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Abstract

The one-dimensional scattering of a two body interacting system by an infinite wall is studied in

a quantum-mechanical framework. This problem contains some of the dynamical features present

in the collision of atomic, molecular and nuclear systems. The scattering problem is solved exactly,

for the case of a harmonic interaction between the fragments. The exact result is used to assess the

validity of two different approximations to the scattering process. The adiabatic approximation,

which considers that the relative co-ordinate is frozen during the scattering process, is found to

be inadequate for this problem. The uncorrelated scattering approximation, which neglects the

correlation between the fragments, gives results in accordance with the exact calculations when the

scattering energy is high compared to the oscillator parameter.

PACS numbers: 24.10.Eq;03.65.Nk;3.80.+r;24.50.+g
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I. INTRODUCTION

Recently, important efforts in the fields of molecular, atomic and nuclear physics have

been devoted to the analysis of collision processes involving composite quantum systems.

Despite the peculiarities of the different fields, the theoretical description of the collision

has several common features. R-matrix theory [1] is used for re-arrangement collisions,

when several electrons or nucleons may be exchanged between the colliding systems. Cou-

pled channels calculations [1, 2] are used to describe excitation and dissociation in atomic,

molecular and nuclear systems. The “adiabatic” or “sudden” approximation is often invoked

in molecular and nuclear collisions, because it simplifies significantly the description of the

scattering process, by considering that some of the relevant co-ordinates are effectively frozen

during the scattering process. Also, the description of the collision of atomic and molecular

beams with surfaces requires coupled channels descriptions, but the combined difficulties of

the atom-surface interactions and molecular vibrations makes the “sudden” approximation

almost essential for its solution [2].

In the case of atomic and molecular physics, one-dimensional atom-molecule collision reac-

tions have been studied in detail by solving the Schrödinger equation [3]. In particular, colli-

sions between an atom and a diatomic molecule represented by harmonic [4], an-harmonic [5]

and Morse oscillators [6] have been analysed with different degrees of approximation. Diverse

computational methods have been also implemented to study three-dimensional molecular

and atomic collisions [7]. Moreover, in some recent papers algebraic approaches have been

proposed for describing one- and three-dimensional atom-molecule collision processes [8, 9].

In the field of nuclear physics, much of the interest in recent years has been focused on the

study of the properties of halo nuclei, weakly bound systems characterised by the existence

of one or two particles (generally neutrons) with a high probability of being at distances

larger than the typical nuclear radius. Different approaches have been used in the analysis

of reactions involving halo nuclei. The adiabatic approximation [10–13] assumes that, for

sufficiently high scattering energies, the internal Hamiltonian is accurately represented by

its corresponding eigenvalue for the ground state. The sudden approximation [14–17] re-

lies on two main assumptions: i) the impulse approximation, i.e., the multiple scattering

expansion for the T-matrix is approximated by the sum on the individual T-matrices for

the scattering of the separated constituents, and ii) only one of the particles of the pro-
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jectile interacts with the target. In the high energy regime, the Glauber approach [18],

which combine eikonal dynamics with the adiabatic approximation, provides a simple tool

to analyse reactions involving halo nuclei. We have recently developed an alternative ap-

proach to the description of weakly bound systems. The approach, called “Uncorrelated

Scattering Approximation” (USA) [19, 20], is based on the fact that, for a weakly bound

projectile, the correlations between the constituents are weak and so, to some extent, they

are expected to evolve independently in the strong field of a heavy target. Thus, the three

body S-matrix can be expressed in terms of the individual two body S-matrices for the

scattering of the constituents. In this framework, the scattering observables of the process

are given in terms of two body constituent-target observables. This model has been applied

to describe elastic scattering and break-up of deuterons on heavy targets, with encouraging

results. The Uncorrelated Scattering Approximation has certain relation with the R-matrix

approach. In a R-matrix calculation of deuteron scattering, the wave-function within the

range of the target interaction is given in terms of products of single-particle (protons and

neutrons) wave-functions with the proper boundary conditions, provided the interaction

between the fragments of the projectile is neglected. These single-particle wave-functions

should be matched with the proper asymptotic wave-functions. In the USA calculation, the

incident wave is expanded in terms of products of fragment-target wave-functions, which

then scatter independently from the target.

The objective of this work is to investigate the scattering of a composite system from a

target with interactions which have a very short range compared not only with the size of

the system, but also with the associated wave-length of the projectiles. For that purpose, we

consider the case of two particles, interacting through a harmonic oscillator potential, which

collide with an infinite wall. We develop two different methods to solve the problem exactly,

obtaining the wave-function as well as the S- matrix, or reflection coefficients, which give the

probability amplitudes for the excitation of the different oscillator states. We compare the

exact results with the ones obtained using the adiabatic approximation, and the uncorrelated

scattering approximation.

The model discussed here does not pretend to be a realistic representation of any specific

molecular, atomic or nuclear system. However, it has the virtue that the only length scale is

the oscillator length a0, while the only energy scale is the oscillator parameter h̄ω. Then, the

results obtained, which are expressed in terms of r/a0 and E/h̄ω, can be applied in principle

3



r1=0 r2=0

R1

R

r

R2

R3

R4

FIG. 1: Schematic plot representing the scattering problem in the (r,R) plane. The waves represent

the SCLS associated with a basis with N = 8 HO states. Each one of these SCLS has been plotted

at the center of mass distance at which it is supposed to be scattered by the wall, according to the

formalism described in section II B.

to arbitrary energy and length scales, which may be nuclear, atomic or molecular. This fact

makes the model attractive as a bench-mark to test the validity of the approximations which

are used for the description of composite systems.

One aspect of the model which seems odd is the infinite nature of the harmonic oscillator

interaction between the fragments. This would prevent dissociation in the case of molecules,

ionization in the case of atoms or break-up for nuclei. On the other hand, the harmonic

oscillator basis is complete, and thus the results of the model incorporate effects on the

scattering due to coupling to all possible, open or closed, states.

The paper is organised as follows: in section II we describe the problem to be solved. Two

different approaches to extract the exact solutions are developed. In section III we derive

the S-matrix in the adiabatic model approach. In section IV we present the Uncorrelated

Scattering Approximation. In section V we apply it to evaluate the scattering coefficients

and compare with the exact solution. Section VI is devoted to summary and conclusions.

II. STATEMENT OF THE PROBLEM AND EXACT SOLUTION

Let us consider the scattering of a two-particle bound system by the short range potential

due to a heavy target, placed at the origin of coordinates.

The Hamiltonian for the system may be written in terms of the coordinates of the two

particles (r1, r2) and their momenta (p1, p2) as
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FIG. 2: S-matrix elements versus the scattering energy for the HO states n =0, 2 and 4. The solid

and dashed lines correspond to the exact calculation using the methods of sections II A and II B,

respectively. A basis space with 15 even parity HO states was used for the calculations.

Ĥ = ĥ1 + ĥ2 + v(r1 − r2) (1)

ĥi =
p̂2i
2mi

+ vi(ri) (2)

where mi are the masses of the constituents, vi(ri) is the potential exerted by the target on

each particle and v(r1 − r2) represents the binding interaction.

Alternatively, it can be expressed in terms of the relative (r) and centre of mass coordinate

(R):

Ĥ = Ĥr + ĤR + v1(R + α2r) + v2(R− α1r), (3)

Ĥr =
p̂2r
2µ

+ v(r) (4)
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ĤR =
P̂ 2
R

2M
(5)

where M is the total mass, αi = mi/M (i = 1, 2), and Ĥr is the internal Hamiltonian. Here,

µ represents the reduced mass of the two-particle system and r = r1 − r2 is the relative

coordinate.

