eq. (23) using the approach
adopted in Ref. 59. Now we obtain

ρST(t) = ρST(0)e
−B2

1
(t)−B2

2
(t) ,

B2
1(t) =

V

2π3~2

∫

d3q
|M(q)Aφ(q)|2
ω2
q
+ (γq/2)2

{

ω2
q
− (γq/2)

2

ω2
q
+ (γq/2)2

(

1− e−
γq

2
t cosωqt

)

− e−
γq

2
tωqγq/2

ω2
q
+ (γq/2)2

sinωqt

}

coth
~ωq

kBT
, (25)

B2
2(t) =

V

2π3~2

∫

d3q
|M(q)Aφ(q)|2
ω2
q
+ (γq/2)2

(γq
2
t
)

= ΓSTt . (26)

At the limit that phonon decay rate γq → 0, B2
1(t) →

B2(t) while B2
2(t) → 0. For finite γq, corresponding to

a dissipative phonon reservoir, we obtain an additional
exponential decay of the off-diagonal density matrix ele-
ment in Eq. (26) compared to the non-dissipative reser-
voir result of Eq. (23). The rate of this exponential decay
ΓST is proportional to the phonon decay rate γq inte-
grated over the phonon modes. Notice that ΓST does

not explicitly contain the thermal factor coth
~ωq

kBT that
describes the thermal occupation of the phonon modes.
This is because B2

2(t) comes from phonons decaying into
their reservoirs, when phonons themselves are regarded
as coherent bosons, while temperature information of the
reservoirs for the phonons is contained in the noise oper-
ator Fq(t).

III. RESULTS

The main questions we would like to answer in this
work are: Is electron-phonon interaction an important
decoherence channel for spin qubits in semiconductor
quantum dots? Under what condition is it important?
How do different substrate materials (GaAs and Si) com-
pare to each other? And how do different qubit archi-
tectures compare with each other? Below we show our
results that provide the answers.

A. Symmetric double dot

Let us first examine the dynamical behaviors of the
dephasing factors B2(t) and dephasing rate ΓST due to
electron-phonon interaction when the double quantum
dot is unbiased.
In Fig. 2 we show the typical behavior of the dephas-

ing factor B2(t) in the absence of phonon decay for var-
ious types of electron-phonon interactions in GaAs and

Si. There are two interesting features all the curves for
acoustic phonons in Fig. 2 share. At very short times
(t ≪ 1 ps), the increase of B2(t) is quadratic, which
originates from Taylor expansion of the sin2 ωqt/2 factor
in the integrand at the small-t limit. At long times all
the curves saturate, which means that dephasing does
not increase with time anymore, so that it corresponds
more to a finite loss of contrast than the conventional
complete decay of off-diagonal density matrix elements.
The transition between the quadratic increase and the
saturation happens between 1 and 10 ps for double dots
with dot separation of 40 nm and single-dot radius of 20
nm because this time is essentially determined by the in-
terdot distance divided by the speed of sound (5 ∼ 8×103

m/s in Si and 3 ∼ 5 × 103 m/s in GaAs): 40 nm / c ∼
10 ps. The saturation time for Si is shorter because Si
has larger speed of sound. The dephasing factor due to
DP interaction with TA phonons in Si is two orders of
magnitude smaller than that due to LA phonons, and is
not plotted in Fig. 2.

