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Coherent control of the cooperative branching ratio for nuclear x-ray pumping
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Coherent control of nuclear pumping in a three level system driven by x-ray light is investigated. In single
nuclei, the pumping performance is determined by the branching ratio of the excited state populated by the
x-ray pulse. Our results are based on the observation that inensembles of nuclei, cooperative excitation and
decay leads to a greatly modified nuclear dynamics, which we characterize by a time-dependent cooperative
branching ratio. We discuss prospects of steering the x-raypumping by coherently controlling the cooperative
decay. First, we study an ideal case with purely superradiant decay and perfect control of the cooperative
emission. We then turn to a numerical analysis of x-ray pumping in nuclear forward scattering, with coherent
control of the cooperative decay via externally applied magnetic fields. Finally, we discuss the application of
such control techniques to the population or depletion of long-lived nuclear states.

PACS numbers: 73.20.Mf, 78.70.Ck, 75.78.Jp, 76.80.+y

Coherent control in quantum optics and atomic physics pro-
vides an efficient tool to investigate atomic properties, manip-
ulate the dynamics of the system and open new perspectives,
for instance on light propagation and non-linear response.
Similar possibilities with nuclear systems have been consid-
ered with great interest [1–7] shortly after the realization of
the first laser in the optical band [8]. However, up to now there
are only very few ways to exploit coherence effects in nuclear
systems, and the dream of the nuclear laser is still out of reach.
The pursuit of coherent sources for wavelengths around or be-
low 1 nm is supported by the advent and commissioning of
x-ray free electron lasers [9, 10], whose operation however
does not rely on nuclear systems. Nevertheless, it can be ex-
pected that the lack of suitable coherent light sources willstill
prevent a direct transfer of quantum optical schemes to nuclei
in most cases.

One common experimental setup in which coherence is
known to play a major role is light scattering off of nuclei.
In coherent nuclear forward scattering (NFS), intense high-
frequency light such as that from a synchrotron radiation (SR)
source is monochromatized at a nuclear resonance energy, and
then hits a nuclear target. The resonant scattering on the nu-
clear ensemble (for instance identical nuclei in a crystal lat-
tice) occurs via an excitonic state, which is an excitation co-
herently spread out over a large number of nuclei [11–14]. In
case of coherent scattering, the nuclei return to the initial state
after scattering, such that it is unknown which nucleus was
involved in the scattering process. This leads to cooperative
emission, with scattering only in forward direction (except for
the case of Bragg scattering [13, 15, 16]) and decay rates mod-
ified by the formation of sub- and superradiant states as key
signatures.

Interestingly, the cooperative decay of the exciton (known
also as coherent decay) can be coherently controlled in nu-
clear systems that present hyperfine structure by a suitablero-
tation of the direction of an applied magnetic field through-
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out the life time of the excitonic state. This technique was
used to demonstrate suppression of coherent decay and thus
storage of energy in an excitonic state by inducing destruc-
tive interference among the coherent decay channels [17, 18].
A similar setup using this technique can be used to generate
single photon entanglement in the x-ray regime [19, 20]. Al-
ternatively, suppression of the coherent decay can be achieved
by destroying the spatial phase coherence in the sample, e.g.,
with spatially inhomogeneous external fields. These findings
invite the search for further applications of coherent control of
cooperative nuclear decay.

Motivated by this, in the present paper we investigate the
coherent control of nuclear x-ray pumping in NFS. Nuclear
x-ray pumping denotes here the controlled transfer of popu-
lation between different nuclear states by application of x-ray
light. As model system, we assume nuclei in a three-level
Λ-configuration as shown in Figure 1(a). The nuclei initially
reside in the ground state|G〉. A SR pulse in NFS setup ex-
cites part of the nuclei to the excited state|E〉, followed by
decay either back to the initial state|G〉 or to the target state
|I〉, which could be an isomeric state. In an isolated nucleus,
the final state populations are governed by the branching ra-
tio. We show that in ensembles of nuclei, cooperative light
emission in NFS leads to an effective branching ratio. This
cooperative branching ratiocan significantly deviate from the
single-nucleus branching ratio, and is time-dependent. Byco-

FIG. 1. The considered three level system. (a) StateE is populated
by the SR pulse and can decay to the ground stateG or to the isomeric
stateI , presumed to be long-lived. (b) The SR pulse couples statesI
andE. The initial stateI is assumed to be metastable. For both (a)
and (b), the natural decay rates for the|E〉 → |G〉 and |E〉 → |I〉
transitions areΓ1 andΓ2, respectively.
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herently suppressing the cooperative decay, the cooperative
branching ratio can be controlled.