We refer to the specific case in which vi(ri) corresponds to an infinite wall potential, i.e.:

vi(ri) =











0 ri > 0

∞ ri ≤ 0
(6)

For negative values of r1 and r2 the total wave function must vanish. For positive val-

ues, the Hamiltonian comprises two terms: one associated with the internal motion of the

projectile (Ĥr) and the other describing the centre of mass motion (ĤR).

We take v(r) to be a harmonic interaction. Therefore, the eigenfunctions for the internal

Hamiltonian are given by

φn(r) = N− 1
2

n exp

(

− r2

2a20

)

Hn

(

r

a0

)

; n = 0, 1, . . . (7)

where a0 =
√

h̄/µω is the oscillator length, Nn a normalisation constant and Hn the Hermite

polynomial of order n.

Denoting by N the number of open channels, the total wave function will be then ex-

panded in terms of eigenstates of the Hamiltonian as follows:

Ψ(r, R) =
1√
v0
φ0(r)e

−iK0R −
N−1
∑

m=0

S0m√
vm
φm(r)e

iKmR −
∞
∑

m=N

F0mφm(r)e
−|Km|R. (8)

In this expression Km represents the centre of mass momentum associated with the in-

ternal state m and vm = h̄Km/M its velocity. Energy conservation applied to the whole

system leads to the constrain

(h̄Km)
2

2M
+ ǫm = E, (9)

where ǫm is the eigenvalue corresponding to the internal state φm(r).

The first term in (8) represents an incoming wave, normalised to unit flux, coming from

R = +∞. The second term contains the set of scattered waves travelling in the positive

R direction corresponding to open channels, i.e., ǫm < E. The coefficients Snm are the
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FIG. 3: Projection of the total wave functions on the internal eigenstates n=0, 2, 4 and 6, for the

scattering energy E = 5 h̄ω. The solid line corresponds to the exact calculation by direct application

of the boundary conditions, whereas the dashed line corresponds to the exact calculation in the

CLS approach.

S-matrix elements or, strictly speaking, reflection coefficients. Then, S0m represents the

amplitude probability of populating the state m during the collision starting from a wave

function in its ground state. The last term in (8) contains the contribution to the wave

function due to the (infinite) set of closed channels, for which ǫm > E. For these states, the

associated momentum Km is a pure imaginary quantity, and the centre of mass motion is

described by an exponential decaying behaviour. Therefore, they do not contribute to the

asymptotic wave function and so they do not give direct contribution to the outgoing flux.

Although they are usually ignored in practical calculations, the peculiarity of the infinite

potential requires however the inclusion of these states in order to describe correctly the

wave function in all the space.

In this problem there is no transmitted wave due to the presence of the wall and so the

S-matrix should fulfil unitarity. Therefore, the ingoing and outgoing flux must be equal:
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N−1
∑

m=0

|Snm|2 = 1, (10)

where the sum extends to the set of open channels.

The coefficients Snm and Fnm are determined by imposing the boundary conditions at

ri = 0. For the infinite wall the wave function must vanish at r1 = 0 and r2 = 0 which, in

terms of r and R means

Ψ(r, R = +α1r) = 0 (r > 0),

Ψ(r, R = −α2r) = 0 (r < 0). (11)

In what follows we present two alternative methods to solve exactly this problem.

A. Exact solution by direct application of the boundary conditions

As described above the exact solution of the scattering problem of a two-body projectile

by a rigid wall is accomplished by applying the boundary conditions (11) to the general

solution (8). For simplicity we assume that the system is initially in its ground state. The

first condition in (11) leads to the following equation for the scattering coefficients:

1√
v0
e−iK0α1rφ0(r)−

N−1
∑

n=0

S0n√
vn
eiKnα1rφn(r)−

∞
∑

n=N

F0ne
−|Kn|α1rφn(r) = 0 ; r > 0. (12)

The second condition in (11) leads to a similar equation (with α2 instead of α1) which holds

for r < 0. In particular, we have performed calculations for the particular case of equal

masses, i.e., α1 = α2 = 1
2
, for which both equations are identical, due to the symmetry of

the problem under the exchange of r1 and r2. In the remaining of this section we restrict to

this particular case.

In order to transform eq. (12) into an ordinary algebraic equation, we require that

∫ +∞

0

∣

∣

∣

∣

Ψ(r, R =
1

2
r)
∣

∣

∣

∣

2

dr = 0, (13)

which gives for the scattering coefficients the relation:

1

2
−

∞
∑

n

(C0na0n + C∗
0na

∗
0n) +

∞
∑

n,m

C0nC
∗
0mbnm = 0, (14)
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where

C0n =











√

v0
vn
S0n ; n < N

√
v0F0n ; n ≥ N

(15)

and

a0n =
∫ ∞

0
φ∗
0(r)φn(r)e

i(Kn+K0)
1
2
r ; n < N, (16)

bnm =
∫ ∞

0
φ∗
n(r)φm(r)e

i(Km−Kn)
1
2
r ; n,m < N. (17)

The expressions for a0n and bnm for n,m ≥ N are obtained substituting ±iKn for −|Kn|.
Differentiating eq. (14) with respect to C∗

0n we get the following linear system in the

variables C0n:

∞
∑

m=0

C0mbnm = a∗0n, n = 0, . . . ,∞. (18)

For practical calculations the resolution of this system requires the truncation of the sum

at some finite value of m. It should be noticed that in order to achieve convergence for

the S-matrix elements one is forced to include in the calculation several closed channels.

Otherwise, the boundary conditions (11) are not accurately fulfilled.

B. Exact solution using a discrete basis

In this section we present an alternative method to obtain the exact solution of the

problem stated above. The method relies on the introduction of a new basis of states which

are particular linear combinations of the internal wave functions. The new functions have

the property of being highly localised in configuration space. As we shall see this peculiarity

allows to apply more easily the boundary conditions.

We start with a truncated basis of N eigenstates for the internal Hamiltonian that we

denote by {|Nn〉;n = 1, . . . , N − 1}. Thus, according to our previous notation, 〈r|Nn〉 =
φn(r).

In the appendix we show how these states can be decomposed in terms of configuration

localised states (CLS) as
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|Nn〉 =
N
∑

s=1

〈CLS;Ns|Nn〉 |CLS;Ns〉 (19)

In this expression the ket |CLS;Ns〉 represents a configuration localised state. Explicit

expressions for the CLS associated with the HO wave functions can be found in the appendix

and in Ref. [22]. The function 〈r|CLS;Ns〉 has the property of being highly localised around

r = rs, the s-th zero of the eigenfunction 〈r|N N〉.
The problem is significantly simplified in the case of fragments of equal masses. Par-

ity conservation guarantees that only states with the same parity as the incident wave

function will be populated in the process. This allows to work in the subspace: {φn(r);

n = 0, 2, . . . , N − 2} (for simplicity of the notation, and without loss of generality, we take

N even). These functions are symmetric with respect to their natural variable, r. From this

set of N
2

states it is possible to construct, by means of a transformation similar to (19), a

set of symmetric configuration localised states (SCLS), which are also even functions with

respect to the variable r. We denote this new set of states by {|SCLS;Ns〉; s = 1, . . . , N
2
},

where the index s runs over the positive zeros of HN (x). The details of its derivation are pre-

sented in the appendix. The state 〈r|SCLS;Ns〉 has the property of being localised around

the points r = rs = ±xsa0, where xs is the s−th positive zero of the Hermite polynomial

HN(x). In the treatment that follows we make extensive use of this remarkable signature.

