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We study the quantum-classical correspondence in terms of coherent wave functions of a charged
particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in
the sense that the probability clouds of wave functions are well localized on classical orbits. For
both closed and open classical orbits, the non-integer angular-momentum quantization with the
level-space of angular momentum being greater or less than ~ is determined uniquely by the same
rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is
not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle
cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum
by a flux-dependent value, which results in a common topological phase for all wave functions in
the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette.
48, 1144) becomes a special case of the arbitrary-quantization.

PACS numbers:

I. INTRODUCTION

Recently, renewal of interest has been evoked to the
fractional angular momentum (FAM) in two-dimensional
(2D) space in relation with the correspondence be-
tween quantum mechanical wave-functions and classi-
cal periodic-orbits[1, 2]. The FAM is only possible in
2D multiply-connected-space, since in three- or higher-
dimensional space, the angular momentum being inte-
ger or half-integer is completely determined by the com-
mutation relation of angular-momentum operators. In
2D space, the angular momentum operator has only one
component, which does not give rise to a unique deter-
mination of the angular-momentum eigenvalue, and the
common belief of integer-quantization is based on the
2π-periodic boundary-condition which, however, is not
justified.

Wilczek in his pioneering work proposed for the first
time a quantum mechanical model consisting of a charged
particle and magnetic flux in 2D space to demonstrated
the fractional eigenvalues of angular momentum known
as anyon [3, 4]. In the existence of gauge field, however,
we have both the kinetic angular momentum (KAM)
and the canonical angular momentum (CAM), which are
different, because of the velocity-dependent forces [5–
8]. It is true that ”the generator of rotation should be
the CAM and is prescribed by Noether’s theorem as a
conserved quantity”[9], which is gauge dependent and
integer-quantized [7–9]. While the KAM is gauge invari-
ant dynamic quantity, generally fractional because of the
gauge field [7–9]. Although the consistence of fractional
CAM with the Aharonov-Bohm (AB) phase-interference
was shown long ago [7] it remains a long standing open
question whether or not the fractional CAM plays a role
in quantum physics. It is worthwhile to remark that
the gauge potential of an AB flux can only shift the

angular momentum eigenvalues by a common fractional
number but cannot change the integer-quantization rule,
namely the eigenvalue-space of angular momentum is still
~ [7, 11].

The existence of FAM in a wide class of 2D central po-
tentials without gauge field has been discussed more re-
cently [1, 2] by the localization of coherent wave functions
on classical orbits, which imposes a special boundary con-
dition leading to the unusual angular phase of wave func-
tions. Following the interesting studies of Ref. [1, 2],
which provide an exactly solvable model both quantum
mechanically and classically, we consider a charged par-
ticle in the gauge field of magnetic flux-string perpendic-
ular to the 2D plane with the central scalar-potentials in
addition and study the non-integer quantization of angu-
lar momentum (NIQAM) in terms of quantum-classical
correspondence. Since the coherent state is constructed
by the superposition of angular momentum eigenstates
and thus the probability clouds have to possess the same
rotational symmetry as that of classical orbits, which
is not necessarily 2π-periodic. As a consequence the
NIQAM with the level-space being greater or less than ~

appears naturally along with the correspondence princi-
ple. By the explicit calculation it is shown that only the
shift of CAM eigenvalues by the gauge field, which gives
rise to a common topological phase for all wave functions,
is in agreement with the correspondence. The validity of
wave functions with a topological phase is further con-
firmed by the expectation values of KAM operator, which
coincide with the classical values of KAM £k. The long
standing problem whether or not the FAM is related to
the CAM is resolved and the quantum mechanical model
of anyon proposed by Wilczek [3, 4] emerges as a special
case of µ = 1 with 2π-rotational-symmetry of classical
orbits.

More specifically, we refer here to the particular zero-
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energy states, which can be obtained analytically for both
classical- and quantum-solutions [10–12]. On the other
hand the zero-energy states are of importance in various
fields such as the cold-atom collisions[13, 14], the con-
struction of vortex lattices [15], and quantum cosmology
[16].