We first analyze x-ray pumping in the ideal case of perfectly
superradiant cooperative decay that can be completely sup-
pressed at will after the excitation occurred. For this case, we
find that our approach allows to increase the target state pop-
ulation by a so-called superradiant enhancement factor which
is sample-dependent and potentially large. Then, we turn toa
numerical analysis of NFS with realistic parameters, and dis-
cuss the performance and limitations in this particular imple-
mentation of x-ray pumping and cooperative branching ratio
control. We find that in this setup, even though cooperative
branching ratio control and consequently target state popula-
tion enhancement can be observed, the achievable enhance-
ment factor is only on the order of 2. Our analysis shows that
the difference to the ideal case mainly arises from the dynam-
ical population of sub-radiant states in the cooperative nuclear
decay.

Efficient nuclear state population control is an essential
ingredient to advanced measurement schemes such as state-
selective nuclear scattering, as well as to applications like
nuclear lasers or the manipulation of isomers. In particu-
lar, isomeric triggering or depletion—release on demand of
the energy stored in the excited metastable nuclear state—
has been proposed via a number of nuclear excitation mecha-
nisms, such as photoabsorption [21, 22], Coulomb excitation
[23, 24] or coupling to the atomic shells [25–27]. The trigger-
ing methods make use of a nuclear three-level scheme similar
to the one presented in Figure 1(b). The isomer essentially
does not decay directly, but rather has to be excited to a trig-
ger state|E〉 which can subsequently decay with a branching
ratio also to the nuclear state|G〉, which can be either the true
ground state or a state directly connected to it. Control of the
collective branching ratio in the case of NFS provides there-
fore a way to enhance the isomer depletion or population. Our
results apply equally well to both scenarios in Figure 1.

The paper is organized as follows. In Section I we intro-
duce the cooperative branching ratio and discuss an ideal case
of branching ratio control. In Section II, we apply these re-
sults to an implementation based on coherent control of NFS,
and present a numerical treatment of the coherently scattered
light for realistic parameters. Section III presents results for
the cooperative branching ratio and nuclear state population
dynamics taking into account the coherent decay and its pos-
sible suppression for the NFS case. Finally, Sec. IV discusses
and summarizes the results. Atomic units (~ = 1) are used
throughout the paper.

I. BRANCHING RATIO CONTROL

A. The cooperative branching ratio

An isolated nucleus in the excited state|E〉 can decay via
radiative decay or by internal conversion decay (IC) to either
of the ground and intermediate state|G〉 and |I〉. The total
width of the excited state is then determined by the sum of the

individual transition rates

ΓE = Γ1 + Γ2

= Γγ
1 + ΓIC

1 + Γγ
2 + ΓIC

2 , (1)

where the superscriptsγ and IC refer to the radiative and IC
decay channels, respectively. An important parameter is the
branching ratio of a single nucleus

b1 =
Γγ
2 + ΓIC

2

ΓE

, (2)

which gives the fraction of the excited nuclei that will decay
to the|I〉 state.ΓE = Γ1 + Γ2 is the natural decay rate of the
excited state|E〉, i.e, the total incoherent decay rate.