The boundary condition due to the wall requires that the total wave function vanishes

for r1 = 0 and r2 = 0 or, in terms of coordinates r and R, along the lines R = r/2 (r > 0)

and R = −r/2 (r < 0) in the (R, r) plane. At each value of R a reflected wave is generated,

interfering with the other outgoing waves to construct the total scattered wave. This picture

is simplified working in terms of SCLS. The part of the wave function associated to the state

〈r|SCLS;Ns〉 is peaked around r = ±rs and, therefore, it will be mainly scattered around

R = Rs = |rs|/2. In the limit case N → ∞, 〈r|SCLS;Ns〉 becomes a delta function in

r and the associated wave is exactly scattered at R = Rs. Moreover, continuity of the

wave function implies that a reflected wave, affected by a phase factor − exp(−2iKoRs), is

generated at this point. Obviously, this is not exactly our situation as, in practise, N is

always finite and so our localised states have a finite dispersion around rs. However, we can

make this dispersion as small as required by increasing the number of states.

Consequently, the process is considered as a distribution of localised states that are
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reflected at some definite barriers in the R direction. The total scattered wave is given by

the superposition of the reflected waves. To make the treatment clearer, we divide the R axis

in N
2

regions, delimited by the values of Rs. We order the zeros of the Hermite polynomial

HN in such way that R1 > R2 > . . . > RN/2. Let us introduce an index i to label each region

(i = 1, . . . , N
2
), such that i = 1 corresponds to the asymptotic region, i.e., R > R1, before

any localised state has been reflected. In this region the basis space associated with the

internal motion is described in terms of the first N
2

HO eigenfunctions with positive parity.

Alternatively, it can be described in terms of N
2

symmetric localised states.

At R = R1 the SCLS corresponding to s = 1 is reflected and removed from the incident

wave function, while the rest of SCLS remain unaltered. Therefore, in the region i = 2

the basis is limited to the subspace spanned by the remaining N
2
− 1 states (s = 2, ..., N

2
).

Subsequently, our original set of states are no longer eigenstates of the Hamiltonian in this

region. Instead, a new family of N
2
− 1 eigenstates must be calculated, by diagonalizing the

Hamiltonian in the basis constituted by the remaining N
2
− 1 localised states.

The method is schematically illustrated in Fig. 1. The picture represents the scattering

problem in the (r, R) plane. The total wave function travels in the R direction (vertical axis)

and must vanish along the lines r1 = 0 and r2 = 0, which have been also plotted for reference.

The case with N = 8 has been considered, in which the incoming wave is decomposed in

a set of four SCLS. Each one of these SCLS is consider to scatter at a definite barrier in

the R axis, labelled from R1 to R4. Note that they partially extend to the forbidden region

(ri < 0), which is a consequence of the truncation of the HO basis.

Let us specify explicitly the boundary condition at R = Ri. This barrier separates

regions i and i+ 1. The eigenstates corresponding to region i will be denoted by {|N (i)m〉;
m = 0, ..., N (i) − 1} where N (i) = N

2
− i + 1 is the number of states in region i. The total

wave function is then expanded in each region in terms of the corresponding eigenstates.

For region i, corresponding to the interval Ri−1 > R > Ri, we have:

|Ψ(i)(E)〉 =
N(i)−1
∑

m=0

(

A(i)
m e

−iK
(i)
m R − B(i)

m e+iK
(i)
m R

)

|N (i)m〉, (20)

where A(i)
m (B(i)

m ) are the coefficients of the incoming (outgoing) waves. Energy conservation

requires, in analogy with (9),

11
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(h̄K(i)
m )2

2M
+ ǫ(i)m = E, (21)

where ǫ(i)m is the m-th eigenvalue of the Hamiltonian in region i and K(i)
m its corresponding

centre of mass momentum.

Similarly, for region i+ 1 the wave function will be written as

|Ψ(i+1)(E)〉 =
N(i+1)−1
∑

n=0

(

A(i+1)
n e−iK

(i+1)
n R −B(i+1)

n e+iK
(i+1)
n R

)

|N (i+1) n〉. (22)

At R = Ri the part of the wave function associated with the localised state s = i is

reflected by the wall. Therefore, continuity of the wave function requires that

〈SCLS;N i|Ψ(i)(E)〉
∣

∣

∣

Ri

= 0. (23)

By contrast, the rest of localised states are unaffected by this barrier, so we may require

continuity of the wave function and its derivative for the components s > i:

〈SCLS;N s|Ψ(i)(E)〉
∣

∣

∣

R=Ri

= 〈SCLS;N s|Ψ(i+1)(E)〉
∣

∣

∣

R=Ri

(24)
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FIG. 5: S-matrix coefficients for the ground and first excited states. The solid line is the exact

calculation. The dot-dashed line corresponds to the USA model, with the prescription (47) for the

phases. The dashed line corresponds to the adiabatic model.

[

d

dR
〈SCLS;N s|Ψ(i)(E)〉

]

R=Ri

=

[

d

dR
〈SCLS;N s|Ψ(i+1)(E)〉

]

R=Ri

. (25)

Equations (23) to (25) give rise to a set of 2
(

N
2
− i

)

+ 1 conditions for the scattering

coefficients A(i)
n and B(i)

n (n = 0, . . . , N (i) − 1). When applied to all regions a total of
(

N
2

)2
equations with N

2
(N
2
+ 1) coefficients is obtained. From these, the N

2
coefficients

A(0)
n are known, as they are determined by the initial conditions. Therefore, there remain

N
2
(N
2
+ 1) − N

2
=
(

N
2

)2
coefficients to be determined, that coincides with the number of

equations. Thus, the resolution of the problem reduces to the calculation of the inverse of a
(

N
2

)2×
(

N
2

)2
matrix. This can be a slow computational task when N takes large values. This

drawback has led us to adopt an alternative method that avoids this sort of calculations,
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speeding significantly the computational time. For its application, it is convenient to define

a generalised “S-matrix” for region i as:

B(i)
n =

∑

n′

√

√

√

√

K
(i)
n′

K
(i)
n

S
(i)
n′nA

(i)
n′ . (26)

For region i = 1 this definition gives just the usual S-matrix. The factor
√

K
(i)
n′ /K

(i)
n has

been introduced to ensure unitarity.

Substituting this expression into equations (23) to (25) we get a set of 2
(

N
2
− i

)

+ 1

equations relating the S-matrix elements of S(i) and S(i+1). Then, instead of solving the

system of equations as a whole, we perform an iterative calculation in which the S-matrix

for each region is determined in terms of the S-matrix for the neighbouring region. The

starting point is the region i = N
2
, for which the S-matrix is known. In this region there is

only one state left, which is completely reflected at RN/2. The S-matrix in this case is just

the phase factor: S(N
2
) = exp ( − 2iK

(N
2
)

1 RN/2). From this, we can determine the S-matrix

for region N
2
− 1, and so on. Finally, we obtain the S-matrix, S(1), in terms of S(2). Taking

into account (26) and the fact that A(1)
n are given by the initial conditions, it is possible to

determine the coefficients B(1)
n . One can derive also an iterative procedure to determine the

coefficients A(i)
n for all regions in terms of the corresponding S-matrices.

C. Discussion of the exact results

In order to compare both treatments we have plotted in figure 2 the S-matrix coefficients

S00, S02 and S04, as a function of the scattering energy. The energy scale is in units of h̄ω.

A basis space with 15 even parity HO states was used for the calculation. The figure shows

a good agreement between both treatments, specially at low scattering energies. As the

scattering energy increases, the effect of the truncation of the basis becomes more impor-

tant and both calculations differ slightly. Notice that this discrepancy appears to be more

evident for the phase of the S-matrix elements. Nevertheless, this difference between both

calculations is reduced as the number of basis states is increased.