II. CLASSICAL ORBITS AND ROTATIONAL

SYMMETRY

We consider a charged particle of charge e and mass
m in a gauge field of infinitely long magnetic flux-line of
total flux Φ located at the origin of 2D space and central
scalar-potential of form [1, 2]

A0(r) = − γυ
r2µ+2

, γυ > 0, −∞ < υ <∞ (1)

Where r =
√

x2 + y2 and υ = 2µ+ 2.
Outside the flux-line ( r > 0), the Lorentz force on the

charged particle is always zero because of the vanishing

magnetic field ~B = 0, while the vector potential in the
polar coordinate is seen to be

~A =
Φ

2πr
−→e ϕ

with −→e ϕ being the unit-vector of angular direction. In
order to establish the quantum-classical correspondence,
we ought to evoke the canonical variables. In the polar
coordinates (r, ϕ), the Lagrangian of the system is seen
to be

L =
1

2
m[ṙ2 + (rϕ̇)2]− eA0(r) + LWZ (2)

where LWZ = α~ϕ̇ is so-called the Wess-Zumino topo-
logical interaction-term with the parameter α = Φ/Φ0

being the dimensionless magnetic flux in the quantum-
unit Φ0 = ch/e. The Wess-Zumino term does not affect
the equation of motion but the initial value of angular
momentum. Canonical momentums corresponding to the
coordinate variables r, ϕ are defined by

pr =
∂L

∂ṙ
= mṙ, (3)

£c =
∂L

∂ϕ̇
= mr2ϕ̇+ α~ (4)

Here £c is CAM, while £k = mr2ϕ̇ is the KAM. Then
the Hamiltonian is

H =
p2r
2m

+
(£c − α~)2

2mr2
+ eA0(r), (5)

From canonical equations we find that both the CAM
and KAM are conserved quantity

d£c

dt
= −∂H

∂ϕ
= 0, £k = £c − α~

For the case of zero-energy and nonvanishing initial KAM
£k = £c − α~ 6= 0 we have

1

2
m(

£c − α~

mr2
)2[(

dr

dϕ
)2 + r2]− e

γυ
rυ

= 0.

We assume an initial-value that

£k = ξk~, (6)

where ξk is an arbitrary dimensionless-quantity. Thus in
the considered case only the CAM is shifted by the flux.
Introducing a dimensionless variable

u = r/ãc, ãc =
(2meγυ)

1/2µ

[ξk~]1/µ
(7)

we obtain the equation of particle trajectories such as
[10, 18]

(
du

dϕ
)2 + u2 = u4−υ = u2−2µ (8)

The general solution of Eq.(8) is given in Ref.[10, 18]

rµ = ãµc cos[µ(ϕ− ϕ0)] (9)

Using atomic unit
me2s
~2 with es = e2/(4πε0), which

is the dimension of length, we set
√

2mγυe
~2 = 1 in the

numerical evaluation. The classical orbits with the ini-
tial angle setting to zero ϕ0 = 0 are shown in Figs. 1-5
(solid green curves), which depend on the initial angular
momentum ξk only for given scalar potential. In gen-
eral, we have closed orbits (Figs. 1-4) for µ > 0 (υ > 2),
while open trajectories for µ < −2 seen from Fig.5. From
Eq.(9) it is obvious that the rotation symmetry of clas-
sical orbits depends on the power-index µ such that the
orbits are invariant under a rotation-angle 2π

|µ| , and 2π-

symmetry holds only for |µ| = 1. We demonstrate in
this paper that the angular momentum quantization can
be determined only by the rotation symmetry of classical
orbits based on the requirement of quantum-classical cor-
respondence. The rotation angles of symmetry for closed
orbits in Figs.1-4 are 2π, 6π, 4π

5 , and 2π
5 respectively.