For a collection of nuclei, the probability for radiative decay
back to the initial state (the ground state|G〉) can be greatly
enhanced due to cooperative effects [13]. For example, spa-
tial coherence of the light source can lead to the formation of
excitonic nuclear states, which are characterized by a delocal-
ized excitation coherently shared by a large number of nuclei.
The decay width of such excitonic states can be substantially
larger than that of a single nucleus, leading to superradiant
decay. Similarly, sub-radiant states with reduced decay rates
may also exist. Cooperative decay occurs provided that the
excitation cannot be localized at a single nucleus. This con-
dition is met by coherent scattering, in which the initial and
the final nuclear states coincide. In contrast, nuclear recoil,
spin flip or the change of the nuclear state lead to localization
of the excitation, and thus essentially to single-particledecay.
In the case of the three level system sketched in Figure 1(a),
coherent decay can occur only between states|E〉 and |G〉,
provided that the initial and final magnetic sublevels coincide.
The decay|E〉 → |I〉, on the other hand, as well as all IC
channels and the radiative decay|E〉 → |G〉 involving spin
flipping occur incoherently, with the natural decay rates. The
cooperative decay can be characterized by an additional co-
herent contributionΓc(t) to the decay rate from|E〉 to |G〉.
Thus, when comparing the|E〉 → |G〉 and|E〉 → |I〉 tran-
sitions, the natural branching ratiob1 no longer describes the
fraction of excited nuclei that decay from|E〉 to |G〉 and to
|I〉, respectively.

In order to account properly for the coherent decay of the
excitonic state|E〉, we introduce a cooperative branching ra-
tio. The starting point for defining this time-dependent quan-
tity is the nuclear exciton decay, governed in the second Born
approximation by the set of equations [13, 28]

d

dt
Pe(t) = −[Γc(t) + Γ′

1 + Γ2]Pe(t) , (3a)

d

dt
Pg(t) = [Γc(t) + Γ′

1]Pe(t) , (3b)

d

dt
Pi(t) = Γ2Pe(t) , (3c)

wherePe(t), Pg(t) andPi(t) are the excited, ground and iso-
meric state populations at timet, respectively. The transition
rate to the ground state contains the time-dependent coher-
ent rateΓc(t), while the decay rate of the excitonic state to
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the isomeric stateΓ2 is the same as for the case of a single
nucleus. Note that the coherent decay rateΓc(t) actually in-
cludes a part of the radiative widthΓγ

1 , namely the decays that
proceed back to the initial magnetic sublevel. We therefore
denote in the equation above byΓ′

1 the incoherent part of the
radiative decay of|E〉 to |G〉, involving a nuclear spin flip,
and the IC decay. The time-dependent transient cooperative
branching ratio for the|E〉 → |I〉 transition is given by the
ratio between the incoherent decay rateΓ2 and the total decay
rate for the excitonic state,

bc(t) =
Γ2

Γc(t) + Γ′
1 + Γ2

. (4)

B. Control of the cooperative branching ratio

Since immediately after the excitation,Γc(t) is typically
much larger than the incoherent decay ratesΓ1 andΓ2, the
cooperative branching ratiobc(t) during this time is consid-
erably smaller than the single-particle branching ratiob1 in
Eq. (2). In effect, the time-integrated branching ratio in an en-
semble of nuclei issmallerthan the single particle branching
ratio b1, thereby reducing the efficiency of the optical pump-
ing to the target state|I〉. In the following, we will study
prospects for controlling the cooperative branching ratiobc(t)
assuming that the cooperative light emission rateΓc(t) can
be controlled. In Sec. II, we will discuss an implementation
of the control ofΓc(t), and analyze the performance of the
branching ratio control for realistic parameters.

In the second Born approximation used in Eq. (3), the time
dependence of the coherently scattered light intensity canbe
related to the coherent width by [13]

I(t) = Γc(t)Pe(t)

= N0Γc(t)e
−Γ̃(t)t . (5)

Here, the number of nuclei excited by the SR pulse is denoted
byN0, and we have introduced the effective decay rate [13]

Γ̃(t) =
1

t

∫ t

0

(Γc(s) + Γ′
1 + Γ2) ds . (6)

Imagine now that we can switch off the coherent decayΓc(t)
beginning with timets. From Eq. (6), the total decay rate of
the excited state can then be written as

Γ̃(t) =
1

t

∫ t

0

(Γ′
1 + Γ2 + Γc(s)Θ(ts − s)) ds . (7)

The population of the two final state levels|G〉 and |I〉 and
the cooperative branching ratio can be obtained then by solv-
ing numerically the equations (3) with the controlled coherent
decay rateΓs

c(t) = Γc(t)Θ(ts − t). Note that because the
suppressed coherent decay includes a subchannel of the in-
coherent radiative decay, the suppression may influence the
branching ratio of the transitions even at times for which the
magnitude of the coherent decay diminishes. This is however
only relevant when the radiative decay channel is not domi-
nated by the IC channel.