Mathematically the long-time saturation can be under-
stood by writing 2 sin2 ωqt/2 as 1−cosωqt = 1−cos(cqt).
Since acoustic phonon spectrum is continuous, the co-
sine term leads to a vanishing contribution to the in-
tegral at large times, which leaves the dephasing fac-
tor determined by a constant integral that is indepen-
dent of time. Physically, this saturation is due to the
fact that long-time dephasing is determined by the low-
frequency part of the spectrum of the bosonic reservoir,
while phonon density of state vanishes quadratically at
low frequency. In other words, non-dissipative acoustic
phonons simply form an inefficient dephasing reservoir as
compared to other charge fluctuation reservoirs such as
fluctuating charge traps, which have a 1/f spectral den-
sity. This incomplete dephasing has been observed theo-
retically in a variety of calculations related to phonons,
in the studies of general spin-boson decoherence bahv-
iors, charge and spin coherence of single electrons, and
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FIG. 2: (Color online) Two-spin dephasing in a symmetric
double quantum dot induced by a non-dissipative phonon
reservoir. All the curves are for double quantum dots with
an interdot separation of 40 nm and single dot orbital radius
of 20 nm. More specifically, the black solid line is for PE
interaction with TA phonons in GaAs, the red dotted line is
for PE coupling to LA phonons in GaAs, the green dashed
line is for DP coupling to LA phonons in GaAs; the blue dot-
dashed curve is for DP coupling to LA phonons in Si; and
the maroon dot-dashed-dashed horizontal line represents the
dephasing magnitude for polar interaction with LO phonons
in GaAs. The dephasing here is given by B2(t → ∞)

exciton coherence.56,60–68

For electron interaction with optical phonons in GaAs,
the dephasing factor B2(t) takes on a particularly simple
form because the optical phonon dispersion at the zone
center is flat. Take ωq ≈ ωLO, we obtain

B2
LO(t) =

V

π3~2

∫

d3q
|M(q)Aφ(q)|2

ω2
q

sin2
ωqt

2
coth

~ωq

kBT

=
2e2

π2~ωLO

(

1

ǫ∞
− 1

ǫ0

)

coth
~ωLO

kBT
sin2

ωLOt

2

×
∫

d3q
|Aφ(q)|2

q2

= b2LO sin2
ωLOt

2
, (27)

which is a sinusoidal function of time. For a GaAs double
dot with a single-dot radius of a = 20 nm, and L/a in
the range of 1 and 2, the coefficient b2LO for the sinusoidal
function ranges between 10−4 and 10−9.
As we discussed in the previous section, the abso-

lute value of the saturated dephasing, as long as it is
small (≪ 1), is not an important parameter by itself
because dephasing will eventually become complete due
to phonon relaxation. However, the relative magnitudes
of the saturated dephasing shown in Fig. 2 do give a
qualitative sense of the relative importance of various
types of electron-acoustic-phonon interactions. Specifi-
cally, in GaAs PE coupling to TA phonons produces the
strongest dephasing effect, while in Si DP coupling to
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FIG. 3: (Color online) Phonon induced two-spin dephasing
rate as a function of acoustic phonon temperature in a sym-
metric double dot for both GaAs and Si. The single dot wave
function radius for all the data is 20 nm.

LA phonons is the most important. In addition, as indi-
cated in Eq.(23), B2(t) does have a strong temperature
dependence as well. At higher temperatures more acous-
tic phonon modes contribute to dephasing, so that B2(t)
can eventually become an O(1) quantity and dephasing
can be considered complete. In Fig. 3 we plot the tem-
perature dependence of the saturated B2(t) for GaAs and
Si quantum dots. At temperatures above 1 K dephasing
increases with temperature almost linearly. On the other
hand, optical phonon induced dephasing does not have
pronounced temperature dependence even at T = 10 K
because ~ωLO ∼ 36 meV is much larger than kBT at low
temperatures.

When phonon decay is included, the most important
effect is the added exponential dephasing e−ΓSTt, on
which we focus in the rest of this study. To calculate
ΓST, we need to first identify the q-dependence of phonon
relaxation rate γq. Qualitatively, lower energy (lower
frequency ωq) acoustic phonons have to decay slower
(smaller γq). For example, when phonon decay is due
to anharmonicity, or more specifically the 3rd order pro-
cess of one phonon splitting into two, the phonon decay
rate could vary as qn with n between 1 and 4 depend-
ing on the lattice symmetry and phonon branches.73,74

