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Abstract

We use the Foldy-Wouthuysen representation to construct Lorentz-invariant interactions. The couplings obtained

this way feature a straightforward 1/m expansion, which ensures Lorentz invariance order by order in effective field

theories. We illustrate possible applications with the examples of pion-nucleon and pion-nucleon-delta couplings

in chiral effective field theory. We point out that one of the subleading πN∆ couplings used in the literature is

in fact redundant, and discuss the implications of this. In particular, we show that this redundant term should

be dropped if one wants to use low energy constants fitted from πN scattering in calculations of NN → NNπ

reactions.
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I. INTRODUCTION

Effective field theories (EFTs) are very useful in describing low-energy physics, in which external

momenta Q are much smaller than some high-energy scale Mhep where the underlying theory kicks in.

The S-matrix computed by an EFT is an approximation, namely, an expansion organized in the powers

of the small parameter Q/Mhep. Effective degrees of freedom (DOFs) of the low-energy theory are not

always light particles. The particles that appear in both the initial and final states (hence cannot be

integrated out) may have a small momentum Q but a mass m comparable with, or even larger than,

Mhep : Q ≪ Mhep . m. In such cases one needs to carefully implement these heavy particles as low-

energy effective DOFs so that the ratio m/Mhep & 1 will not spoil the EFT expansion. Widely used in

many EFTs is heavy-particle formalism [1–3], in which the particles with m ∼ Mhep are allowed only

to propagate forward in time, i.e. there are no heavy antiparticle DOFs. In this paper, we consider the

application of heavy-particle formalism in chiral effective theory (ChET).

ChET specializes in low-energy interactions among baryons and (pseudo)-Goldstone bosons, which

arise due to the fact that chiral symmetry of Quantum Chromodynamics (QCD) is spontaneously broken.

Since non-Goldstone bosons are all integrated out in ChET, the underlying scale of ChET is set by the

mass of the lightest non-Goldstone boson σ, mσ ∼ 600 MeV [4]. Since the nucleon (the lightest baryon)

mass, mN ≃ 940 MeV, is not a light scale compared with mσ, it is natural to treat baryons with

heavy-particle formalism — heavy-baryon ChET (HBChET) [2, 5, 6].

To derive HBChET Lagrangian, one, probably the most popular, way is nonrelativistic reduction of

a relativistic ChET Lagrangian that is built with causal fields — fields that satisfy microscopic causality

— for baryons, e.g., the Dirac field for the nucleon. Nonrelativistic reduction can be carried out by

decoupling low- and high-energy DOFs of the causal baryon fields. In the case of the nucleon, one

identifies the “large” and “small” components of the Dirac field, respectively, as low- and high-energy

DOFs, and then decouples the two sets of DOFs by explicitly integrating out the small components with

the path integral [3, 7] or by block-diagonalizing the Hamiltonian [8, 9].

Refs. [3, 7–9], among others, considered only baryon-bilinear operators, exploiting the fact that these

operators are quadratic in baryon fields to integrate out or block-diagonalize. It is not immediately

clear how a similar method can be applied when four-baryon (or multi-baryon) operators, important for

few-nucleon systems, are present. One might wish to treat four-baryon operators as perturbations to the

NN bilinears. But this is well known not to be the case, see, e.g., Ref. [10].

It is, however, not inevitable to rely on the form of a Lagrangian outside the regime of validity of

an EFT; only symmetries are what matters. The other approach starts with the nonrelativistic limit,
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implementing respectively the nucleon and the delta-isobar (∆(1232)), another important ingredient

in ChET [11], as a two- and a four-component spinor, and then enforcing Lorentz invariance order

by order with more and more 1/mN suppressed operators accounted for [12, 13] (branded differently,

reparametrization invariance is a technique in a similar spirit [14]).

In this bottom-up approach, 1/mN expansion of multi-baryon operators is not different from that of

baryon bilinears (in this connection, see Ref. [15], where the construction of all possible NNNN contact

interactions with two derivatives was considered). The other gain of this approach is that it is convenient

to treat the delta-isobar [13, 16], because one no longer needs to cope with spurious spin-1/2 sectors

of the Rarita-Schwinger field, which is commonly used as the causal field for spin-3/2 fermions (for a

discussion of this and related issues see Refs. [17–20] and references therein).

Using the Foldy-Wouthuysen (FW) representation of the Poincaré group [21], we present in this paper

a systematic machinery, in the spirit of bottom-up construction, to build HBChET operators that are

fixed by Lorentz invariance (and hence suppressed by 1/mN ), and illustrate the method with several

effective interactions.

Our paper is structured as follows. In Sec. II, we revisit the Lorentz invariance of heavy-particle

EFT. The FW representation is introduced in Sec. III and its relation with other Lorentz-covariant fields

is discussed in Sec. IV. Nucleon-nucleon and nucleon-delta covariant bilinears are discussed in Sec. V.

In Sec. VI, πNN and πN∆ couplings are used to demonstrate our method of 1/mN expansion. We

summarize and close with a conclusion in Sec. VII.

II. LORENTZ INVARIANCE IN HEAVY-PARTICLE EFT

When the momentum of heavy particles is much smaller than their mass m, Galilean invariance

is a good approximation but not a substitute to Lorentz invariance. As contributions of higher and

higher orders are taken into account in order-by-order EFT calculations, the approximation of Lorentz

invariance must be improved along the way. In this section, we review how Lorentz invariance is enjoyed

in heavy-particle formalism [2, 3]. Without a relativistic Lagrangian built with causal baryonic fields as

the starting point, microscopic causality will be lost. Therefore, of particular interest is the following

question: how could the bottom-up construction lead to a Lorentz-invariant S-matrix?

For definiteness, we consider the S-matrix generated by the Dyson series,

S = T exp

[

−i

∫

d4xHI(x)

]

, (1)

where HI(x) is the interaction Hamiltonian density in the interaction picture. Here T indicates, as usual,
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(a) (b) (c)

FIG. 1: Two types of short-range physics contribute to local EFT operators: (a) intermediate states consisting

of a baryon-antibaryon pair; (b) exchanges of a non-Goldstone boson. Time flows from left to right. Local EFT

operators, (c), can be generated by both types of short-range interactions. The solid line represents a baryon,

dashed line a Goldstone boson, and double-dashed line a non-Goldstone boson.

that the fields are to be time-ordered in the expansion. Starting with a Lagrangian and proceeding with

canonical quantization, one does not necessarily end up with an interaction Hamiltonian HI that equals

to minus the interaction Lagrangian −LI because canonical quantization may produce extra terms [22]

in some cases. Nevertheless, for simplicity, we will not concern ourselves with this subtlety and will

recklessly assume HI = −LI .

