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Controlled directed particle current despite time-reversal symmetry
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Quantum ratchets are systems that exhibit asymptotic currents when they are driven by a time-
periodic potential of zero mean if the proper spatio-temporal symmetries are broken. The current
arises from the desymmetrization of the Floquet cyclic states, eigenstates of the unitary evolution
operator for one period of the driving force. However, there has been recent debate on whether
directed currents may arise even with potentials which do not break these symmetries. We show
here that crossed terms in the Floquet basis can induce long-lasting directed currents in the presence
of structural degeneracies in the quasienergy spectrum even if the time reversal symmetry is not
broken. We present a highly controllable model which can be realized with ultracold atoms in optical
lattices, which shows directed currents with amplitudes tunable over a large range and where the
time scale of the current reversal can be controlled. We show that one can not only control the
momentum generation but also that the kinetic energy of the system can be decreased in a controlled
way.

PACS numbers: 05.60.Gg, 03.75.Kk, 37.10.Jk, 67.85.Hj

Brownian motors or ratchets are spatially periodic sys-
tems with noise and/or dissipation in which a directed
current of particles can emerge from an unbiased zero-
mean external force [1, 2]. Models for biological engines
that transform chemical energy into unidirectional me-
chanical motion behave as Brownian motors [3]. Exten-
sive studies of the ratchet effect in classical systems [4]
stated the relation between symmetry breaking poten-
tials and the existence of the asymptotic current. Di-
rected transport is only possible if one breaks the follow-
ing symmetries of the classical trajectories of the system
Sa : (x, p, t) → (−x,−p, t + T/2) where T is the period
of the driving potential and the time-reversal symmetry
Sb : (x, p, t) → (x,−p,−t) [5]. Lately there has been an
increasing interest in the coherent ratchet effect in Hamil-
tonian quantum systems [6]. It has been shown that the
same symmetry requirements apply to them [7], i.e. if
the Hamiltonian preserves Sa and/or Sb symmetry, no
asymptotic current is possible.

Experimentally, directed current generation was first
studied in solid state devices, quantum dots and Joseph-
son junctions [8]. More recently, the precise control
achievable in cold atom experiments opened up the pos-
sibility of realizing directed atomic currents for Hamil-
tonian systems with controllable or no dissipation in the
time scale of the measurements [9–11]. Recently, a very
clean realization of a coherent quantum ratchet was ex-
perimentally demonstrated in a Bose-Einstein conden-
sate exposed to a sawtooth potential realized with an
optical lattice which was periodically modulated in time
[12]. Directed transport of atoms was observed when
the driving lattice potential broke the spatio-temporal
symmetries. The current oscillations and the dependence
of the current on the initial time and the resonant fre-
quencies [13] were measured, demonstrating the quantum
character of the ratchet.

Although the generation of an asymptotic directed cur-

rent needs the breaking of the spatio-temporal symme-
tries Sa and Sb simultaneously, there has been a recent
discussion on the possibility of obtaining long-lasting di-
rected currents without it [14–17]. The analyzed schemes
involve either strong interparticle interactions such that
the directed atom transport endures over a time scale re-
lated to the validity of the mean-field description applied
[14] or strong driving fields in the presence of an acciden-
tal degeneracy in the quasienergy spectrum [15–17]. We
show here that one can exploit a structural degeneracy
in the quasienergy spectrum in order to generate long-
lasting currents without breaking the symmetries of the
system. In contrast to previous works [14–17] we obtain
directed current for a weakly driven system. In addition,
the tunability of our model allows for the control of not
only the amplitude and oscillation period of the gener-
ated current, but also of the amount of kinetic energy in
the system.
One useful way of treating time-periodic quantum

Hamiltonians, H(t) = H(t + T ), is the Floquet formal-
ism [18]. The Floquet states or cyclic states |φj(t)〉 =
|φj(t+ T )〉 are the eigenstates of the evolution operator
for one period while the quasienergies εj are the eigenval-
ues. It is precisely the symmetry breaking needed for the
creation of an asymptotic current that implies the desym-
metrization of Floquet states of the system [7]. Even if
the symmetries are not broken, we show here that it is
possible to populate a superposition of cyclic eigenstates
with non-zero average momentum for experimentally rel-
evant times by taking advantage of a resonance condition
of the Floquet states. The solution to the time-dependent
Schrödinger equation H(t) |ψ(t)〉 = i~∂ |ψ(t)〉 /∂t can be
spanned in the cyclic eigenbasis (~ = 1)

|ψ(t)〉 =
∑

j

e−iεj tcj |φj(t)〉 (1)

where cj = 〈φj(0)|ψ(0)〉 [18]. The average current gener-
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ated during n cycles is given by I(t = nT ) = 1
n