In the case of a phonon cavity, it is not clear how the
Q-factor would vary with phonon wave vector, although
with γq ∝ D(ωq) [where D(ωq) is the phonon reservoir
density of states] one could expect γq ∝ q2. In the fol-
lowing, we calculate acoustic-phonon-induced dephasing
rate assuming that γq = γ0q

n, with n taking the value of
2 or 3. Taking Q = 103 for a TA phonon with energy 0.1
meV, we obtain γ0 = 108 1/s. For LA phonons, which
have higher energies than TA phonons with the same q,
we take γ0 = 109 1/s. This is an arbitrary choice that is
used to reflect the fact that LA phonons generally have
shorter lifetimes than TA phonons.74 For LO phonons we
assume a constant relaxation time of 10 ps for all modes.
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The rationale here is that LO phonons have a flat disper-
sion, so that they should have a near constant relaxation
rate near the Brillouin zone center. The LO phonons also
have a very short lifetime because of their large energy.
Zone center LO phonons have been measured to have a
lifetime of 7 ps.75,76

In Fig. 4 we plot the phonon-induced two-spin dephas-
ing rate ΓST in symmetric DQDs in both GaAs and Si
as functions of the half interdot distance L. The ra-
dius of the single dot electron wave function is 20 nm
for this figure and all the following figures. The strong
dependence on L for all data sets originates from the
fact that charge distribution difference between the two-
electron singlet and triplet states in a symmetric DQD
is directly dependent on interdot wave function overlap:
ΓST ∝ [4S2/(1 − S2)]2, so that the smaller the over-
lap, the smaller the difference in charge distribution, and
the smaller the phonon-induced dephasing. Based on the
data given in Fig. 4, phonon-induced dephasing is not an
important decoherence mechanism when L/a > 2 in a
symmetric DQD.

An important feature of Fig. 4 is that DP coupling
to LA phonons is the most important dephasing chan-
nel for GaAs, and produces about the same magnitude
of dephasing in Si. In GaAs, dephasing due to DP cou-
pling is about one order of magnitude larger than that
by PO coupling to LO phonons, and almost two orders
of magnitude larger than that due to PE coupling to
both LA and TA phonons. This fact is somewhat sur-
prising because in Fig. 2 it is clear that PE coupling to
TA phonons is by far the most important decoherence
channel. However, notice that in the present calcula-
tion of ΓST the acoustic phonon decay increases rapidly
as phonon energy increases, so that the contributions
from higher-energy phonons are much more important
in the calculation of ΓST than in B2(t). This tilt to-
ward higher-energy phonons strongly favors DP coupling
over PE couplings because of the factor of q difference in
the electron-phonon coupling matrix element. The simi-
lar values for dephasing for GaAs and Si within the DP
mechanism is more of a coincidence: they have similar
values in DP coupling strength, mass density, and speed
of sound, and we chose the same γ0 for both materials,
although Si has the extra contribution from the shear
DP constant Ξu. Based on the results presented in this
figure, phonon-induced dephasing is an essentially equiv-
alent decoherence mechanism for Si and GaAs.

Another interesting aspects of Fig. 4 is that LO
phonons turn out to be a strong source of dephasing for
the two-spin states in GaAs, even though they have very
high energy in GaAs (∼ 36 meV). This somewhat surpris-
ing result originates from the facts that LO phonons have
a diverging density of state at the zone center (as com-
pared to the vanishing density of state for the acoustic
phonons) and very fast relaxation rate (experimentally
measured at 7 ps75), and that GaAs has a reasonably
strong polar interaction strength. In Si the conduction
electrons do not interact with optical phonons, therefore
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FIG. 4: (Color online) Phonon-induced two-spin dephasing
rate as a function of the interdot separation for a GaAs and
a Si symmetric double quantum dot. The horizontal line is
drawn at a dephasing time of 1 µs, approximately the de-
coherence times measured in Refs. 1,2. The legends for the
data sets have the following format: type of materials (GaAs
or Si), type of interaction (DP, PE, or PO), type of phonons
involved (LA, TA, or LO), and the q-dependence of γq (q2,
q3, or constant γLO).

completely removing this decoherence channel.