We notice that, as expected, the elastic coefficient is identically one for scattering energies

below 5
2
h̄ω. This corresponds to the energy of the first excited state that is suitable to be

populated. Accordingly, the inelastic coefficients, S02, S04, . . . are identically zero below this
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threshold. For scattering energies higher than 5
2
h̄ω, the modulus of the elastic coefficient

is less than one and the rest of the coefficients are non zero. Note that the modulus of

S00 presents a minimum at E = 5 h̄ω, indicating a maximal loss of flux from the elastic

channel to other channels at this energy. For higher scattering energies the modulus of

elastic scattering coefficient tends gradually to unity.

We have also compared the wave functions in both approaches. In our problem the wave

function is a complex quantity depending on two variables, r and R. For the exact direct

calculation the wave function is given by (8), where the scattering coefficients are calculated

by imposing the boundary conditions (11). It must be noticed, however, that this expression

only holds for r1, r2 ≥ 0 or, equivalently, for −2R < r < 2R. Outside this range, the total

wave function must be identically zero. The projection of the wave function on a state |N n〉
is calculated as

Ψn(R) ≡ 〈N n|Ψ〉 =
∫ 2R

−2R
drφ∗

n(r)Ψ(r, R). (27)

For large values of R (compared to the spatial extension of the internal wave function)

the integral can be extended to the interval (−∞,∞) and the projection above is directly

related to the corresponding S-matrix element:

Ψn(R) ≈
∫ ∞

−∞
drφ∗

n(r)Ψ(r, R) =
1√
v0
δn0e

−iK0R − 1√
vn
S0ne

iKnR ; (R≫ a0). (28)

In the analysis based on CLS, the total wave function is given in terms of a piecewise

function of R, according to (20). For a certain region i, this wave function is written as a

superposition of the eigenstates of the Hamiltonian in this region. These eigenstates travel

freely between the consecutive barriers Ri and Ri+1. Thus, the projection on a state |Nn〉
for a value of R belonging to a region i reads

Ψ(i)
n (R) = 〈N n|Ψ(i)〉 =

N(i)−1
∑

m=0

(

A(i)
m e

−iK
(i)
m R − B(i)

m e+iK
(i)
m R

)

〈N n|N (i)m〉. (29)

We notice that, except for the incoming region (i = 1), the states |N n〉 and |N (i)m〉
are eigenstates belonging to different Hamiltonians and so orthogonality can not be directly

applied to them. However, they are both given in terms of the SCLS and so the calculation

of their overlap is straightforward.
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The results are shown in figure 3, where we present the modulus of the projection of

the total wave function on the internal states. The solid line corresponds to the treatment

of section IIA and the dashed line to the CLS method. These wave functions have been

obtained for a scattering energy E = 5 h̄ω. The R scale is in units of a0. As shown in this

figure both treatments give almost identical results, the small differences being attributed

to the truncation of the infinite basis.

A similar agreement between both approaches is found at other energies, provided that

a sufficient number of states is included in each case.

From this picture it becomes apparent the role played by each internal state. The state

n=0 corresponds to the initial state. Then, the asymptotic wave function contains both

incoming and outgoing contributions of this state. This is reflected in the characteristic

interference pattern of the curve |〈N 0|Ψ〉|. At this scattering energy, the states n=2 and n=4

are open channels, and so they give a non vanishing contribution to the asymptotic scattered

wave. In fact, the curves tend to a constant value for large distances which, according

(28), is proportional to the corresponding coefficient S0n. By contrast, the state n=6 is

closed. Its exponential decaying tail reflects the fact that this state does not contribute

directly to the asymptotic wave function, but it does give a non negligible contribution to

the total wave function in the vicinity of the wall. As mentioned before, the inclusion of these

states is essential in order to reproduce accurately the boundary conditions and to achieve

convergence for the S-matrix elements. Then, they indirectly affect the wave function in all

the space.

The approach based on CLS presents some advantages compared to the treatment de-

scribed in section IIA. It allows to evaluate all the matrix elements Snm, n,m = 0, . . . , N−1

in a single calculation, i.e., the initial state does not need to be specified. By contrast, in

the previous approach a new calculation is required for each initial state.

Moreover, the method based on the CLS preserves the general properties of the S-matrix

for any value of N . In particular, conditions (23) and (25) ensure that the total flux is

conserved at each barrier. As a relevant consequence, the resulting S-matrix fulfils unitarity,

regardless of the number of initial states chosen for the basis.
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III. THE ADIABATIC MODEL

We derive in this section an expression for the S-matrix in the adiabatic approximation

[10]. The standpoint of the approach is that a fundamental distinction is made between the

two relevant coordinates of our problem, namely, the centre of mass coordinate, R, and the

internal variable, r. The former is identified as a high-energy (fast) variable and the latter

as a low-energy (slow) variable.

In this dynamical regime, it is expected that the excitation energies ǫn associated with

those excited states which are significantly populated, are such that ǫn ≪ E, where E is

the incident energy of the projectile. Under this assumption it seems reasonable to replace

the internal Hamiltonian by a representative constant. By choosing this constant as ǫ0, the

ground state energy, it is also guaranteed that the solution of the resulting approximate

three-body equation satisfies the correct incident wave boundary condition.

Then, applying this approximation to the Hamiltonian (3) the Schrödinger equation

reads:

[

− h̄2

2M

d2

dR2
+ v1(R +

1

2
r) + v2(R− 1

2
r) + ǫ0 − E

]

Ψad(R, r) = 0. (30)

Note that this approximate Schrödinger equation is independent of the relative momen-

tum between the fragments. Then, its conjugate coordinate, r, is a constant of motion,

remaining frozen during the collision. Thus, eq. (30) has to be solved for all values of a fixed

separation r.

In the case of a rigid wall potential, v1 and v2 are zero for positive values of r1 and r2,

respectively. Therefore, in this case the solution of eq. (30) is given by the plane wave,

exp(−iK0R), multiplied by an arbitrary function of r. The most general solution verifying

the boundary incident condition at infinity can be written as

Ψad(r, R) = φ0(r)e
−iK0R − S(r)φ0(r)e

iK0R. (31)

where φ0(r) is the ground state wave function and S(r) is a function determined by imposing

the boundary condition at the wall. This requires that the wave function vanishes at R =

|r|/2. Then

S(r) = e−iK0|r|. (32)
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The scattering coefficients defined by eq. (8) can be obtained by projecting the wave

function (31) onto the basis states {φn(r)}. This gives rise to the following simple expression:

S0n =
∫ +∞

−∞
φ∗
n(r)S(r)φ0(r)dr. (33)

We notice that in this expression no distinction is made between open and closed channels.

Actually, the approximation treats the full excitation spectrum of the internal Hamiltonian

as being degenerate in energy with the ground state. As a consequence, unitarity of the

adiabatic S-matrix is only achieved when summing over the infinite set of eigenstates.

In what follows we show that the adiabatic approximation is not adequate for the problem

treated in this work. In Fig. 4 the quantity 1−|S00|2 is plotted versus the collision energy for

the exact (solid line) and adiabatic (dashed line) calculations. This quantity can be inter-

preted as an excitation probability. The adiabatic prediction completely disagrees with the

exact calculation, indicating that the assumptions involved in the adiabatic approximation

are not adequate for this problem. We attribute this failure to the fact that, as revealed by

the exact calculation, many internal states participate in this process.

This is probably due to the peculiarities of an infinite zero-range interaction. In this case,

the momentum transferred to each particle by the wall is twice the incident momentum and

so, when increasing the scattering energy, the expected excitation energy increases. During

the collision time, i.e., while one particle has collided with the wall, but the other still has

not, the internal motion of the projectile is strongly excited. Then, the assumption of the

adiabatic model, i.e., to consider the whole spectrum to be degenerated with the ground

state, does not work properly in this case. After the collision, that is, when both particles

have collided with the wall, the centre of mass momentum is reversed and the final excitation

energy is small. Thus, this model represents a case in which, although the final excitation

of the projectile is small, the adiabatic approximation is inadequate, because during the

collision the internal motion is strongly excited.