∑n

m=1 Im
with

Im =
1

T

∫ mT

(m−1)T

〈p(t)〉dt, (2)

where the expectation value of the mo-
mentum operator at time t reads 〈p(t)〉 =
∑

j,j′ cjc
∗
j′e

−it(εj−ε′j) 〈φj′ (t)| p |φj(t)〉. Note that due to
the periodicity of the cyclic states the average current
during n cycles can be simplified in terms of integrals of
the cyclic states during the first period

I(nT ) =
1

n

∑

j,j′

cjc
∗
j′〈p〉jj′

1− e−inT (εj−ε′j)

1− eiT (εj−ε′
j
)
, (3)

〈p〉jj′ ≡ 1

T

∫ T

0

〈φj(t) | p |φj′ (t)〉 e−it(εj−ε′j)dt. (4)

In general, the oscillatory off-diagonal terms decay
rapidly [19] and for long times only the diagonal terms
in Eq. (3) remain. If both Sa and Sb are broken, the
cyclic eigenstates desymmetrise and carry net momen-
tum, i.e. 〈p〉jj 6= 0 [7]. In such case, the asymptotic
average current, I(∞) =

∑

j |cj |2〈p〉jj , is nonzero.
Correspondingly, if either of the relevant symmetries
is not broken 〈p〉jj = 0 and thus I(∞) = 0. Note,
however, that the off-diagonal terms in Eq. (3) become
relevant if the initial state projects into degenerate or
quasidegenerate cyclic states with 〈p〉jj′ 6= 0. This fact
can give rise to measurable long-lasting currents if one
tunes the parameters of the model in an appropriate way.

To illustrate this we consider a system of non-
interacting bosons in a lattice of L sites with periodic
boundary conditions driven by a time-periodic potential
such that H(t) = H0 + V (t) and

H0 = −J
L
∑

i=1

|i〉 〈i+ 1|+ | i+ 1〉 〈i | , (5)

V (i, t) = V sin(ωt) [sin(Mxi) + α sin(2Mxi + φ)] ,(6)

where J is the tunneling probability, xi = 2πi/L,M is an
integer and ω = 2π/T . This driving potential does not
break the time reversal symmetry Sb and thus no asymp-
totic current is expected [7]. Consequently 〈p〉jj = 0 and
the current generated after a few cycles arises only from
the off-diagonal terms in Eq. (3). In order to enhance
the off-diagonal contribution to the current we need to
tune the system to resonance. We use the resonant con-
dition 2ω = E2M − E0 introduced for M = 1 in [15, 20],
where Ek = −2J cos(2πk/L) with k = [−kmax, kmax] are
the eigenenergies of H0 with corresponding momentum
eigenvectors 〈i | k〉 = e−ikxi/

√
L and kmax = (L−1)/2 for

L odd. We consider an initial state of zero momentum
|ψ(0)〉 = | 0〉. Note that the introduction ofM ≤ kmax in
the driving potential allows for the coupling of the initial
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FIG. 1: Average current in recoil units (thick line) in Eq. (3)
as a function of time for an initial zero momentum state. Thin
solid line is the current average per cycle in Eq. (2) obtained
with a numerical integration of the Schrödinger equation us-
ing Floquet theory for M = 5 , L = 41, V/ω = 0.1 and
α = 1.2. Dashed line corresponds to the current of the ef-
fective 3-level system in Eq. (7) and Eq. (8). The average
current per cycle depends only on M/L, its amplitude scales
with M and the oscillation time scales with (ω/V )2T where
T ≃ πJ−1. a) φ/π = 0.2579 and b) φ/π = 1/20.

state to very high momentum states |M〉 and | 2M〉. We
show in figure 1 the average current per cycle Im, and the
integrated average current I(t) as a function of the num-
ber of cycles. We note that the average current per cycle
Eq. (2) oscillates and achieves values on the order of 2M
recoil units. On the other hand, the integrated current
vanishes for long times, as the potential does not break
the time-reversal Sb symmetry [7]. We observe that the
current changes direction with a sign change in φ and
that for the weak driving strength used here the current
is zero if φ = 0 for any initial time phase shift.
Close to the resonance and for weak driving poten-

tial V/J < 1 [20], the dynamics of the system in-
volve only three cyclic states {| s2M , 2〉 , | 0, 0〉 , | a2M , 2〉},
where 〈i, t | a[s]k, n〉 =

√

2/L sin(kxi)[cos(kxi)]e
−inωt.