For DP and PE interactions the different q-dependence
of phonon relaxation rate γq leads to quite different re-
sults in two-spin dephasing rate ΓST. With DP interac-
tion, ΓST is not very sensitive to the exponent n, and
increasing n in γq ∼ qn leads to a slight decrease of
ΓST. On the other hand, for PE interaction, increasing n
leads to an approximately three-fold increase of ΓST. The
change of the exponent n leads to a shift of the dominant
q region that contributes to dephasing. For PE interac-
tion, increasing n from 2 to 3 moves the dominant con-
tribution to larger q phonons, which have larger density
of states, leading to an increase in ΓST. For DP interac-
tion, the dominant contribution already comes from the
qa ∼ 1 region, where changing n does not have much of
an effect.

In Fig. 5 we plot the two-spin merit figureM as a func-
tion of the interdot distance for double dots in GaAs.
Here the merit figure is defined as the ratio between a
typical exchange gate time given by ~/J (J is the ex-
change splitting) and the two-spin decay time given by
1/ΓST: M = J/~ΓST. The exchange splitting J is cal-
culated within the Heitler-London model with a quartic
confinement potential77. The increase of the merit figure
at larger inter-dot distance reflects the fact that the ex-
change splitting and the phonon-induced dephasing have
different dependence on the interdot overlap integral S:
J ∼ S2, while ΓST ∼ S4. The results shown in this
figure indicate that for a two-dot exchange gate to oper-
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FIG. 5: (Color online) Merit figure based on phonon-induced
dephasing of two-spin states in a symmetric GaAs double dot
as a function of half interdot distance. We draw a line at 104

as the nominal threshold for fault tolerant quantum computa-
tion. Therefore the double dot (with single-dot wave function
radius at 20 nm) should be kept apart further than 60 nm.
The legend format is similar to in Fig. 4 (without the first
item for materials as all data here are for GaAs): type of
coupling, type of phonon, and q-dependence of γq.

ate with a low error rate, slower operation with smaller
interdot overlap is preferable with regard to phonon-
induced dephasing, and fault-tolerant two-qubit opera-
tions should be achievable for pretty strongly coupled
dots, with L/a & 1.5. We do not have any data for Si
DQDs in this figure. Calculating exchange interaction in
a Si double dot requires much more sophisticated quan-
tum chemical approaches than a simple Heitler-London
approximation43,78,79 because in Si the interaction effect
is stronger compared to GaAs (larger effective mass and
smaller dielectric constant), so that Heitler-London ap-
proximation does not adequately account for the two-
electron correlation. For the current evaluation, it is
sufficient to point out that Fig. 4 above indicates that
phonon-induced dephasing is about the same order of
magnitude in Si as in GaAs, while exchange coupling
should only be somewhat smaller than in GaAs. There-
fore overall the merit figure should remain about the
same when moving from GaAs to Si.

B. Biased double dot

For a biased DQD, the main question is whether the
admixture from S(02) singlet state and the resulting
dipole coupling would lead to significantly increased de-
phasing. Interestingly, the bias not only directly affects
the value of Aφ(q‖), but also its functional form. In Fig. 1
we have shown how Aφ(qx, qy = 0) depends on qx for var-
ious interdot bias ǫ. It is clear from that figure that the
peak ofAφ shifts toward qx = 0, while the peak height de-
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FIG. 6: (Color online) Phonon-induced two-spin dephasing
rate as a function of the interdot bias ǫ for a GaAs dou-
ble quantum dot with piezoelectric coupling to transverse
phonons. The double dot are separated by 40 nm and the
single-dot wave function radius is 20 nm, so that we are at the
strong coupling limit. At large negative bias the relaxation
rate approaches a value of about 10−6 1/ps, or Tφ of about 1
µs. As the bias increases toward the S(11)-S(02) anticrossing,
the dephasing rate increases so that at ǫ = 0, Tψ ∼ 100ns.