From this discussion we conclude that one should be very careful in applying the adiabatic

approximation when dealing with strong, short-range interactions. In the next section we

develop a new method to treat this type of situations.
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IV. UNCORRELATED SCATTERING APPROXIMATION (USA)

The main goal of this section is to derive an approximated expression for the S-matrix

corresponding to the one dimensional scattering of a two particle system in terms of the

constituent-target scattering amplitudes. The results presented here are not restricted to

the case of an infinite potential. Thus, we start with a general derivation of the model ant

later we particularize the results to the problem of a wall potential in order to compare with

the exact solution.

There are two opposite effects acting on a projectile in the process of the collision. The

first one is the binding potential v(r) that tends to keep the system bound. The second one

is the interaction with the target which, apart from governing the motion of the projectile

centre of mass, is the responsible for exciting or breaking the system. The relative importance

of these two effects depends importantly on the separation between the projectile and the

target. In particular, for sufficient large distances between them the dominant interaction

is clearly the mutual interaction between the constituents. Thus, it seems reasonable to

approximate the projectile-target potential by an average (folding) potential at sufficiently

large distances. By contrast, when the bound projectile is close enough to the target the

dynamical evolution of the projectile is mainly governed by the target interaction. In this

case it is reasonable to neglect the correlations between the fragments.

Let us introduce a characteristic centre of mass distance R0 separating these two regions.

For distances R ≫ R0, referred as the “asymptotic region” and denoted by the index I, we

adopt an approximate Hamiltonian in which the interaction with the target is neglected

Ĥ ≈ Ĥr + ĤR ≡ ĤI , (34)

where Ĥr is the internal Hamiltonian (4) and

ĤR =
P̂ 2
R

2M
+ VF (R) (35)

with VF (R) representing the folding potential between the projectile and target.

Asymptotically, the eigenstates of ĤI are just the product of the eigenstates of the internal

Hamiltonian Ĥr times a plane wave in R, subject to the restriction (9). As mentioned

before, there is only contribution to the asymptotic wave function coming from the open

channels. Denoting by N the number of these states, we restrict the basis space to the set
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{|Nn〉; n = 0, 1, . . . , N − 1}. Then, the total wave function corresponding to an incoming

wave in an internal state n will be written in the asymptotic region as

|ΨI,n(E)〉 →
1√
vn
e−iKnR|Nn〉 −

N−1
∑

m=0

Snm√
vm
eiKmR|Nm〉. (36)

For distances R ≪ R0, in what we call “interaction region” (denoted by II), the Hamilto-

nian (1) is approximated by

Ĥ ≈ ĥ1 + ĥ2 + v̄ ≡ ĤII , (37)

where v̄ is a constant that substitutes v(r).

The eigenfunctions of ĤII can be expanded in terms of the product of eigenfunctions of

the Hamiltonians ĥ1 and ĥ2. An eigenstate of ĥi corresponds to the distorted wave for the

scattering of a particle under the potential vi(ri):

ĥi|χi(ki)〉 = Ei|χi(ki)〉; (i = 1, 2), (38)

where ki is the asymptotic incident momentum for the constituent i, and Ei = (h̄ki)
2/2mi.

Asymptotically this distorted wave behaves as

|χi(ki)〉 → |ki〉 − Si(ki)| − ki〉; (i = 1, 2), (39)

where 〈ri|ki〉 = exp(−ikiri)/
√
2π is a plane wave with momentum ki and Si(ki) is the

constituent-target S-matrix for the scattering energy Ei. Note that, in the case of the

infinite wall, this expression is valid for all values of ri ≥ 0.

Thus, the eigenstates of the Hamiltonian ĤII , corresponding to the asymptotic momenta

k1 and k2, can be expressed as products of the form

|ψ(k1, k2)〉 ∝ |χ1(k1)〉|χ2(k2)〉. (40)

where

h̄2k21
2m1

+
h̄2k22
2m2

+ v̄ = E. (41)

According to (39), the asymptotic expansion of the eigenfunction (40) contains an in-

coming wave, |k1〉|k2〉, an scattered wave, S1(k1)S2(k2)| − k1〉| − k2〉, and two cross terms
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mixing ingoing and outgoing contributions, namely S1(k1)| − k1〉|k2〉 and S2(k2)|k1〉| − k2〉.
In practise, these last two terms do not contribute to the incoming nor the scattered wave

function at large distances. This can be verified by considering an incoming wave packet

in k1 and k2. The superposition of states of the form |k1〉| − k2〉 or | − k1〉|k2〉 contains an

incoming part which vanishes for t→ +∞, and an outgoing part which cancels for t→ −∞.

Then, these cross terms can be omitted as far as the asymptotic behaviour concerns. As we

will show later, the use of MLS allows to demonstrate that these terms do not contribute

to the wave function at large distances in a time-independent formalism. The form of the

scattered wave, S1(k1)S2(k2)| − k1〉|− k2〉, indicates that the S-matrix for an incoming wave

with definite values of k1 and k2, denoted S(k1, k2), appears to be the product of the individ-

ual S-matrices for the constituents, i.e., S(k1, k2) = S1(k1)S(k2). This S-matrix is unitary,

provided the individual S-matrices are unitary, i.e., |Si(ki)| = 1. This condition is satisfied

for the infinite potential, but it also holds for any other situation for which the transmission

coefficient is zero.

Therefore, the scattering problem for the Hamiltonian ĤII corresponding to a situation

characterised by an incoming wave with definite values of the energies of the constituents can

be easily solved. However, our physical initial state is not characterised by the individual

energies of the two particles, but by a certain internal state of the projectile and the energy

of the collision. The general solution in the interaction region for a total energy E will

be a certain superposition of eigenstates (40), verifying (41) and the adequate asymptotic

boundary conditions. These boundary conditions require that the wave function in region

II matches smoothly with the asymptotic wave function of eq. (36). One possible way to

proceed might be to expand the total wave function in each region in terms of the eigen-

states of the approximated Hamiltonian for that region. The coefficients of the expansion

are determined by imposing the continuity of the wave function and its derivative at the

matching radius R0. Apart from the complexity of the calculation, this method has the

problem that incoming waves coming from the asymptotic region do not match exactly with

incoming waves of the interaction region, due to the discontinuity of the Hamiltonian at R0.

As a result, part of the incoming flux is reflected at R0 and spurious outgoing waves are

generated. To overcome this difficulty we proceed on a different way. In order to avoid the

unphysical reflections we relax the meaning of the matching radius R0. We assume that the

Hamiltonian ĤI is smoothly transformed into ĤII in a finite transition region around R0.
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Although we do not make an explicit description of this transition region in our model, we

include its effect by requiring that the wave function passes from one region to the other

without loss of flux.

Let us consider the incoming part of the general solution (36):

|Ψ(in)
I,n (E)〉 →

1√
vn
e−iKnR|Nn〉. (42)

In order to match this wave function with the inner wave solution it is convenient to

express the internal states in terms of a basis of Momentum Localised States (MLS). These

are obtained from the original basis by diagonalizing the momentum operator in the set of

internal states. Due to the truncation of the original basis the MLS do not have a definite

value of the internal momentum q but, provided the number of states N is large, their

momentum distribution is highly localised around a certain value. The two basis of states

are connected by an orthogonal transformation (see appendix) and so, the incoming state

can be rewritten as

|Ψ(in)
I,n (E)〉 →

1√
vn
e−iKnR

N
∑

s=1

〈MLS;Ns|Nn〉 |MLS;Ns〉. (43)

where |MLS;Ns〉 denotes a MLS and 〈MLS;Ns|Nn〉 are the transformation coefficients.