Following [20] we do time-independent perturbation the-
ory in Floquet space, using the T -matrix approach

T (ǫ) = V + V G0(ǫ)T [21], where G0(ǫ) =
∑

j
| j〉〈j |
ǫ−ε0

j

and

| j〉 = | k, n〉 with corresponding ε0j ≡ Ek − nω. The
system dynamics are governed by an effective Hamilto-
nian given by the T -matrix obtained after expanding to
second order in V around the ground state quasienergy
ǫ = ε00,

4T
V 2

=

(

a+ dα2 + eα2 sin2 φ b i e
2
α2 sin 2φ

b c+ fα2 0
−i e

2
α2 sin 2φ 0 a+ dα2 + eα2 cos2 φ

)

.(7)

Here the constants a to c are due to coupling through
sin(Mxi) whereas d to e involve coupling through
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sin(2Mxi). All of them are real numbers, sums of
inverse quasienergy differences which depend only on
M/L. If M ≤ kmax/4, they are of the same order
O ∼ 1/ω. From Eq.(7) one extracts that the quasiener-

gies εj ≃ V 2

ω
. Hence, the time scale of the dynamics

depends only on the ratio M/L and scales as ∼ ω/V 2.
Note that we need φ 6= 0 in order to mix the asymmetric
and symmetric momentum states in Eq. (7). As we show
below, this is a key element in the generation of particle
motion when the initial state has a defined momentum
symmetry as in the ratchet problem when the initial
state is the zero momentum eigenstate.

For an initial state |ψ(0)〉 = | 0〉, the average current
at cycle m after evolution with the effective Hamiltonian
Eq.(7) reduces to a sum of 3 oscillations with different
frequencies and the same weight

Im = C(α, φ)Fm(α, φ), (8)

where C(α, φ) = 4ic∗1c2〈p〉12, Fm =
∑

j<j′ sin(mT∆εjj′)

and ∆εjj′ ≡ (−1)j+j′ (εj − ε′j). As shown in figure 1,
the three-mode approximation Eq. (8) fits perfectly the
exact numerical results.

Let us now analyze the two parts of Eq. (8). The
amplitude C is shown in the left panel of figure 2 for dif-
ferent parameters α and φ . For M = kmax/4, it attains
its maximum at α ≃ 1 when both terms of the driving
potential have the same weight. We observe that the cur-
rent is periodic in φ with π periodicity and has vanishing
values for φ = lπ/2 with l integer. This is due to the
fact that for weak driving, when only these three cyclic
eigenstates are involved the dynamics, the only way to
obtain nonvanishing values of the momentum is when the
eigenvectors of T mix both symmetric and asymmetric
basis states. One thus needs that 〈s2M , 2 | T | a2M , 2〉 6= 0
and hence φ 6= lπ/2 in order to obtain particle motion.
Note that for strong driving potential this mixing can be
achieved through coupling to other states. However, the
current obtained in this way is noticeable smaller and
highly dependent on accidental degeneracies [17].
The current Im is a sum of three sinusoidals Fm whose

arguments sum up to 0 as shown in the right panel of
figure 2. By tuning φ we can find different situations for
the oscillation frequencies ∆εjj : i) There is a particular
φ when two slow frequencies ∆εs degenerate and become
half the fast frequency. In such case

∑n

m=1 Fm =
4 sin2(nT∆εf/2) sin

2((n+ 1)T∆εf/2)/sin(T∆εf ) and
the average current I achieves its maximum after
nT = 2π/(3∆εf ) cycles. This case is shown in figure 1
a). ii) Around φ ≃ 0, there is a slow frequency ∆εs → 0
and 2 fast frequencies of opposite sign ∆εf . In this
case shown in 1 b) the current Im oscillates at the
fast frequency ∆εf modulated with a slow frequency
envelope. The average current I is modulated by

α

φ/
π
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FIG. 2: Left panel: Amplitude C/4M of the current in Eq.(8)
for different values of the potential parameters φ and α for
an initial zero momentum state and L = 41, M = 5. Right
panel: ∆ε13 , ∆ε12, ∆ε23 in units of ω/V 2 as a function of
φ for α = 1.2, M/kmax = 4. For fixed values φ and α the
average current per cycle in Eq. (8) is a sum of sinusoidals
with these frequencies with an amplitude shown in the left
panel.

the slow frequency ∆εs and attains its maximum at
nT = 2π/(3|∆εs|). iii) any other value of φ results in an
intermediate situation. The maxima of Im is similar for
all the above situations, but in case i) the maximum, with
tunable amplitude ∼ 2M , is reached earlier at a time
which can be independently adjusted with V/ω. This
leads to a higher and smoother average current I (fig. 1).