In order for the S-matrix to be Lorentz invariant, not only does LI(x) need to be invariant, LI(x) also

needs to be built with causal fields so that LI(x) and LI(y) will commute with each other when x − y

is space-like: microscopic causality. In turn, microscopic causality allows a heavy particle to propagate

backwards in time. As a consequence, virtual particle pairs are created and annihilated as intermediate

states. Since intermediate states of this sort have energies at least 2m, they are integrated out in an

EFT and are buried into low-energy constants (LECs). This is exemplified in Fig. 1(a) with baryon-

meson interactions. Time flows from left to right in the figure, and the baryon internal line propagating

backwards represents an antibaryon. Having integrated out the baryon-antibaryon pair, one is left with

a local EFT operator as shown by Fig. 1(c). Therefore, microscopic causality is preserved order by order

in heavy-particle EFT by taking into account the local EFT operators arising from integrating out heavy

particle-antiparticle pairs.

In the specific case of HBChET, LECs driven by high-energy intermediate states in Fig. 1(a) are

suppressed by powers of 1/mN , and in principle could be computed by explicit integrating-out or block-

diagonalization, as shown in Refs. [3, 7–9], so that microscopic causality is manifestly satisfied. Although

microscopic causality is crucial for the manifest Lorentz invariance, it is not the sole short-range physics

that drives the LECs of HBChET; non-Goldstone bosons propagating could be the other short-range

mechanism, illustrated respectively by Fig. 1 (b). The contributions by Fig. 1(b) are suppressed by

1/mNGB, with mNGB > mσ the generic mass of non-Goldstone bosons. Since any local EFT operator

generated by Fig. 1(a) can as well be generated by Fig. 1(b), the particular knowledge of the 1/mN
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contributions does not improve the predictive power of EFT. Therefore, even if one can compute explicitly

the baryon pair-generated contributions to LECs, it is hardly useful to do so. However, we remark that,

in some EFTs, the contributions to LECs from heavy-particle pairs might dominate. For instance, in

heavy quark effective theory (HQET) for bottom quarks, LECs contributed by electroweak physics are

suppressed by the inverse W -boson mass, 1/mW ≪ 1/mb [3, 14].

To conclude the points we have argued, it is not necessary to constrain HBChET Lagrangian with

microscopic causality. Lorentz invariance will be enjoyed by the HBChET S-matrix as long as LI(x) is a

Lorentz scalar, built with the relativistic, isovector pion field π and forward-propagating baryon fields:

a two-component spinor and isospinor N for the nucleon, a four-component spinor and isospinor ∆ for

the delta-isobar. LI(x) is a Lorentz scalar in the sense that

U0(Λ)LI [π(x), N(x),∆(x)] U−10 (Λ) = LI [π(Λx), N(Λx),∆(Λx)] , (2)

where Λ is the Lorentz transformation matrix and U0(Λ) is the Lorentz transformation for free π, N and

∆. As pointed out long ago, this level of Lorentz invariance can be achieved without causal fields [21].

Note that the fields in the interaction picture satisfy the free equations of motion (EOM), which will

be exploited repeatedly in this paper. As we will see, the Lorentz invariance (2) will be enforced by a

set of an infinite number of EFT operators, which are suppressed by inverse powers of mN and do not

originate from integrating out intermediate baryon-antibaryon pairs.

III. FOLDY-WOUTHUYSEN REPRESENTATION

A Poincaré transformation takes a spacetime point x to x′,

x′µ = Λµ
νx

ν + aµ , (3)

with aµ a four-vector specifying the spacetime translation and Λµ
ν the Lorentz-transformation matrix.

An infinitesimal Poincaré transformation can be written as

U = 1− i~θ · ~J − i~ξ · ~K + iǫµPµ + · · · , (4)

where ~J are the rotation generators, ~K the boost, and Pµ the spacetime translation. We follow the

convention of Ref. [21] on the commutation relations among ~J , ~K, and Pµ,

[Pi, Pj ] = 0 , [Pi, P0] = 0 , [Ji, Pj ] = iǫijkPk ,

[Ji, P0] = 0 , [Ji, Jj ] = iǫijkJk , [Pi,Kj ] = −iδijP0 ,

[P0,Ki] = −iPi , [Ji,Kj ] = iǫijkKk , [Ki,Kj ] = −iǫijkJk . (5)

5



The most commonly used causal fields in building relativistic theories, including the Dirac field,

four-vector, etc., transform under the Poincaré group as

Φl′(x) → Φ′l′(x) =M(Λ)l′lΦl(x
′′) , (6)

where M(Λ) are finite-dimension spacetime-independent matrices that furnish a (non-unitary) represen-

tation of the proper homogeneous Lorentz group, and

x′′ ≡ Λ−1(x− a) . (7)

Transformation (6) can be symbolically written as

Φ →M(Λ)Φ , (8)

with the convention that the left-hand side is evaluated at x while the right-hand side at x′′. Unless

pointed out otherwise, the Lorentz transformations in this paper are written as if the fields were classical.

In the following, we refer to the fields that transform according to (6) as Lorentz-covariant fields.

Under an infinitesimal boost, x′′ and the boosted spacetime derivatives are

t′′ = t+ ~ξ · ~x , ~x ′′ = ~x+ ~ξt , (9)

and

∂t → ∂t + ~ξ · ~∇ , ~∇ → ~∇+ ~ξ∂t . (10)

While being convenient for building relativistic Lagrangians, the Lorentz transformation (8) cannot

be expanded intuitively in ∂/m because the matrices M(Λ) are by construction independent of the

momentum or the mass. However, the FW representation allows for such a straightforward expansion [21].

The FW representation of the Poincaré group is spanned by the solutions of the relativistic Schrödinger

equation,

i∂tχ(x) = ωχ(x) , (11)

where χ(x) is a regular SO(3), (2s+1)-component spinor with spin s and mass m, and ω ≡
√

−~∇2 +m2.

The generators of the FW representation are identified as

Pµ =
(

ω, i~∇
)

, (12)

~J = −i~x× ~∇+ ~Σ(s) , (13)

~K =
1

2
(~xω + ω~x ) + it~∇+

i~Σ(s) × ~∇

m+ ω
, (14)
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where ~Σ(s) are the spin operators for spin-s particles (e.g., ~Σ(1/2) = ~σ/2 with ~σ the Pauli matrices),

satisfying

[

Σ
(s)
i ,Σ

(s)
j

]

= iǫijkΣ
(s)
k . (15)

An explicit check shows that the operators defined in Eqs. (12)-(14) satisfy the commutation relations

of the Poincaré algebra, Eq. (5).

The rotation of fields χ is standard; therefore, it is routine to build three-scalars (e.g., χ†χ), three-

vectors (e.g., χ†~Σ(s)χ), etc. The boost is a little more complex,

χ(x) → χ ′(x) =
(

1− i~ξ · ~K
)

χ(x)

=

[

1 +
i~ξ · ~∇

2ω
+
~ξ · (~Σ(s) × ~∇)

m+ ω
+ i~ξ · ~x (i∂t − ω)

]

χ(x′′) . (16)

Since we are concerned with only the transformation of the free fields, we have dropped in the boost

transformation terms proportional to the free EOM. The parity and time-reversal transformations of the

FW field χ are exactly the same as those of a nonrelativistic spinor. In the case of a spin-1/2 fermion

χ 1

2

,

χ 1

2

P
−→ π χ 1

2

, χ 1

2

T
−→ −iτσ2 χ

∗
1

2

, (17)

where π and τ are unitary phase factors decided by the species of the particle.