The function 〈q|MLS;Ns〉 ≡ ϕ̃s(q) has the property of being highly localised around q = qs,

the s-th zero of the eigenfunction 〈q|N N〉.
As noted before, the eigenstates of the approximated Hamiltonian in the interaction region

are characterized by the energies of the two particles. These energies are directly related to

their incident momenta. Equivalently, they can be characterised by the asymptotic values

of the internal momentum q and the centre of mass momentum K. In our approach, the

internal eigenstates will be approximated in region II by the discrete basis of MLS. The

incoming wave function for the interaction region is then expressed at large distances as

|Ψ(in)
II,n(E)〉 →

N
∑

s=1

A(n)
s e−iK̃sR|MLS;Ns〉 (44)

with the centre of mass momentum K̃s defined by the relation

h̄2q2s
2µ

+
h̄2K̃2

s

2M
+ v̄ = E. (45)
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The coefficients A(n)
s are determined in order the waves (36) and (44) match smoothly.

In particular, we impose the incoming flux to be conserved in the transition. This can be

achieved by taking

A(n)
s =

1√
ṽs
e−iδns 〈MLS;Ns|Nn〉 , (46)

with ṽs = h̄K̃s/M and δns = γn−χs. The phases γn and χs must be real numbers to preserve

the incoming flux.

In order to evaluate the phases γn and χs, we impose the two incoming solutions to have

the same phase at R0. This is achieved by taking γn = KnR0 and χs = K̃sR0, which leads

to

δns = (Kn − K̃s)R0. (47)

Once the coefficients A(n)
s are known, the total wave function in the interaction region is

completely determined. It can be expressed in terms of the distorted waves for each one of

the constituents. To this end, we rewrite expression (44) as

|Ψ(in)
II,n(E)〉 →

N
∑

s=1

A(n)
s e−iK̃sR

∫ ∞

−∞
dq|q〉ϕ̃s(q) =

=
N
∑

s=1

A(n)
s

∫ ∞

−∞
dq ϕ̃s(q)|ks1(q)〉|ks2(q)〉, (48)

where we have introduced the momenta ks1(q) = m1

M
K̃s + q and ks2(q) = m2

M
K̃s − q. The

scattering wave function corresponding to an incoming plane wave |ksi (q)〉 is given by the

distorted wave |χ(ksi (q)〉. Then, the total wave function in region II, including both the

incoming and scattered wave reads

|ΨII,n(E)〉 =
N
∑

s=1

A(n)
s

∫ ∞

−∞
dq ϕ̃s(q)|χ1(k

s
1(q))〉|χ2(k

s
2(q))〉. (49)

Taking into account the asymptotic behaviour of the distorted waves, (39), this wave

function can be written beyond the range of the potentials as

|ΨII,n(E)〉 →
N
∑

s=1

A(n)
s

∫ ∞

−∞
dq ϕ̃s(q)

{

|ks1(q)〉|ks2(q)〉
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− S1(k
s
1(q)| − ks1(q)〉|ks2(q)〉 − S2(k

s
2(q)|ks1(q)〉| − ks2(q)〉

+ S1(k
s
1(q)S2(k

s
2(q)| − ks1(q)〉| − ks2(q)〉

}

(50)

Assuming that the individual S-matrices, S1 and S2, are smooth functions of the energy

in the region where the integrand takes significant values, they can be evaluated at ks1 and

ks2, respectively. Also, it is convenient to express the products of planes waves in terms of

the relative and centre of mass momenta. Considering the case of equal masses we can use

the expressions ks1(q)r1 + ks2(q)r2 = K̃sR + qr and ks1(q)r1 − ks2(q)r2 = 1
2
K̃sr + 2qR. Then

one can perform explicitly the integration with respect to q, to obtain

ΨII,n(r, R) →
N
∑

s=1

A(n)
s

{

e−iK̃sRϕ∗
s(r) + S1(k

s
1)S2(k

s
2)e

iK̃sRϕs(r)

− S1(k
s
1)e

i 1
2
K̃srϕs(2R)− S2(k

s
2)e

−i 1
2
K̃srϕ∗

s(2R)
}

(51)

where ϕs(r) is the Fourier transform of ϕ̃s(q). This wave function can be interpreted as

follows. The incoming wave is decomposed as products of MLS, ϕs(r), describing the internal

evolution, times an incoming plane wave describing the centre of mass motion, e−iK̃sR. This

wave scatters by the target giving rise to three terms. The second term in (51) is just the

conjugate of the incident wave, times the product of the S-matrices of the constituents.

The remaining two terms comprise the product of the function ϕs(2R), or its conjugate,

times a plane wave in the variable r. As it can be easily verified, the function ϕs(2R)

vanishes for large values of R and so, these two terms do not contribute to the asymptotic

wave function. Actually, these terms containing only one of the involved S-matrices can be

physically regarded as the situation in which only one of the particle has scattered and the

other has not yet. This is consistent with the fact that they both cancel at large distances.

However, we remark that these vanishing terms are essential in order to reproduce the

wave function at small distances. In this sense, it is also interesting to note that the wave

function (51) retains components associated to closed channels, even when they are explicitly

omitted in the asymptotic region, according (36). As noted in section II, in the case of the

wall potential the inclusion of these states is essential in order to reproduce the boundary

conditions. For this particular problem, expression (51) is valid for all the interaction region

and, as can be easily verified, it identically fulfils the boundary conditions, vanishing for
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r = ±2R.

Thus, we can conclude that an incoming MLS scatters with the product of the S-matrices

of the fragments. This result is consistent with our previous discussion in which, using wave

packet arguments, we concluded that the S-matrix is given by the product of the S-matrices

of the fragments in the basis characterised by the momenta of the two particles. We now

see that this property also holds for the MLS basis which, in a sense, can be described as a

wave packet of plane waves in terms of q, centred around qs.

Therefore, writing explicitly the value of the coefficients A(n)
s the scattered wave in the

interaction region behaves at large distances as

|Ψ(scat)
II,n (E)〉 →

N
∑

s=1

1√
ṽs
e−iδns 〈MLS;Ns|Nn〉 eiK̃sRS1(k

s
1)S2(k

s
2)|MLS;Ns〉. (52)

By writing the MLS appearing in this expression in terms of the original basis, and

imposing the conservation of flux, one can easily obtain the scattered wave in the asymptotic

region

|Ψ(scat)
I,n (E)〉 →

∑

m

eiKmR

√
vm

{

N
∑

s=1

e−i(δns+δms) 〈Nm|MLS;Ns〉

× 〈MLS;Ns|Nn〉S1(k
s
1)S2(k

s
2)
}

|Nm〉. (53)

The expression between brackets provides the S-matrix element connecting an initial state

n with a final state m

Snm = −
N
∑

s=1

e−i(δns+δms) 〈Nm|MLS;Ns〉 S1(k
s
1)S2(k

s
2) 〈MLS;Ns|Nn〉 . (54)

As pointed before, the peculiarities of the problem treated in this work imply that,

starting with the system in its ground state, only positive parity states are suitable to

be populated. As far as expression (54) concerns, this means that the matrix elements S0n,

with n odd, are identically zero.

Under these considerations it is possible to exclude those inhibited states. Then, one is

left with a truncated basis of the form |N n〉, where N is now even. Following the arguments

above and using the results of the appendix one finally gets the following expression for the

S-matrix in the case of equal masses
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Snm = −
∑

s

e−i(δns+δms) 〈N m|SMLS;N s〉 〈SMLS;N s|N n〉S1(k
s
1)S2(k

s
2), (55)

with n andm even and the sum in s restricted to the positive zeros of HN (x). The coefficients

〈SMLS;N s|N n〉 are equal to 〈MLS;N s|N n〉 up to a factor
√
2 (see appendix).