To explore the potential of the branching ratio control, we
now assume ideal conditions of immediate suppression of the
coherent decay and constant superradiant decay rate,

ts = 0 , (8a)

Γc(t) = ξ(Γ′
1 + Γ2) ≈ ξΓE , (8b)

with ξ ≫ 1. In this case, the cooperative branching ratio
without control of the superradiant decay evaluates to

bNC
c =

Γ2

(ξ + 1)(Γ′
1 + Γ2)

, (9)

whereas the one with control of the superradiant decay (NSR)
is

bCc =
Γ2

Γ′
1 + Γ2

. (10)

Thus, the suppression leads to an increase of the populationin
the target state by a factor

bCc /b
NC
c = ξ + 1 . (11)

In conclusion, collectivity leads to the enhancement of theto-
tal target state population—in our case the isomeric state|I〉—
in two ways. First, it accounts for an enhanced upper state
population immediately after the SR pulse that will eventually
decay to the|G〉 and|I〉 states . Second, as it follows from the
equation above, the switching leads to a further enhancement
by the factorξ + 1, whereξ is typically proportional to the
density.

II. IMPLEMENTATION OF BRANCHING RATIO
CONTROL IN NUCLEAR FORWARD SCATTERING

In this section we discuss a concrete model system for
the branching ratio control implementation in nuclear x-ray
pumping presented in the previous section. For this, we con-
sider the scattering of synchrotron radiation on Mössbauer nu-
clei embedded in a crystal target. For Mössbauer nuclei, the
coherent nuclear excitation occurs without a localized recoil,
and both the duration and the transit time of the SR pulse shin-
ing on a crystal target are short compared to the excited state
lifetime τ of the nuclear excited state. The pulse therefore
creates a collective nuclear excited state which is a spatially
coherent superposition of the various excited state hyperfine
levels of large number of nuclei in a certain coherence vol-
ume in the crystal. This coherence leads to acceleration of
both excitation and deexcitation of the nuclei, as requiredfor
the branching ratio control. For definiteness, we focus in the
theoretical description on theΛ-configuration depicted in Fig-
ure 1(a).

A. Wave equation for the coherently scattered light

The coherently scattered synchrotron light can be described
with a wave equation similar to the atomic case [18]

(

∇− 1

c2
∂2

∂t2

)

~E =
4π

c

∂

∂t
~I , (12)
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where~E is the electric field component of the light, and~I the
nuclear source current. In slowly varying envelope approxi-
mation, and for light propagating iny direction, this simplifies
to an equation for the envelopes~E and~I given by

∂

∂y
~E = −2π

c
~I . (13)

Calculating the nuclear source current in second order in the
interaction of the light and the nuclei, one finally obtains a
wave equation

∂ ~E(y, t)

∂y
= −

∑

ℓ

Kℓ
~Jℓ(t)

∫ t

−∞

dτ ~J †
ℓ (τ) · ~E(y, τ) . (14)

Here, the excitation and decay steps of the resonant scattering
are represented by the nuclear transition current matrix ele-
ments~Jℓ(t), andℓ is a summation index running over all pos-
sible transitions, with properties characterized byKℓ, and the
nuclear sites [18]. We assume for simplicity in our calcula-
tion only one nuclear site (for a more quantitative calculation
taking into account particular nuclear sites or sample charac-
teristics, see the MOTIF code [29]). The equation above can
be iteratively solved starting from an initial synchrotronradi-
ation pulse~E(t) = ~E0δ(t) which is instantaneous on the time
scale of the nuclear dynamics. The result is a sum

~E(y, t) =

∞
∑

n=0

~En(y, t) , (15)

in which each term represents a multiple scattering order. The
total intensity of the scattered radiation due to the coherent
decay channel is then given byI(t) = | ~E(L, t)|2, whereL is
the thickness of the sample. Since the incident SR term~E0

only plays a role att = 0, we neglect it in the calculation of
the intensity.