III. ANGULAR MOMENTUM QUANTIZATION

In the polar coordinates (r, ϕ), the zero-energy
Schrödinger equation

−~
2

2m
[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
(
∂

∂ϕ
− iα)2]ψ + eA0ψ = 0 (10)

becomes

(
∂2

∂r2
+

1

r

∂

∂r
− λ2

r2
)R(r) +

2me

~2

γυ
rυ
R(r) = 0,
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(
∂

∂ϕ
− iα)2Θ(ϕ) = −λ2Θ(ϕ).

by the separation of variables ψ = R(r)Θ(ϕ). The eigen-
value solution of angular part Eq. (10) is

Θlc(ϕ) = Nϕe
ilcϕ. (11)

with Nϕ being the normalization constant and the CAM
eigenvalue lc to be determined. For the usual requirement
of 2π-periodic boundary-condition, Θ(ϕ) = Θ(ϕ + 2π),
one can obtain the integer angular momentum quantiza-
tion and the normalization constant Nϕ = 1√

2π
. How-

ever the 2π-periodic boundary-condition is not justified
in the 2D-space, although the potential A0(r) = − γυ

r2µ+2

is symmetric under rotation. It has been demonstrated
that a macroscopic quantum state, here SU(2) coherent
state [1] can be constructed with probability density of
wave functions well localized on the classical orbits for
the quantum-classical correspondence, which results in
a special boundary condition of the angular momentum
eigenstates such that rotational period of wave function
is not necessarily 2π but should be the same as that of
classical orbits Θ(ϕ) = Θ(ϕ + 2π

|µ| )[1]. Thus the CAM

eigenvalue is no longer integer but should be set as

lcn = n |µ| , (12)

where n is a integer. The angular momentum now is
quantized with an eigenvalue-space

∆l = |µ| (13)

The integer-quantization is only a special case of |µ| = 1.
The normalization constant becomes

Nϕ =

√

|µ|
2π

(14)

The radial equation is

(
∂2

∂r2
+

1

r

∂

∂r
− (lcn − α)2

r2
)R(r) +

2me

~2

γυ
rυ
R(r) = 0, (15)

In the choice of Eq. (12) for lc, the n-th KAM eigenvalue
is shifted by the flux number that

lkn = lcn − α = n |µ| − α (16)

indicating the dynamic effect of the gauge potential in
contradiction with the classical solution in which gauge
field does not apply a torque on the particle. We do have
the other choice of lc such that

lcn = n |µ|+ α (17)

while the KAM eigenvalue

lkn = n |µ| (18)

does not depend on the flux in consistence with classical
solution. The common-phase eiαϕ factor called the topo-
logical phase [7, 11] does not change the angular momen-
tum quantization Eq.(13) nor the normalization constant
Eq.(14) since whole eigenfunctions have the same addi-
tional angular phase. It is the main goal of the present
paper that only the choice of CAM Eq.(17) gives rise to
the exact quantum-classical correspondence.

A. Topological phase of the gauge field and exact

quantum-classical correspondence

We demonstrate in this section that only the CAM
eigenvalues Eq.(17) consist with the quantum-classical
correspondence, such that the probability densities of co-
herent wave functions are well localized on classical or-
bits. Introducing the dimensionless radius χ = r/ãq and
y = 1/χ , where ãq is a quantity with dimension of length,
we obtain

(y2
d2

dy2
+ y

d

dy
− (l

k

n)
2 +B2yυ−2)Rτ (y) = 0 (19)

where the parameter B is defined by

B2 ≡ 2meγυ

~2ãυ−2
q

and the corresponding KAM eigenvalues lkn given by
Eq.(18) do not depend on the flux number. Square-
integrable solutions of Eq. (19) are found in terms of
Bessel functions of the first kind [17, 19–21]

Rlkn
(y) = Nlkn

J lkn
|µ|

(
1

|µ| rµ ) (20)

with the normalization constant given by

Nlkn
=

√

2
√
π |µ|2/µ Γ(1 + 1/µ)Γ[1 + lkn/ |µ|+ 1/µ]