In heavy-particle formalism, it is essential to remove the large phase in χ(x) by introducing the

heavy-particle field [1],

Ψ(x) ≡ eimtχ(x) , (18)

so that the ∂/m expansion can be facilitated. For example, the EOM for the free field becomes

i∂tΨ(x) = (ω −m)Ψ(x) =

(

−
~∇2

2m
−

~∇4

8m3
+ · · ·

)

Ψ(x) . (19)

The infinitesimal boost of Ψ(x) is defined to be

Ψ(x) → Ψ′(x) ≡ eimtχ ′(x) = eimt
(

1− i~ξ · ~K
)

e−imtΨ(x)

=

[

1 +
i~ξ · ~∇

2ω
+
~ξ · (~Σ(s) × ~∇)

m+ ω
− im~ξ · ~x

]

Ψ(x′′) . (20)

The −im~ξ · ~x term is important for reproducing the Galilean transformation: the momentum ~p of a

nonrelativistic particle shifts to ~p−m~ξ under the boost, i.e.,

Ψ†~∇Ψ → Ψ†~∇Ψ− im~ξΨ†Ψ+Ψ†O

(

ξ
~∇2

m

)

Ψ . (21)
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It also serves as a slightly nontrivial reminder that Ψ and Ψ† must appear in pair in order to have a

Galilean invariant operator; hence, the conservation of heavy particle number in EFT.

Suppose that χ 1

2

and χ 3

2

are respectively FW fields with spin 1/2 and 3/2, with masses of the nucleon

mN and delta-isobar m∆. We introduce heavy-baryon fields for the nucleon and delta-isobar, N and ∆,

by removing the common nucleon mass mN ,

N = eimN tχ 1

2

, ∆ = eimN tχ 3

2

. (22)

So, the free nucleon and delta EOMs are

i∂tN(x) =

(

−
~∇2

2mN
−

~∇4

8m3
N

+ · · ·

)

N(x) , (23)

i∂t∆(x) =

(

δ −
~∇2

2mN
+
δ~∇2

2m3
N

+ · · ·

)

∆(x) , (24)

where δ is the delta-nucleon mass splitting δ ≡ m∆ −mN .

IV. LORENTZ-COVARIANT FIELDS

With the boosts of a heavy field Ψ, Eq. (20), we are already in a position to write down order-by-

order Lorentz-invariant operators in terms of Ψ. Consider a spin-1/2 heavy fermion Ψ coupling to a

relativistic pseudo four-vector Aµ. The heavy operator with lowest mass dimension that satisfies parity,

time-reversal and rotation invariance is Ψ†~σΨ · ~A, which transforms under the boost as

Ψ†~σΨ · ~A→ Ψ†~σΨ · ~A+Ψ†~σΨ · ~ξ A0 +Ψ†O

(

ξA
∇

m

)

Ψ . (25)

To diminish the Lorentz breaking, one needs a higher-dimension operator
(

iΨ†~σ · ~∇Ψ+H.c.
)

A0 with a

properly tuned coefficient such that the sum of the two has a Lorentz breaking of higher dimension,

Ψ†~σΨ · ~A−
1

2m

(

iΨ†~σ · ~∇Ψ+H.c.
)

A0 → l.h.s. + Ψ†O

(

ξA
∇

m

)

Ψ . (26)

Repeating this procedure, we expect to build a Lorentz-invariant Lagrangian order by order.

The above example suggests that the construction of the effective Lagrangian with the FW fields will

be much simplified if one can construct Lorentz-covariant bilinears out of the FW fields, e.g.,

aµ =

(

−
1

2m

(

iΨ†~σ · ~∇Ψ+H.c.
)

+ · · · ,Ψ†~σΨ+ · · ·

)

. (27)

To this end, we would like to establish a field redefinition that maps a FW field onto a Lorentz-covariant

field. More precisely, we wish to have a function in terms of the FW field that transforms covariantly
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but, of course, does not create the antiparticle (therefore, does not accommodate microscopic causality).

In the case of a spin-1/2 field, the function being sought is just the Foldy-Wouthuysen transformation [8],

which can be generalized to particles with arbitrary spin [23]. We rederive in the following the results for

spin-1/2 and spin-3/2 fermions, which are of particular relevance in HBChET, in the notation consistent

with this paper. Building Lorentz-covariant fermion bilinears will be discussed in Sec. V.

The irreducible representations of the homogeneous Lorentz group can be characterized by a pair of

half-integer numbers (A,B) (see, e.g., Ref. [22]), with angular momentum

j = A+B,A+B − 1, . . . , |A−B| . (28)

In our notation A corresponds to operator ~A = 1
2

(

~J − i ~K
)

and B to ~B = 1
2

(

~J + i ~K
)

. Generalizing

from the Weyl spinors for
(

1
2 , 0
)

and
(

0, 12
)

, we call the (s, 0) ((0, s)) representation a left-handed (right-

handed) spinor, denoted by (2s + 1)−component spinor Φ
(s)
L (Φ

(s)
R ), which transforms covariantly under

boosts as

Φ
(s)
L →

[

1 + ~ξ · ~Σ(s)
]

Φ
(s)
L , Φ

(s)
R →

[

1− ~ξ · ~Σ(s)
]

Φ
(s)
R . (29)

The idea is to construct, as the building blocks, the Φ
(s)
L and Φ

(s)
R out of the spin-s FW field χs, i.e.,

to construct a certain functional of χs such that it transforms under boosts according to Eq. (29). The

field redefinition (18) will then easily turn the results in terms of the heavy version of the FW fields, Ψ.

In order to preserve the rotational properties, Φ
(s)
L or Φ

(s)
R has to take the general form

Φ(s)(x) =
2s
∑

i=0

fi(~∇
2)T

(i)
j1...ji

∇j1 . . .∇ji χs(x) ≡ F (s)(~∇)χs(x) , (30)

where T
(i)
j1...ji

are rank-i tensors built from the generators ~Σ(s) (one can choose them to be irreducible in

the sense that χ†s T
(i)
j1...ji

χs constitute a spin-i irreducible representation of SO(3)).