In the context of cold atoms it may be of interest not
only the generation of a current from an initial zero mo-
mentum state, but also the control of the quantum state
of the system. We have explored the capabilities of our
model to control the momentum and the kinetic energy
in the system. We plot in figure 3 the projection of the
particle state in the momentum basis at different times
for different initial states. We observe in figure 3 a) that
the zero momentum state can be indeed converted into
an almost pure momentum state | ±2M〉, eigenstate of
H0, at times t = 66T and t = 132T . One could then
switch off the driving and use this scheme to generate
an asymptotic current. It is shown in figure 3 b) that
one could reduce an initial state with finite momentum
into a zero momentum eigenstate. Thus the application
of the driving potential slows down a particle beam and
reduces the kinetic energy of the system. It can be seen
from figure 3 c) that the average tunneling energy per cy-
cle reduces almost to zero for an initial state | s2M 〉 after
57 cycles. All these are examples of the high controlla-
bility of our system and open up the possibility of using
this scheme for slowing down particle beams or cooling
atomic or even molecular systems.

Finally, let us analyze the feasibility of the model. We
have shown that starting from an initial zero momen-
tum state one can obtain long-lasting tunable currents
when two requirements are met: the system is tuned to
resonance and the driving field is weakly coupled. The
resonance condition yields for M = kmax/4 values of
T ≃ πJ−1. We obtain currents with amplitudes which
can be tuned up to approximately half the maximum
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FIG. 3: Upper panel: Real (thick bar) and imaginary part
(thin bar) of the {〈−2M | , 〈0 | , 〈2M |} |ψ(t)〉 at t = 0 and at
the times showed by vertical lines in the lower panel. Lower
panel: Average current per cycle Im/M in recoil units and
average tunneling energy per cycle (dashed line) in units of
1/ω as a function of time. a) |ψ(0)〉 = | 0〉 b) |ψ(0)〉 = | 2M〉
c) |ψ(0)〉 = | s2M 〉.The parameters used are M = 5 , L = 41,
φ/π = 0.257, V/ω = 0.1 and α = 1.2.

achievable momentum in the lattice kmax. The current
oscillation period scales with the coupling strength as
≃ (ω/V )

2
T . Note that this time scale can be tuned

to fit the experimental observation time. It can be en-
larged at will for smaller couplings while the weak cou-
pling condition V/ω < 1 sets a lower limit. To show the
robustness of the method we plot in figure 4 the current
when the system is not perfectly tuned to resonance and
for stronger driving fields. We find that couplings up to
V/ω = 0.5 and errors of 1% in the resonant frequency
still give rise to strong particle currents.

We have presented a model system where one can ob-
tain currents with amplitudes orders of magnitude larger
than those observed in recent experiments with coher-
ent ratchet currents [12]. The oscillation period of the
current can be controlled by the amplitude of the driv-
ing potential and in particular, by decreasing the driving
strength one obtains currents which do not decay during
the lifetime of the experiment. This effect is obtained
with a potential which does not break the time-reversal
symmetry and is due to crossed terms between the cyclic
eigenstates of the system. The proposed scheme re-
quires that the system is tuned to resonance and that
the driving potential is weakly coupled such that only a
few cyclic eigenstates are involved in the dynamics. We
have checked the robustness of the method by tuning
the system out of resonance and increasing the coupling

50 100 150 200 250 300

−5
0
5

t/T

cu
rr

en
t

20 40 60 80 100 120

−5
0
5

t/T

cu
rr

en
t

b)

a)

FIG. 4: Average current in recoil units (thick solid line)
in Eq. (3) as a function of time for an initial zero momen-
tum state. The thin solid line is the current average at each
cycle Eq. (2) obtained with a numerical integration of the
Schrödinger equation using Floquet theory forM = 5 , L = 41
and α = 1.2. Dashed line corresponds to the current of the
effective 3-level system in Eq. (7) and Eq.(8). a) V/ω = 0.2,
φ/π = 0.2562 and ω = 1.01(E2M − E0)/2 b) V/ω = 0.5,
φ/π = 0.2579.

strength. Furthermore, we have shown that it is possible
to control the quantum state and the amount of kinetic
energy in the system, using the proposed scheme to con-
vert a zero momentum state into a state with high finite
momentum, and viceversa. Our results show that the
use of unbiased oscillatory potentials for slowing down or
cooling particle beams deserves further study.
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FIS2010-18799 and the Ramón y Cajal programme.
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