Γ(1/2 + 1/µ)Γ[lkn/ |µ| − 1/µ]

(21)

where we have set the parameter
√

2mγυe
~2 = 1, and thus

Bãµq = 1, ã2qB
2/µ

= 1 according to the definition of B.
If the following conditions are satisfied:

Re(
2lkn
|µ| + 1) > Re(

2

µ
+ 1) > 0, (22)

we have bound states corresponding to the classical
closed-orbits as demonstrated in Ref [18]. For the zero-
energy E = 0 there exist classical solutions of closed-
orbits with any non-zero angular momentum when υ > 2,
while the condition of bound states in quantum mechan-
ics is lkn > 1. It has been shown that [20] the normaliz-
able quantum solutions can be classified to two classes:
(1) bound states ( lkn > 1) for µ > 0 (υ > 2) corre-
sponding to the classical closed-orbits (Figs. 1-4, solid
green curves) (2) scattering states (lk > 0) for µ < −2
(υ < −2),which are normalizable, corresponding to clas-
sical open-orbits (Fig. 5, solid green curves). At the
region −2 ≤ υ ≤ 2 the solutions of wave functions are
not square-integrable [19, 20], which we do not discuss
in the present paper. The complete eigenfunctions of the
Schrödinger equation can be written in the explicit form
as [17, 19–21]

ψµ,lkn
(r, ϕ) = Nϕe

i(lkn+α)ϕNlkn
J lkn

|µ|

(
1

|µ| rµ ). (23)
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Following Refs.[1, 2] we construct the stationary SU(2)
coherent-state for the central-scalar-potentials in the
standard way as [22]

Ψµ,N(r, ϕ) =
1

(2)N/2
(24)

N
∑

n=0

(

N

n

)1/2

Nϕe
i(lkn+c+α)ϕNlkn+cJ lkn+c

|µ|

(
1

|µ| rµ )

with lcn and lkn given in Eqs.(17), (18) respectively. An
additional angular momentum number

c = nc |µ| (25)

with nc being a integer-parameter is introduced to adjust
the probability density, which does not change the rota-
tional symmetry of wave-function density but the spa-
tial expansion of it. In the following section we will see
that the parameter nc is not arbitrary but is related to
the classical KAM £k such that the expectation value of
KAM operator coincides with the classical value. The
wave functions are normalized to unity in the angular
range of ϕ being from −π to π. From Eq. (24) we can
see that the common topological phase-factor resulted
by the gauge potential does not affect the probability
density of wave functions in agreement with the classical
assumption of no torque applied on the charged parti-
cle. In Figs. 1-5 the practical values of parameters are
given by µ = 1, α = 6 1

2 , nc = 8, µ = 1
3 , α = 5

4 , nc = 9,

µ = 5
2 , α = 31 1

3 , nc = 14, µ = 5, α = 55 3
5 , nc = 12,

and µ = − 7
3 , α = 42 7

10 , nc = 19 respectively. In all fig-
ures the total number of eigenfunctions is N = 30. The
density |Ψµ,N (r, ϕ)|2 of coherent-state wave function pos-
sesses the same rotation symmetry of the classical orbits.
Figs. 1-5 (a) show that the probability densities of co-
herent wave functions are well localized on the classical
orbits in each case indicating the exact quantum-classical
correspondence. We thus obtain the angular-momentum
quantizations with the level-spaces 1, 13 ,

5
2 , 5, and

7
3 (of

~) respectively. The CAM spectrum is shifted by the
corresponding flux number α.