A. Spin-1/2

In the spin-1/2 case, one needs to look for the left-handed (right-handed) Weyl spinor that transforms

under the boost as

ηL,R →

(

1± ~ξ ·
~σ

2

)

ηL,R , (31)

where the left-handed (right-handed) spinor corresponds to the upper (lower) sign. To remain as a

three-spinor and to have desired parity, ηL,R must be related to χ 1

2

as follows,

ηL,R =
[

f0(~∇
2)± f1(~∇

2)~σ · ~∇
]

χ 1

2

. (32)
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Applying the above expression and the boost of χ 1

2

(16) to the boost of ηL,R (31), one finds

ηL,R =

√

m+ ω

4ω

(

1± i
~σ · ~∇

m+ ω

)

χ 1

2

. (33)

It is perhaps more conventional to write a Dirac field in terms of ηL,R in the chiral basis where γ5 is

diagonal,

ψD =





ηL

ηR



 =

√

m+ ω

4ω





(

1 + i ~σ·~∇
m+ω

)

χ 1

2
(

1− i ~σ·~∇
m+ω

)

χ 1

2



 . (34)

Here we reproduced the results of Refs. [8, 21], and the redefinition (33) is essentially projecting out the

large components of the free Dirac field.

B. Spin-3/2

Another case of interest in this paper is the spin-3/2 fermion, e.g., the delta-isobar. In this case, the

left-handed (right-handed) spinor transforms under the boost as

ζL,R →
(

1± ~ξ · ~Σ
)

ζL,R , (35)

where the left-handed (right-handed) spinor corresponds to the upper (lower) sign, and we have dropped

the superscript
3

2 in the 4× 4 matrices ~Σ that denote the spin operators for spin-3/2 fermion. Again, to

keep the correct rotational property and the correct parity, the relation between ζL,R and the spin-3/2

FW field χ 3

2

must be

ζL,R =
[

f0(~∇
2)± f1(~∇

2)~Σ · ~∇+ f2(~∇
2)Mij∇i∇j ± f3(~∇

2)Tijk∇i∇j∇k

]

χ 3

2

, (36)

where the matrices Mij and Tijk are defined as

Mij =
1

2
{ΣiΣj} −

5

4
δij, Tijk =

1

6
{ΣiΣjΣk} −

41

60
{Σiδjk} , (37)

where the braces stand for the summation over all the permutations of tensor indices. Note that Mij

and Tijk are defined such that χ†3
2

Mijχ 3

2

(χ†3
2

Tijkχ 3

2

) has only spin-2 (spin-3) sector. One finds

ζL,R =

√

m+ ω

4ω

[

ω

m
± i

(6ω + 4m)~Σ · ~∇

5m(m+ ω)
−

Mij∇i∇j

m(m+ ω)
∓ i

2Tijk∇i∇j∇k

3m(m+ ω)2

]

χ 3

2

. (38)

Most importantly, one no longer needs to deal with any spurious DOFs because, unlike in the case of

Rarita-Schwinger field, there is only one spin-3/2 sector and no other spin-1/2 sector.

10



TABLE I: Lorentz-covariant bilinears built out of the spin-1/2 FW field, where ηL,R are defined in Eq. (33).

s s = η†LηR + η†RηL

p p = η†LηR − η†RηL

vµ vµ =
(

η†LηL + η†RηR, η
†
R~σηR − η†L~σηL

)

aµ aµ =
(

η†LηL − η†RηR,−η
†
R~σηR − η†L~σηL

)

Fµν F 0i = iη†LσiηR − iη†RσiηL, F
ij = ǫijk

(

η†LσkηR + η†RσkηL

)

V. LORENTZ-COVARIANT BILINEARS

The bilinears sought after are in general tensors of integer rank n, which are direct products of n

vectors, which can, in turn, be decomposed into irreducible terms (A,B) with A = n/2, n/2 − 1, . . .

and B = n/2, n/2 − 1, . . . , by various symmetrizations, antisymmetrizations and extracting traces. For

example, (0, 0) is a scalar, (1, 0) ⊕ (0, 1) an antisymmetric rank-2 tensor, and (1, 1) a symmetric rank-2

tensor. A vector (or a pseudovector) is represented by
(

1
2 ,

1
2

)

.

To accommodate parity, one needs to use the direct sum of Φ
(s)
L and Φ

(s)
R in building fermion bilinears:

(s, 0)⊕ (0, s). Since there are no antiparticle DOFs, Φ
(s)
L and Φ

(s)
R are not independent of each other.

A. NN bilinears

Because

[(

1

2
, 0

)

⊕

(

0,
1

2

)]

⊗

[(

1

2
, 0

)

⊕

(

0,
1

2

)]

= (0, 0)⊕ (0, 0)⊕

(

1

2
,
1

2

)

⊕

(

1

2
,
1

2

)

⊕ [(1, 0) ⊕ (0, 1)] , (39)

nucleon-nucleon bilinears include a scalar (s), a pseudoscalar (p), a vector (vµ), a pseudovector (aµ)

and an antisymmetric tensor (Fµν), as is well known. Our procedure of assembling these bilinears is as

follows. Consider at first the boosts of, for instance, the following three-scalars and three-vectors,

η†LηL → η†LηL − ~ξ · (−η†L~σηL), η†L~σηL → η†L~σηL − ~ξ(−η†LηL) , (40)

η†RηR → η†RηR − ~ξ · (η†R~σηR), η†R~σηR → η†R~σηR − ~ξ(η†RηR) . (41)

Note also that ηR and ηL get interchanged under spatial reflections. This allows one to conclude that

(η†LηL±η
†
RηR,±η

†
R~σηR−η†L~σηL) is a contravariant four-vector (pseudovector). Analogous considerations

can be applied to all other SO(3) bilinears. Listed in Table I are all of the NN covariant bilinears.
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B. N∆ bilinears

The product of a spin-1/2 and a spin-3/2 fermion is decomposed as
[(

1

2
, 0

)

⊕

(

0,
1

2

)]

⊗

[(

3

2
, 0

)

⊕

(

0,
3

2

)]

= [(1, 0) ⊕ (0, 1)] ⊕

[(

3

2
,
1

2

)

⊕

(

1

2
,
3

2

)]

⊕ [(2, 0) ⊕ (0, 2)] ,

(42)

where (1, 0) ⊕ (0, 1) is a rank-2 antisymmetric tensor (Gµν),
(

3
2 ,

1
2

)

⊕
(

1
2 ,

3
2

)

and (2, 0) ⊕ (0, 2) a rank-3

(Fµνλ) and a rank-4 tensor (Hµνλρ), respectively, with the following symmetry properties,

Fµνλ = −Fµλν , Hµνλρ = Hλρµν = −Hνµλρ = −Hµνρλ . (43)

The SO(3) bilinears at our disposal are

η†L,R
~SζL,R, η†L,RσiSjζL,R , (44)

where Si are the 2× 4 transition matrices in spin space, normalized so that

SiSj
† =

1

3
(2δij − iǫijkσk) . (45)

They have the property

σiSj − σjSi = −
σi
2
Sj + SjΣi = −iǫijkSk . (46)

Using (35) and (46), one can get the boost rules for the bilinears in full analogy to (40) and (41), and

ultimately build the tensors. For instance, one gets

ηL~SζR → ηL~SζR − iηL(~ξ × ~S)ζR, ηR ~SζL → ηR~SζL + iηR(~ξ × ~S)ζL , (47)

which allows one to conclude that ηLSiζR+ηRSiζL and −iǫijk(ηLSkζR−ηRSkζL) transform, respectively,

as (0i) and (ij) components of an antisymmetric tensor Gµν = −Gνµ. Performing analogous calculations

for the remaining bilinears, one obtains the explicit expressions for these tensors, as given in Table II.