creases, as the interdot bias shifts from (11) toward (02)
regime. Furthermore, Eq. (21) indicates that as soon as
β 6= 0, there is a mixing of S(11) and S(02) states, so that
ABiased

φ acquires a nonvanishing component [1st term on

the right hand side of Eq. (21)] as qx → 0, leading to an
increase in the phonon-induced dephasing.
Now we can calculate the two-spin dephasing rate ΓST

for any voltage bias between the dots. Figure 6 shows
ΓST as a function of dimensionless interdot bias ǫ. As ǫ
becomes increasingly negative, the biased DQD states ap-
proach those of a symmetric DQD, and ΓST approaches
the value given in Fig. 4. On the other hand, as ǫ in-
creases toward positive bias, the ground singlet state has
a larger S(02) component, and Aφ a larger dipolar contri-
bution, so that ΓST increases. At ǫ = 0, ΓST is dominated
by the dipolar contribution from the S(11)-S(02) mixing,
and is about ten times larger than in a symmetric DQD,
where Aφ is determined by a quadrupolar charge distri-
bution difference between S(11) singlet and T(11) triplet
states.
As indicated in Fig. 4, for symmetric DQDs phonon-

induced decoherence becomes much less important at
larger L because of the overlap factor S in the charge
difference Aφ. In the case of a biased DQD, when the
DQD has a vanishing overlap,

ABiased
φ (B = 0, S = 0) = −iβ2e−(q‖a)

2/4 sin qxL , (28)

which does not seem to depend on the interdot over-
lap. This term originates from dephasing between T(11)
and S(02) states, which clearly have different charge dis-
tributions. However, if S vanishes because the interdot
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FIG. 7: (Color online) Phonon-induced two-spin dephasing
rate as a function of the interdot distance L for a biased GaAs
double quantum dot with DP coupling to LA phonons, PO
coupling to LO phonons, and PE coupling to TA phonons.
The format of the legend is the type of coupling, the type of
phonon, and the q-dependence of the phonon relaxation rate
γq. The single-dot wave function radius is 20 nm, and the
interdot bias is ǫ = −1 at L = 20 nm.

distance L increases, phonon-induced dephasing will not
saturate to a constant, as Eq. (28) seems to indicate,
because β depends on L as well. Recall that the tun-
nel coupling t of the S(11) and S(02) singlet states is

t = 〈S(11)|H |S(02)〉 ∝ S = e−L2/a2

. When L increases, t

decreases as t = t0 e
−(L2−L2

0
)/a2

for two coupled parabolic
dots, where t0 is the tunnel coupling at L0. For a fixed in-
terdot bias ǫ [Recall that ǫ = 0 corresponds to the S(11)-
S(02) crossing point, where β2 = 0.5], the DQD moves
further from the anticrossing point as t gets smaller, lead-
ing to a decreasing β [which is the weight of the higher-
energy singlet. For negative ǫ it is the weight of S(02)
state]. In Fig. 7 we plot the dephasing rate for a bi-
ased DQD as a function of the interdot separation. The
figure shows the same rapid decrease of dephasing for
all types of phonons as L increases, similar to the situ-
ation in symmetric DQDs. Indeed, putting β ∝ S into
Eq. (21), it is clear that Abiased

φ ∝ S2, which is the same
overlap-dependence as in the case of a symmetric DQD.