Besides the AB interference [7] the fractional spins
have many important physical applications, for exam-
ple, two-vortex system in a superfluid film [23], necklace-
ring [24, 25], chiral-wave superconductor[26] or quan-
tum billiard[27] inside a boundary defined by the wedge-
shaped section of a circle.
Shift of the KAM eigenvalues by the gauge potential

and break down of the correspondence: We, of course, can
have the other choice of CAM eigenvalues i.e. Eq.(12),
which does not depend on the flux and as a consequence
the spectrum of KAM is shifted by the gauge potential
as shown in Eq.(16). In this case we do not have the
topological phase of the wave functions but have the flux-
dependent KAM eigenvalues instead. The quantization

FIG. 1: (Colour online) Probability density image
|Ψµ,N (r,ϕ)|2 and the closed classical-orbit (solid green curve)
for µ = 1(υ = 4), α = 6 1

2
, ξk = 23. (a) shift of CAM; (b) shift

of KAM.

FIG. 2: (Colour online) µ = 1

3
(υ = 8

3
), α = 5

4
, ξk = 8.



5

FIG. 3: (Colour online) µ = 5

2
(υ = 7), α = 31 1

3
, ξk = 72.5.

FIG. 4: (Colour online) µ = 5(υ = 12), α = 55 3

5
, ξk = 135.

FIG. 5: (Colour online) Probability density image
|Ψµ,N (r,ϕ)|2 and the open classical-orbit (solid green curve)
for µ = − 7

3
(υ = − 8

3
), α = 42 7

10
, ξk = 238

3
.(a) shift of CAM

(b) shift of KAM.

of angular momentum, namely the level-space of eigen-
values, is not changed by the gauge potential. Replacing
the KAM eigenvalues lkn in Eqs.(23,24) by Eq.(16) the
corresponding probability densities of coherent states are
depicted in Figs.1-5 (b), from which we see that proba-
bility densities are no longer localized no the classical or-
bits indicating additional torques applied on the particle
in contradiction with the classical assumption.
Expectation values of angular momentum: We now cal-

culate the expectation values of KAM operator

£̂k = −i~[ ∂
∂ϕ

− iα]

in the SU(2) coherent-state to find the explicit rela-
tion between the adjusting-parameter c and the initial
classical-KAM £k = ξk~ in order to confirm further the
quantum-classical correspondence. The average of KAM
operator in the SU(2) coherent state Eq.(24) with the
topological phase is evaluated as

〈

£̂k
〉

=
〈

Ψµ,N

∣

∣

∣
£̂k

∣

∣

∣
Ψµ,N

〉

= ~ |µ| [nc +
N

2
] (26)

Substituting the corresponding parameter values of µ,
nc, and N into the above formula one can see the exact
agreement with the initial-values of classical KAM such
that

〈

£̂k
〉

= ξk (27)
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for ξk= 23, 8, 72.5, 135, 2383 respectively. However, for the
CAM eigenvalue-choice of Eq.(12), namely the shift of
KAM eigenvalue by the gauge potential, the average of
KAM operator becomes

〈

£̂k
〉

= ~[(nc +
N

2
) |µ| − α] (28)

which, of course, disagrees with classical values.

IV. CONCLUSION

In summary, the NIQAM in two-dimensional space is
demonstrated in terms of quantum-classical correspon-
dence with an exactly solvable model, such that the
probability clouds of macroscopic quantum states, here
the SU(2) coherent wave functions, are well localized on
the classical orbits. The eigenfunctions of angular mo-
mentum have to possess the same rotational symmetry
of classical orbits, in which the rotation-period can be
greater or less than 2π depending on the power-index µ

of the central potential only. As a consequence the level-
space of angular momentum spectrum is less or greater
than ~ and the integer-quantization (level-space ~) is pos-
sible only if µ = 1. The gauge potential of AB-flux
does not affect the angular momentum quantization but
can shift the spectrum of angular momentum by a com-
mon value. By explicit calculations it is shown that the
quantum-classical correspondence results in the unam-
biguous determination of CAM eigenvalues with a com-
mon topological-phase in the wave functions, the proba-
bility densities of which coincide with the classical orbits
for any power-index of potentials. The quantum mechan-
ical model of anyon proposed by Wilczek [3, 4] and latter
clarified as the fractional CAM in Ref.[7] becomes a spe-
cial case of the present model with µ = 1.
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