Of practical use for EFT calculations are the first few 1/m terms of Lorentz-covariant bilinears. In

Appendix B we give the expansion of bilinears defined in Table I and Table II, up to and including

O
(

(∇/m)2
)

terms.

VI. πNN AND πN∆ COUPLINGS

As applications of our approach to HBChET, we will consider couplings of a spin-1/2 field (N) to the

gradient of the pion field (∂µπ
a with a the isospin index) and the transition of N to a spin-3/2 field (∆)

via emitting a pion.

12



TABLE II: Lorentz-covariant bilinears built out of the spin-1/2 and the spin-3/2 FW fields, where ηL,R and ζL,R

are defined in Eq. (33) and Eq. (38), respectively. Ωij is defined as Ωij ≡ (σiSj + σjSi)/2.

Gµν G0i = η†LSiζR + η†RSiζL, G
ij = −iǫijk(η

†
LSkζR − η†RSkζL)

Fµνλ F 00i = η†LSiζL + η†RSiζR, F
0ij = iǫijk(η

†
LSkζL − η†RSkζR),

F ij0 = η†LσiSjζL − η†RσiSjζR, F
ijk = −iǫjkl(η

†
LσiSlζL + η†RσiSlζR)

Hµνλρ H0i0j = η†LΩijζR − η†RΩijζL, H
0ijk = −iǫjkl(η

†
LΩilζR + η†RΩilζL),

Hijkl = −ǫijmǫkln(η
†
LΩmnζR − η†RΩmnζL)

With the pseudovector NN bilinear, Eq. (B4), the NN axial-vector coupling and the first terms of

its 1/mN expansion are

LπNN = −gAψDτ
aγ5γµψD

∂µπ
a

2fπ

= gAN
†τa~σN ·

~∇πa

2fπ
−

gA
2mN

[

iN †τa~σ · ~∇N +H.c.
] π̇a

2fπ

+
gA

4m2
N

[

N †τa~σ~∇2N + (~∇N)†τa(~σ · ~∇)N +H.c.
]

·
~∇πa

2fπ
+ · · · ,

(48)

where ψD is defined in Eq. (34) and fπ ≃ 93 MeV is the pion decay constant.. This expansion coincides

with the well-known result in, e.g., Ref. [5].

As seen in Eq. (42), there is no pseudovector N∆ bilinear. The way out is to invoke a contraction of

tensor bilinears with the derivatives of N or ∆. Consider a coupling of ∂µπ to Gµν . We denote by ∂Nµ

(∂∆µ ) the derivative that acts on the nucleon (delta) field. Since the following equality holds:

∂∆µ G
µν∂νπ = ∂µ(G

µν∂νπ)− ∂Nµ G
µν∂νπ −Gµν∂µ∂νπ , (49)

where the last term in the r.h.s. vanishes due to the antisymmetricity of Gµν , and the first term therein

is a total derivative, the only independent πN∆ coupling that one can construct with Gµν is

LπN∆ =
hA
m∆

[

i∂∆µ G
µν +H.c.

] ∂νπ

2fπ
, (50)

where we have suppressed for the moment the isospin index, and pseudovector P ν ≡
[

i∂∆µ G
µν +H.c.

]

has the structure

P 0 = −i
[

η†L (~S · ~∇) ζR + η†R (~S · ~∇) ζL

]

+H.c. , (51)

~P = i
(

η†L
~S ∂tζR + η†R

~S ∂tζL

)

−
[

ηL(~∇× ~S)ζR − ηR(~∇× ~S)ζL

]

+H.c. . (52)

The 1/mN expansion of (50) is straightforward as long as one switches to heavy fields and uses the EOMs
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for ∆ to get rid of their time derivatives,

LπN∆ = hA

[

N †~ST a∆+H.c.
]

·
~∇πa

2fπ
−

hA
mN

[

iN †~S · ~∇T a∆+H.c.
] π̇a

2fπ

+ δ
hA
m2

N

[

iN †~S · ~∇T a∆+H.c.
] π̇a

2fπ
+

hA
2m2

N

[(

N †~S~∇2T a∆−N †(~S · ~∇)~∇T a∆
)

+H.c.
]

·
~∇πa

2fπ

+
hA
8m2

N

[(

δlmN
†~S · ~∇T a∆+ 3N †Sl∇m∆− 2iǫijlN

†Ωim∇jT
a∆
)

+H.c.
] ∇l∇mπ

a

2fπ
+ · · · ,

(53)

where T a are the isospin analogs of Sa, normalized as in Eq. (45). Here the first two terms in the

expansion give the well-known non-relativistic result [13].

Further couplings can be built by a contraction of Fµνλ with two derivatives. One can choose to work

with ∂Nµ ∂
∆
ν F

µνλ∂λπ and ∂Nν ∂
∆
λ F

µνλ∂µπ, with other possibilities dependent on these two via the symmetry

property, Eq. (43), by partial integrations. However, with the help of the EOM for the nucleonic Dirac

spinor ψD, one of these two couplings, ∂Nµ ∂
∆
ν F

µνλ∂λπ, can be shown to be equivalent to ∂∆µ G
µν∂νπ, thus

leaving us with only one independent term, ∂Nν ∂
∆
λ F

µνλ∂µπ,

L′πN∆ =
b

mNm∆

[

∂Nν ∂
∆
λ F

µνλ +H.c.
] ∂µπ

2fπ
, (54)

where b is the corresponding dimensionless coupling constant. The first two terms of the expansion of

L′πN∆ in powers of ∇/mN can be shown to be equal to the first two terms of the corresponding expansion

of LπN∆, times the small factor δ/mN :

L′πN∆ = b
δ

mN

{

[

N †~ST a∆+H.c.
]

·
~∇πa

2fπ
−

1

mN

[

iN †~S · ~∇T a∆+H.c.
] π̇a

2fπ

}

+ · · · . (55)

Therefore, unless δ is a variable that could depend on the number of colors in QCD, L′πN∆ is equivalent

to LπN∆, up to and including O(p3), where p stands generically for a small momentum factor such as

∇, δ, etc.