We remark the simplicity of the expression (54) as compared to the exact solution of the

problem. Part of the payoff for this simplicity is the existence of two undetermined param-

eters, v̄ and R0. The optimal value of R0 is nevertheless constrained by two considerations.

On one side, it can not be too large, as at large distances the interaction between the two

fragments would dominate over the interaction due to the target, and so ignoring the corre-

lations between the particles for values just below R0 would not be a good approximation.

On other side, the value of R0 should be large enough to allow us to ignore the interaction

with the target for R above R0. Thus, the matching radius must be about the size of the

system. Moreover, v̄ must be of the order of the expectation value of v(r) on the ground

state.

V. COMPARISON OF USA AND EXACT CALCULATIONS

In this section we analyse the reliability of USA by comparing its predictions with the

exact results. In Fig. 5 the S-matrix coefficients for the USA model (dot-dashed line) with

the phases δns given by (47) are compared with the exact calculation (solid line) and the

adiabatic approach (dashed line). The calculations have been performed using the matching

radius R0 = 0.6a0 and an average potential v̄ = 0. These values were determined by fitting

the elastic S-matrix at high energies, where the model is expected to be more accurate. We

notice that for these energy independent parameters a good description of the elastic and

inelastic coefficients is achieved for energies above ∼ 6 h̄ω. By contrast, the adiabatic model

does not seem to give a good description of the S-matrix at any scattering energy.

A quantity closely related to the S-matrix coefficients is the average final excitation en-

ergy. It gives an idea on the degree of excitation of the final system. It has been defined

as

〈ǫ〉 =
∑

n=0

(ǫn − ǫ0)|S0n|2, (56)
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FIG. 6: Average excitation energy. The solid line corresponds to the exact calculation. The dot-

dashed line corresponds to the USA with the prescription δns = (Kn − K̃s)R0.

where the sum must be extended only to the set of open channels.

In Fig. 6 we show the energy dependence of the average excitation energy, 〈ǫ〉. As in

the previous case, the USA model (dot-dashed line) agrees well with the exact calculation

(solid line) for energies above 6 h̄ω. On the contrary, the USA model, as expected, does not

describe properly the low energy regime. In particular, a spurious discontinuity is observed

for the threshold at E = 5
2
h̄ω.

In Fig. 7 we compare the wave function given by the USA approach with the exact

calculation at E = 10 h̄ω. The curve for the exact calculation has been obtained using

expression (27). In the USA model, represented by the dot-dashed line, one has to distinguish

the asymptotic and the interaction regions. For the asymptotic wave function, the interaction

with the wall is neglected (vi(ri) = 0) and so the range of values of r is unrestricted. Then,

the projection on a state n is simply given by

Ψasym
n (R) → δn0

1√
v0
e−iK0R − S0n√

vn
eiKnR. (57)

By contrast, in the interacting region, explicit account is taken for the wall and an

expression similar to (27) should be used instead. Thus, the total wave function in II (51) is

projected on the different eigenstates, taking into account that the integration is restricted
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FIG. 7: Projection of the total wave function on the internal eigenstates for a scattering energy

E = 10 h̄ω. The solid line is the exact calculation, the dot-dashed line corresponds to the formula

(54), with the prescription δns = (Kn − K̃s)R0.

to the interval |r| < 2R.

At this collision energy, Fig. 5 indicates that the scattering coefficients are well reproduced

by (54) with the phases δns = (Kn − K̃s)R0. Then, we have adopted this prescription (with

the same matching radius) to describe the approximated wave function at this energy. As

can be seen in Fig. 7, the agreement with the exact calculation is quite good for all the

states.

As a general rule, our calculations show a better agreement for the elastic and first excited

states, and it tends to be worse for excited states of increasing energies. This is expected

because within the USA model we restrict the basis to the set of open channels and so, the

effect of this truncation becomes more evident as we explore excited states close to the cut

off.

We have explored in more detail the limits of the USA model as well as the validity of

the prescription (47) for the phases. In order to do that we start from the exact expression

of the S-matrix for a fixed collision energy. Making use of (54), we fit the phases γn and χs

appearing in δns in order to reproduce the exact calculation. We find that the S-matrices

can be accurately fitted for all the scattering energies (even for very small values). Although
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these phases, γn and χs, can not be written exactly as KnR0 and K̃sR0, respectively, one can

define effective energy and channel dependent radii so that Rn = γn/Kn and Rs = χs/K̃s.

In Fig. 8 we plot the values of the quantities Rn versus n and Rs = χs versus the absolute

value of qs, i.e., the internal momentum at which the state 〈q|MLS;Ns〉 is peaked. The

selected collision energies are E = 9 h̄ω and E = 10 h̄ω. In both cases we deal with a total

of five HO states, namely, the ground state and the first four excited states with even parity.

Using the prescription (47) both quantities are just R0 for all values of n or s. Note that the

value of Rs is rather constant and very close to the matching radius used in our calculations,

i.e., R0 = 0.6a0. This constant value has been also plotted in the figure for reference. The

values of Rn are also very close to R = R0 for the lower values of n, but they tend to deviate

from our prescription for values of n close to the threshold. It is remarkable that the values

of Rn and Rs are mostly independent on the scattering energy and of the individual state

considered. This indicates that for scattering energies large compared to h̄ω, the USA works

very well, and the matching radius can be taken as a constant, related to the size of the

system, and independent on the energy or the internal state. For lower energies, the USA

may still be used, but in this regime the radius R0 depends on the energy and the state

considered.

VI. CONCLUSIONS

We have formulated a one dimensional problem consisting on the scattering of two par-

ticles, interacting with a HO potential, that collide with an infinite potential. This problem

contains some of the dynamical features of the scattering of composite systems in atomic,

molecular and nuclear physics, which interact with a target through short range interactions.

We have obtained the exact solution of the problem using two different procedures. The

first one consists of imposing the adequate boundary conditions on the scattering wave

function. The second procedure deals with a basis of configuration localized states (CLS),

which are wave functions with a strong spatial localisation. Both procedures converge,

provided that a sufficiently large basis of states is used. The main characteristic of the exact

solution is that, for large scattering energy, the elastic scattering dominates. In order to

achieve convergence, the inclusion of closed channels, i.e., states with internal energy larger

than the scattering energy, is required. Although these states do not contribute to the S-
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FIG. 8: Behaviour of the ratios Rn = γn/Kn (upper figure) and Rs = χs/K̃s (lower figure) versus

the value of n and |qs|, respectively, for the scattering energies E = 9 h̄ω (stars) and E = 10 h̄ω

(circles). The phases γn and χs have been calculated by fitting the S-matrix elements predicted by

( 54) to the exact calculation.

matrix they must be taken into account in the calculations to obtain accurate results. This

fact indicates that for short-range interactions one should be very careful when truncating

the basis of states used in continuum discretized calculations.

We have compared our exact results with the adiabatic approach, that considers the

relative coordinate frozen during the scattering process. The results disagree completely.

This indicates that the adiabatic approximation could be inaccurate when the interactions

of the fragments with the target have a very short range. These short range interactions

could couple to highly excited internal states for which the adiabatic approximation is not

valid. However, it should be reminded that our calculations make use of a sharp infinite

wall. Thus, they will be relevant when the range of the interaction is short compared not
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only with the size of the projectile but also with the wavelength describing the motion of

the fragments with respect to the target.