The results in Figs. 6 and 7 show that in a biased DQD
phonon-induced dephasing approaches symmetric DQD
limit at large negative bias, and increases monotonically
as interdot bias ǫ increases. However, one can always
reduce this dephasing by increasing interdot distance and
reducing wave function overlap. Furthermore, for larger
negative biases [deeper into the (11) regime, with smaller
exchange splitting J = t/2ǫ], β2 is smaller. When |ǫ| ≫
1, β2 ∼ (1/ǫ)2 while J ∝ 1/ǫ. Therefore there should
exist a regime where dephasing rate ΓST is much smaller
than exchange splitting, so that fault-tolerant exchange
gates can be performed. For example, if we choose L/a =
2 with a = 20 nm, 1/ΓST ∼ 100 µs even at ǫ = −1,

according to Fig. 7. At such an interdot separation, |t| ∼
10µeV, so that J ∼ 1 µeV for ǫ = −10, with a gate time
in the order of a nanosecond, leading to a merit figure of
∼ 105.

IV. DISCUSSIONS AND CONCLUSIONS

Based on our results presented in this study, phonon
induced two-spin dephasing in both symmetric DQDs
and biased DQDs can be strongly suppressed by reduc-
ing the double dot tunnel coupling. The strong overlap
dependence of the dephasing rate dictates that phonon-
induced dephasing is only important when the double
dot is tightly coupled. Dephasing for a biased double
dot does increase with bias because of the admixture
of S(02) state in the singlet ground state, which intro-
duces electric dipole coupling into phonon-induced deco-
herence. Therefore, phonon-induced two-spin dephasing
is generally stronger in biased DQDs, such as in the case
of a singlet-triplet qubit.
Phonon induced two-spin dephasing studied in this pa-

per is related to the different dressing that singlet and
triplet electronic states experience through interaction
with the phonons. When phonons themselves decohere,
this spin dephasing channel leads to true complete de-
coherence. On the other hand, ensemble average over
phonon modes (while each evolve coherently) only leads
to a finite degree of dephasing. A legitimate question here
is whether this part of the dephasing (due to phonon pop-
ulation average) would disappear if we consider dressed
electron spin states, especially considering that this fi-
nite dephasing generally saturates in the order of 10 ps,
much faster then the electron spin initialization and ma-
nipulation processes in quantum dots. Mathematically,
the answer to this question may very well be “yes”, as
long as one can identify the energies of the dressed states
precisely. But to answer this question with confidence,
one needs to clarify how the energies of the spin states
are measured, and how electron-phonon interaction may
be incorporated in the description of measurement. In
the current generation devices spin detection is achieved
through charge sensing in the spin-blockade regime,80

which is insensitive to phonons, so that the phonon-
induced dephasing due to ensemble averaging cannot be
removed. Ultimately, though, this question is moot be-
cause phonons do relax and are not coherent forever.
The phonon-induced pure dephasing mechanism we

consider here originates from the charge distribution dif-
ference between states that have different spatial sym-
metry, and involves no real or virtual phonon emission
or absorption. It is different from another mechanism
of phonon-induced dephasing studied in Ref. 46, which
is based on different level distribution of electron singlet
and triplet states and involves virtual emission and ab-
sorption of phonons.
In conclusion, we have studied phonon-induced pure

dephasing between two-electron singlet and triplet spin
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states in a semiconductor double quantum dot. We find
that this pure dephasing is important for tightly coupled
double dots, but is strongly suppressed when the dou-
ble dot separation increases, so that at relatively large
dot separations (L/a > 2) fault-tolerant exchange gates
can be realized. A biased double dot has stronger de-
phasing compared to a symmetric double dot with the
same dot parameters due to the mixing of (11) and (02)
singlet states and the resulting finite electric-dipole cou-
pling. We have quantified two-spin dephasing in both
GaAs and Si double dots, finding that deformation po-
tential coupling to LA phonons is the most important
dephasing mechanism in both materials, and produces
about the same magnitude dephasing in both materials.
We also find that LO-phonon makes a non-negligible con-
tribution to dephasing in GaAs because of the very fast

optical phonon relaxation. Overall, phonon-induced two-
spin dephasing is an equivalent decoherence mechanism
for Si and GaAs, is stronger in a biased double dot than
in a symmetric double dot, and can be suppressed by
reducing the interdot overlap of the electron wave func-
tions.
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