Finally, considering a contraction of Hµνλρ with three derivatives and taking into account the sym-

metry of Hµνλρ, one arrives at the only independent coupling, ∂∆µ ∂
N
ν ∂

∆
λ H

µνλρ∂ρπ,

L′′πN∆ =
d

mNm2
∆

[

i∂∆µ ∂
N
ν ∂

∆
λ H

µνλρ +H.c.
] ∂ρπ

2fπ
. (56)

The expansion of this Lagrangian in powers of ∇/m starts at O
(

(∇/m)2
)

, which can be proved with

the help of integration by parts:

L′′πN∆ = −
d

2m2
N

[

N †~ST a∆+H.c.
]

·
~∇(∇2πa)

2fπ
+ · · · . (57)
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Using EOMs for pion, N , and ∆ fields, one can show that L′′πN∆, in fact, starts introducing new πN∆

operators at least at O(p4), similarly to L′πN∆.

Therefore, we conclude that the couplings (54) and (56) start producing new operators at as early as

O(p4), and thus the only independent πN∆ vertex up to O(p3) is (50), expanded out in Eq. (53). This

is, however, at odds with some results in the literature. Refs. [6, 24, 25] consider an additional πN∆

coupling with an undetermined LEC, b3 + b8 ∼ 1/Mhep, whose leading term in the 1/mN expansion is

an O(p2) operator,

Lb3+b8
πN∆ = −2(b3 + b8)

(

iN † ~ST a∆+H.c.
)

·
~∇π̇a

2fπ
, (58)

If our conclusion is correct, b3 + b8 must be equivalent, up to O(p3), to the hA term plus perhaps some

other terms that are already present regardless of the existence of b3 + b8.

To show this more explicitly for its leading term, Lb3+b8
πN∆ , at the level of heavy-baryon operators, we

first write down the leading HBChET Lagrangian that has both baryon EOMs, the leading πNN , πN∆

and π∆∆ couplings,

L(0) = iN †∂tN + gAN
†τa~σN ·

~∇πa

2fπ

+∆†(i∂t − δ)∆ + 4g∆A∆† ta
( 3
2
)
~Σ∆ ·

~∇πa

2fπ
+ hA

(

N †~ST a∆+H.c.
)

·
~∇πa

2fπ
+ {Ψ†ΨΨ†Ψ} ,

(59)

where g∆A is the ∆ axial coupling constant, ta
( 3
2
)
are the isospin 3/2 generators, and {Ψ†ΨΨ†Ψ} are non-

derivative four-baryon operators whose details are irrelevant. Moving time derivative from πa to N and

∆ fields by partial integrations and applying subsequently the EOMs for N and ∆, derived from the

Lagrangian (59), one transforms the b3 + b8 term to

Lb3+b8
πN∆ = 2(b3 + b8)



δ
(

N †T a~S∆+H.c.
)

·
~∇πa

2fπ
−

8

9
hAN

†N

(

~∇πa

2fπ

)2

+
2

9
hAN

†ǫijkǫ
abcσkτ

cN
∇iπ

a

2fπ

∇jπ
b

2fπ
+ · · ·



 ,

(60)

which is a combination of the leading hA term, times the small O(p) factor δ(b3 + b8), and O(p2) ππNN

terms (also known as “seagull”), among other terms that are subsumed in the ellipsis, such as ππN∆,

ππ∆∆, etc. In other words, b3 + b8 is not an independent parameter (in fact, since the leading term,

Lb3+b8
πN∆ , is redundant up to O(p3), the same is true for the whole b3 + b8 term, in full accordance with

our results). To further illustrate this point, we show in Appendix A that, in Ref. [26], while two fits

of LECs to low-energy πN scattering data yield two different sets of LECs, this apparent difference is

purely due to the arbitrary choice of a set containing a redundant parameter. We also discuss possible

implications of this for other reactions, in particular, NN → NNπ.
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VII. CONCLUSION

We demonstrated how one can build heavy-particle Lorentz-invariant Lagrangians with fields that

furnish the FW representation for the Poincaré group. At the core of the method are Eqs. (33) and (38)

that map the FW fields onto the more conventional, Lorentz-covariant left and right-handed spinors, in

the cases of spin-1/2 and 3/2 corresponding to the nucleon and delta-isobar in HBChET. We also built

covariant NN and N∆ bilinears, Tables I and II, and their 1/mN expansions, Appendix B, that are

useful in HBChET. A Lorentz-invariant interaction can thereby be assembled with the FW fields and,

in the mean time, can be easily expanded in powers of ∇/m.

The machinery we presented here provides a couple of advantages in working out 1/m expansion over

the explicit integrating-out or block-diagonalization used in, e.g., Refs. [3, 7–9]. Firstly, it is natural to

apply the same method to multi-fermion operators such as NNNN , NNN∆ etc., whereas it is more

difficult to do so in integrating-out or block-diagonalization because the Lagrangian is no longer quadratic

in baryon fields. Secondly, when treating the delta or other high-spin baryons, one no longer needs to

deal with spurious DOFs.

We illustrated the technique with the examples of πNN and πN∆ couplings. The well-known 1/mN

expansion of πNN is explicitly reproduced up to O(p3). πN∆ is more interesting because there is no

N∆ bilinear that is a four-pseudovector. We analyzed all possible πN∆ couplings up to O(p3) and found

that there is only one independent πN∆ coupling up to and including O(p3). In Appendix A, we use

low-energy πN scattering to further illustrate that the employment in the literature of the O(p2) πN∆

operator, with LEC b3+ b8, is redundant. We also discuss there possible implications of this redundancy

for calculations of the reactions NN → NNπ. In particular, we show that the inclusion of b3 + b8 at

O(p2) in πN scattering can lead to unnaturally large variations of some terms in NN → NNπ, which

can be cured by demoting b3 + b8 term to O(p4) at the level of HBChET Lagrangian.
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(a) (b) (c)

FIG. 2: Feynman diagrams showing the effect of b3+ b8 πN∆ coupling on πN scattering. Dots denote the leading

πN∆ vertex, the crossed circle stands for the b3 + b8 vertex, and the filled square denotes the subleading ππNN

contact term. Crossed diagrams are not shown.

Appendix A: The redundance of Lb3+b8
πN∆ at O(p2) and the reactions NN → NNπ

Here, we examine in more detail whether the πN∆ LEC b3 + b8 plays any role in a specific process,

πN scattering below the delta threshold, and discuss the significance of Lb3+b8
πN∆ being redundant for

calculations of other processes, in particular, the reactions NN → NNπ.

Up to the next-to-leading order (NLO) in the so-called small-scale expansion (SSE) [24, 25], the

diagrams contributing to πN scattering are all trees and were discussed in detail, e.g., in Refs. [25, 26].

Besides the leading Lagrangian (59), one also needs O(p2) seagull terms [5],

L
(1)
ππNN = N †



4(c2 + c3)

(

π̇a

2fπ

)2

− 4c3

(

~∇πa

2fπ

)2

− 2c4 ǫijkσkǫ
abcτ c

∇iπ
a

2fπ

∇jπ
b

2fπ



N , (A1)

where we have suppressed 1/mN corrections to ππNN LECs c2, c3, and c4. Comparing the above

Lagrangian and Eq. (60), one can redefine hA and ci’s to eliminate b3 + b8 from the πN∆ Lagrangian at

this order, O(p2):

h̄A = hA + 2δ(b3 + b8) , c̄2 = c2 −
4

9
hA(b3 + b8) ,

c̄3 = c3 +
4

9
hA(b3 + b8) , c̄4 = c4 −

2

9
hA(b3 + b8) .