We have developed a model which describes the scattering of a composite object in terms

of the scattering wave functions and the S-matrices of the fragments. The model, that we

call Uncorrelated Scattering Approximation (USA), neglects the correlations between the

fragments during the scattering. The application of the USA to our model problem gives

an expression for the S-matrix of the composite system in terms of the product of the S-

matrices of the fragments. Similarly, the scattering wave function is given as a combination

of the product of regular wave functions of the fragments. The particular superposition is

determined by application of the asymptotic boundary conditions. The application of the

USA to our model problem relies on the use of two parameters. The most important one is

the distance R0 at which the asymptotic and uncorrelated wave functions are matched. We

have fixed this value to 0.6a0, in terms of the oscillator length, for all our calculations. It

should be noticed that this parameter has a similar meaning to the matching radius that is

used in R-matrix theory. The other parameter is the average potential v̄ that replaces the

interaction between the fragments. We have set this value to v̄ = 0.

By considering the matching radius to be energy- and state-dependent, the exact S-matrix

and scattering wave functions are accurately reproduced. Moreover, for high scattering

energies the elastic and inelastic S-matrices are well reproduced by taking a fixed value of

the matching radius.

In general, the agreement with the exact calculation is better for the observables asso-

ciated with the ground and first excited states and they tend to be worse for states with

excitation energies close to the total energy. This is attributed to the fact that for these

states the relative velocity between the fragments is small and then the correlations are

expected to be more important.

The one-dimensional model presented in this work can be a useful test case to check

the validity of different approaches used in the description of the scattering of composite

systems. The present choice of a sharp infinite wall for the description of the interaction

with the target, and harmonic oscillator for the interactions between the fragments has the

advantage that sets h̄ω as the unique scale for energies and a0 as the unique scale for lengths.

In this sense, our results, which are expressed in those units, are valid for any value of the

mass or harmonic constant. However, the model could be done more realistic, and more
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complicated, by substituting the infinite wall for an exponential function, and substituting

the harmonic oscillator by finite potentials.
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Appendix A

In this work different sets of basis states have been used, based on harmonic oscillator

(HO) wave functions. These obey the general form

φn(r) = N− 1
2

n exp

(

− r2

2a20

)

Hn

(

r

a0

)

; n = 0, 1, . . . (58)

where a0 =
√

h̄/µω is the oscillator length, Nn a normalisation constant and Hn the Hermite

polynomial of order n. In all the calculations we restrict the infinite set of states to a finite

family of N states, denoted by {|N n〉; n = 0, . . . , N − 1}, where 〈r|N n〉 = φn(r).

By diagonalizing the position operator in the truncated basis of HO wave functions, a new

set of N states is obtained which have the property of being localised in configuration space.

They are called Configuration Localised States (CLS) and are denoted by {|CLS;Ns〉; s =
1, . . . , N}. These two families of states are related by means of the orthogonal transformation

|CLS;Ns〉 =
N−1
∑

n=0

〈Nn|CLS;Ns〉 |Nn〉 (59)

For HO wave functions, the state 〈r|CLS;Ns〉 is localised around r = a0xs, where xs is

the s-th zero of the Hermite polynomial HN(x). In this case, the transformation coefficients

are given by (see [22])

〈Nn|CLS;Ns〉 =
[

2N−n

2N

(N − 1)!

n!

]1/2 Hn(xs)

HN−1(xs)
. (60)

In analogy with the CLS, it is possible to define internal states localised in momentum

space, known as Momentum Localized States (MTS). This is carried out by diagonalizing the

momentum operator in the truncated HO basis. Thus, starting with the basis of N states,

this procedure provides a new set of N internal states, each one of them is peaked around a

certain momentum. As in the case of the CLS there is an orthogonal transformation relating

both sets of states:

|MLS;Ns〉 =
N−1
∑

n=0

〈Nn|MLS;Ns〉|Nn〉, (61)

where |MLS;Ns〉 represents a MLS. Then 〈q|MLS;Ns〉 is localised around q = xs/a0

where, due to the formal analogy of the HO wave functions in momentum and configuration

space, {xs} are again the zeros of the Hermite polynomial HN . This analogy provides also a
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simple relation between the transformation coefficients 〈MLS;Ns|Nn〉 and 〈CLS;Ns|Nn〉.
In this work, we take the internal wave function to be real in configuration space, and so

they will be affected by a factor (−i)n in momentum space. Moreover, we take the CLS to

be real functions, so the coefficients 〈CLS;Ns|Nn〉 are real numbers. Therefore,

〈MLS;Ns|Nn〉 = (−1)n〈CLS;Ns|Nn〉. (62)

Although the formalisms presented in this work do not require the fragments to have

equal masses, we have performed all the calculations for this particular situation. In this

case, parity conservation implies that only positive parity states are suitable to be populated

during the process. In fact, the coefficients S0n derived from the exact calculations of sections

(IIA) and (IIB) are found to be zero for odd values of n. This is also satisfied by eq. (54),

as can be easily verified.

Under these considerations one is allowed to exclude those inhibited states from the

beginning. This permits to work with the truncated basis of states: {φn(r); n = 0, 2, . . . , N−
2}, with N even. This requires, however, some care in the evaluation of the localised states

in the new basis. The formalism of CLS can not be directly applied to this set, as many

of its properties entails the sum over both even and odd states. The starting point for the

construction of the CLS formalism requires a set of functions of the form [22]

ψm(x) = 〈x|j m〉 = N−1/2
jm F (y)Pm(y), m = 0, 1, . . . , j − 1, (63)

where y is a certain function of r, Njm a normalisation constant, F an arbitrary function of

y and Pm is a polynomial of order m.

The drawback outlined above can be overcome in the case of HO wave functions by

writing the Hermite polynomials in terms of generalised Laguerre functions (see, for instance,

Ref. [23]):

φ2m(r) = (−1)mm!22mN− 1
2

2m exp

(

− r2

2a20

)

L(−1/2)
m (y), y =

(

r

a0

)2

. (64)

Then, taking Pm(y) ≡ L(−1/2)
m (y), F (y) ≡ exp(−y/2) and j ≡ N

2
we can identify ψm(x) ≡

φ2m(r) (m = 0, 1, . . . , N
2
−1). The set of configuration localised states are now calculated for

the new set of functions. It requires the calculation of the roots of the polynomial L(−1/2)
N/2 (y)

which, attending to (64), are just the square of the zeros of HN(x). The new set of localised
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states are given by a linear combination of the states φn(r) and so they are even functions

with respect to the variable r. Therefore, we call them Symmetric Configuration Localised

States, SCLS. The transformation between the set of states (64) and the SCLS is then

expressed as

|SCLS;Ns〉 =
N−2
∑

n=0(even)

〈N n|SCLS; N s〉 |N n〉, s = 1, ...,
N

2
. (65)

The state 〈r|SCLS;Ns〉 is localised around r = ±a0xs where {xs} are the positive zeros

of HN(x).

The coefficients 〈SCLS; N s|N n〉 are found to be equal to those appearing in eq. (59)

up to a factor
√
2:

〈SCLS;N s|N n〉 =
√
2 〈CLS;N s|N n〉 (66)

for n even.

As an example, in Fig. 9 the set of HO wave functions n = 0, 2, 4, 6 are plotted versus

the adimensional variable x (upper figure). The corresponding Symmetric Localised States

are also plotted (lower figure) and labelled with the index s (s = 1, 2, 3, 4). Notice that

each one of these localised states is peaked around two symmetrical points, corresponding

to symmetrical roots of the Hermite polynomial H8(x).

In a similar way, it is possible to construct Symmetric Momentum Localised States, which

are given by means of the transformation

|SMLS;Ns〉 =
N−2
∑

n=0(even)

〈N n|SMLS; N s〉 |N n〉, s = 1, ...,
N

2
. (67)

The state 〈q|SCLS;Ns〉 is localised around q = ±xs/a0 where {xs} are again the positive

zeros of HN(x). In the case of the HO basis, the transformation coefficients are related to

those in configuration space:

〈SMLS;N s|N n〉 =
√
2(−i)n/2 〈CLS;N s|N n〉 . (68)
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