(A2)

Here barred letters stand for the redefined constants.

Shown in FIG. 2, the diagrammatic interpretation of eliminating b3 + b8 is that the subleading (with

one vertex being b3 + b8) ∆ pole term (b) can be dissected to the sum of, up to some constant factors,

the leading ∆ pole term (a) and the subleading ππNN contact terms (c). This can also be manifested

by the identities

ω

ω ± δ
= 1∓

δ

ω ± δ
, (A3)

with the lower signs corresponding to pole diagrams while the upper ones to crossed.

Ref. [26], in which b3 + b8 was employed, obtained two different sets of LEC values in fitting to πN

scattering data (note that our hA corresponds to 2hA in their notation). We calculate the LECs redefined
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according to Eq. (A2) and find that the two sets of LECs in Ref. [26] indeed correspond to the same

set of barred LECs, shown in Table III, with only h̄A having ∼ 10% discrepancy that can be traced to

higher-order contributions.

Source hA b3 + b8 c2 c3 c4 h̄A c̄2 c̄3 c̄4

Ref. [26] fit 1 2.68 1.40 −0.25 −0.79 1.33 3.50 −1.92 0.88 0.50

Ref. [26] fit 2 2.10 2.95 0.83 −1.87 1.87 3.83 −1.92 0.88 0.49

TABLE III: Values of redefined LECs h̄A (dimensionless) and c̄2, c̄3, c̄4 (in units of GeV−1). We also give the

values of the input LECs (in the same respective units), taken from fit 1 and fit 2 of Ref. [26]. Note that our hA

corresponds to 2hA in the notation of that reference.

The presence of b3 + b8 term in the Lagrangian at order O(p2) can be a source of rather intricate

troubles in certain calculations. Consider, for instance, a version of counting that does not go together

with the chiral index. In this case the contributions due to Lb3+b8
πN∆ can be of different (higher) order than

those coming from the ππNN contact term with ci’s. Examples of such countings are the δ-counting,

used for calculations in the energy region extending to delta resonance [27], or the p-counting used in in

calculations of the reactions NN → NNπ [28], where Lb3+b8
πN∆ starts to contribute one order higher than

the ππNN contact term with ci’s. This is due to the nucleon-delta mass difference δ being considered

as an intermediate scale (ω ≪ δ ≪ Mhep) in these countings, and the ratio ω/δ being just one of the

expansion parameters, which implies that one should expand the product of pion energy and the delta

propagator in powers of ω/δ,

ω

ω ± δ
= ±

ω

δ

[

1∓
ω

δ
+ · · ·

]

, (A4)

rather than use Eq. (A3). Hence, the contribution of Lb3+b8
πN∆ starts one order higher than that of the

terms with ci’s.

A problem emerges when one attempts to use the values of ci’s, calculated in an SSE calculation of

πN scattering, in a calculation of NN → NNπ up to next-to-next-to-leading order (NNLO), the order

where ci’s start to contribute. The discussed correlations of hA, b3 + b8, and ci’s, Eq. (A2), can lead to

sizable variations of the latter, as illustrated by Table III, thus leading to unnaturally large variations

of the calculated observables in NN → NNπ. To counter these variations at NNLO, one would need to

include Lb3+b8
πN∆ , being one order higher according to p-counting. Such a promotion without a good reason

would be completely undesired, especially given the fact that there is a far more natural solution, namely,

demoting the redundant b3 + b8 term at the level of the Lagrangian, using the equations of motion, and

refitting ci’s accordingly.
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Appendix B: 1/mN expansion of NN and N∆ bilinears

In this Appendix we give 1/mN expansion of covariant nucleon-nucleon and nucleon-delta bilinears,

in terms of heavy fields N and ∆, as defined in Eq. (22). This is a straightforward computation of Table I

and Table II, with Eqs. (33), (38) and (22) applied.

1. NN bilinears

• Scalar s = ψDψD :

s = N †

[

1 +
(
←
∇−

→
∇)2

8m2
N

− i

←
∇×

→
∇ · ~σ

4m2
N

]

N . (B1)

• Pseudo-scalar p = ψDγ
5ψD :

p = N †

[

−i
(
←
∇ +

→
∇) · ~σ

2mN

]

N . (B2)

• Vector vµ = ψDγ
µψD :

v0 = N †

[

1 +
(
←
∇+

→
∇)2

8m2
N

+ i

←
∇×

→
∇ · ~σ

4m2
N

]

N ,

~v = N †

[

i
(
←
∇−

→
∇)

2mN
+

(
←
∇+

→
∇)× ~σ

2mN

]

N . (B3)

• Pseudo-vector aµ = ψDγ
5γµψD :

a0 = N †

[

−i
(
←
∇−

→
∇) · ~σ

2mN

]

N ,

~a = N †

[

−~σ −
(
←
∇ · ~σ)

→
∇+

←
∇(
→
∇ · ~σ)

4m2
N

−
~σ(
←
∇−

→
∇)2

8m2
N

+ i

←
∇×

→
∇

4m2
N

]

N . (B4)

• Tensor Fµν = ψDσ
µνψD :

F 0i = N †

[←
∇+

→
∇

2mN
− i

(
←
∇−

→
∇)× ~σ

2mN

]

i

N ,

F ij = N †

[

ǫijkσk + i

←
∇i

→
∇j −

←
∇j

→
∇i

4m2
N

+
ǫikl
←
∇kσl

→
∇j − ǫjkl

←
∇kσl

→
∇i

4m2
N

−
(
←
∇ · ~σ)ǫijk

→
∇k

4m2
N

+
ǫijkσk(

←
∇2 +

→
∇2)

8m2
N

]

N . (B5)

19



2. N∆ bilinears

• Gµν :

G0i = N †

[

Si +
(
←
∇ · ~S)

→
∇i +

←
∇i(~S ·

→
∇)

8m2
N

+
3(~S ·

→
∇)
→
∇i

4m2
N

−
Si

8m2
N

(5
→
∇2 −

←
∇2 + 4

←
∇ ·

→
∇)

− i

←
∇l

→
∇j +

→
∇l

→
∇j

2m2
N

Ωklǫijk + i

←
∇l

→
∇j

4m2
N

Ωikǫjlk

]

∆ ,

Gij = N †

[

i
Si

4mN
(
←
∇j + 5

→
∇j −

5δ

mN

→
∇j)− i

Sj
4mN

(
←
∇i + 5

→
∇i −

5δ

mN

→
∇i)

−

←
∇k +

→
∇k

2mN
Ωklǫijl +

δ
→
∇k

2m2
N

Ωklǫijl

]

∆ . (B6)

• Fµνλ :

F 00i = N †

[

Si −
(
←
∇ · ~S)

→
∇i +

←
∇i(~S ·

→
∇)

8m2
N

+
3(~S ·

→
∇)
→
∇i

4m2
N

−
Si

8m2
N

(5
→
∇2 −

←
∇2 − 4

←
∇ ·

→
∇)

+ i

←
∇j

→
∇l −

→
∇j

→
∇l

2m2
N

Ωjkǫilk − i

←
∇l

→
∇j

4m2
N

Ωikǫjlk

]

∆ ,

F 0ij = N †

[

−i
Si

4mN
(
←
∇j − 5

→
∇j +

5δ

mN

→
∇j) + i

Sj
4mN

(
←
∇i − 5

→
∇i +

5δ

mN

→
∇i)

+

←
∇k −

→
∇k

2mN
Ωklǫijl +

δ
→
∇k

2m2
N

Ωklǫijl

]

∆ ,

F ij0 = N †

[

−i
Si

4mN
(
←
∇j +

→
∇j −

δ

mN

→
∇j)− i

Sj
2mN

(
←
∇i − 2

→
∇i +

2δ

mN

→
∇i) + i

(
←
∇ · ~S)− (

→
∇ · ~S)

4mN
δij

+ i
δ(
←
∇ · ~S)

4m2
N

δij −

→
∇k

mN
Ωilǫjkl −

←
∇k +

→
∇k

2mN
Ωjlǫikl +

δ
→
∇k

m2
N

Ωilǫjkl +
δ
→
∇k

2m2
N

Ωjlǫikl

]

∆ ,

F ijk = N †

[

−iΩilǫjkl −
1

2
Sjδik +

1

2
Skδij −

(
←
∇ · ~S)

4m2
N

(
→
∇jδik −

→
∇kδij)−

Si
4m2

N

(
←
∇j

→
∇k −

←
∇k

→
∇j)

+
Sj

16m2
N

(−10
←
∇i

→
∇k − 2

←
∇k

→
∇i + 12

→
∇i

→
∇k − (

←
∇−

→
∇)2δik)

−
Sk

16m2
N

(−10
←
∇i

→
∇j − 2

←
∇j

→
∇i + 12

→
∇i

→
∇j − (

←
∇−

→
∇)2δij)

−

←
∇m

→
∇n

4m2
N

Slǫjklǫimn − i

←
∇m

→
∇i +

→
∇m

←
∇i

4m2
N

Ωmlǫjkl + i

→
∇m

→
∇k

2m2
N

Ωilǫjml − i

→
∇m

→
∇j

2m2
N

Ωilǫkml

− i
(
←
∇−

→
∇)2

8m2
N

Ωilǫjkl + i

←
∇m

→
∇k +

→
∇m

→
∇k

2m2
N

Ωjlǫiml − i

←
∇m

→
∇j +

→
∇m

→
∇j

2m2
N

Ωklǫiml

]

∆ . (B7)
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• Hµνλρ :

H0i0j = N †

[

i
(
←
∇ · ~S) + (

→
∇ · ~S)

4mN
δij − i

δ(
→
∇ · ~S)

4m2
N

δij

− i
3Si
8mN

(
←
∇j +

→
∇j −

δ

mN

→
∇j)− i

3Sj
8mN

(
←
∇i +

→
∇i −

δ

mN

→
∇i)

−
Ωin

4mN
ǫjrn(

←
∇r − 3

→
∇r +

3δ

mN

→
∇r)−

Ωjn

4mN
ǫirn(

←
∇r − 3

→
∇r +

3δ

mN

→
∇r)

]

∆ ,

H0ijk = N †
[

−iΩinǫjkn +
1

8m2
N

((
←
∇ · ~S)(

→
∇jδik −

→
∇kδij)− (

→
∇ · ~S)(

←
∇jδik −

←
∇kδij))

+
Sj

16m2
N

(5
←
∇i

→
∇k +

←
∇k

→
∇i + 6

→
∇i

→
∇k)−

Sk
16m2

N

(5
←
∇i

→
∇j +

←
∇j

→
∇i + 6

→
∇i

→
∇j)

+
Sn

16m2
N

(←
∇r

→
∇s(ǫirsǫjkn − ǫirnǫjks − 5ǫisnǫjkr)− 6

→
∇r

→
∇sǫirnǫjks

)

+
3Si
8m2

N

(
←
∇j

→
∇k −

←
∇k

→
∇j) + i

Ωin

8m2
N

(
←
∇n

→
∇rǫjkr +

←
∇r

→
∇nǫjkr − 2

→
∇n

→
∇rǫjkr)

+ i
Ωrn

8m2
N

ǫjkn(
←
∇i

→
∇r +

←
∇r

→
∇i − 2

→
∇r

→
∇i) + i

Ωin

8m2
N

ǫjkn(3
→
∇2 −

←
∇2 − 2

←
∇ ·

→
∇)

+ i
Ωjn

4m2
N

ǫirn(2
→
∇r

→
∇k −

←
∇r

→
∇k −

←
∇k

→
∇r)− i

Ωkn

4m2
N

ǫirn(2
→
∇r

→
∇j −

←
∇r

→
∇j −

←
∇j

→
∇r)

]

∆ ,

H ijkl = N †

[

i
(
←
∇ · ~S)

8mN
(δilδjk − δikδjl)− i

(
→
∇ · ~S)

8mN

(

1−
δ

mN

)

(δilδjk − δikδjl)

+ i
Si

4mN

(

1−
δ

mN

)

(
→
∇lδjk −

→
∇kδjl)− i

Sj
4mN

(

1−
δ

mN

)

(
→
∇lδik −

→
∇kδil)

+ i
Sk

8mN

(

←
∇jδil −

←
∇iδjl + (

→
∇jδil −

→
∇iδjl)

(

1−
δ

mN

))

− i
Sl

8mN

(

←
∇jδik −

←
∇iδjk + (

→
∇jδik −

→
∇iδjk)

(

1−
δ

mN

))

+ i
Sn

8mN

(

3
←
∇rǫijrǫkln +

→
∇rǫijrǫkln

(

1−
δ

mN

))

+ i
Sn

4mN

(

←
∇rǫklrǫijn +

→
∇rǫklrǫijn

(

1−
δ

mN

))

−
1

4mN
Ωinǫkln

(

←
∇j − 3

→
∇j

(

1−
δ

mN

))

+
1

4mN
Ωjnǫkln

(

←
∇i − 3

→
∇i

(

1−
δ

mN

))

−
1

4mN
Ωknǫijn

(

←
∇l − 3

→
∇l

(

1−
δ

mN

))

+
1

4mN
Ωlnǫijn

(

←
∇k − 3

→
∇k

(

1−
δ

mN

))

]

∆ .
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