B. Time-dependent coherent decay rate

Let us first consider the case when the nuclear levels have
no hyperfine splitting, and there is only one transition driven
by the SR pulse, corresponding to a singleℓ in the sum in
Eq. (14). For such a simple system the expression for the
intensity of the coherently scattered light can be obtainedan-
alytically [13, 18],

I(τ) = E2
0 ξe

−τ [J1(
√

4ξτ )]2/τ . (16)

Hereξ is the dimensionless effective thickness,ξ = σRNL/4
determined by the radiative nuclear resonance cross-section
σR, the number density of Mössbauer nuclei in the sample
N and the sample thicknessL. We have also introduced a
dimensionless time coordinateτ = ΓEt. The Bessel function
of first orderJ1 can be approximated for the limit of very
small timesτ . 1/ξ as

[J1(
√
4ξτ)]2

ξτ
≃ e−ξτ , (17)

such that immediately after the excitation, the decay of the
excitonic state is exponential and faster than the natural decay,

I(τ) = E2
0 ξ

2e−(ξ+1)τ . (18)

This shows that indeed the coherent decay is accelerated rel-
ative to the incoherent, spontaneous decaye−τ immediately
after the excitation. The decay is superradiant, as assumedfor
the ideal case in Eqs. (8). We can now identify the enhance-
ment factorξ introduced in Section I B and previously denoted
as superradiant in the introduction as the effective thickness of
the sample, proportional to the sample nuclei density.

For delayed times,τ ≫ 1/ξ, the decay has a completely
different character. The fall-off is slow, in contrast to the ini-
tial superradiant decay, and there is the onset of dynamical
beats, determined by the behavior of the Bessel function. A
typical time response forξ = 10, together with the incoher-
ent natural decay rate is shown in Figure 2a. The dynamical
beat arises in our approach of the scattering problem from the
multiple scattering terms in Eq. (15). In terms of the exciton
created by the SR pulse, the dynamical beat can be explained
as interference effects of the radiative eigenmodes of the crys-
tal. The exciton itself can be written as a Bloch wave, which
is generally not a radiative normal mode of the crystal, but
rather a superposition of the eigenmodes that have a spread in
eigenfrequencies and decay rates. Since the eigenmodes are
not Hermitian orthogonal, interference effects lead to theap-
pearance of the dynamical beats in the evolution of the exciton
[13].

The coherent width of the excitonic stateΓc is related to
the effective thickness parameterξ. For times immediately
after the SR pulse, the width of the state is constant and given
by Γc = ξΓE . However, for later timesΓc becomes time-
dependent, and its value can be calculated numerically from
the time-dependent intensity of the scattered light. For this,
we evaluate from Eq. (5)

İ(t)

I(t)
=

Γ̇c(t)

Γc(t)
− [Γ′

1 + Γ2 + Γc(t)] , (19)

where the dot denotes differentiation with respect to time,
leading to

Γ̇c(t) =

[

İ(t)

I(t)
+ Γ′

1 + Γ2 + Γc(t)

]

Γc(t) . (20)

This allows to obtainΓc(t) from the numerically calculated
intensityI(t).

If there is hyperfine splitting of the nuclear levels, or if
there are shifts between the levels of nuclei located in differ-
ent chemical sites, light with different frequency components
is emitted. This results in a quantum beat modulation of the
cooperative decay rate, varying periodically between super-
radiant and subradiant emission into the coherent channels,
with beat frequencies determined by the frequency differences
among the various transition resonances. In Figure 2b we
show as an example the intensity of the scattered light as a
function of time for a nuclear system with total angular mo-
menta of the ground and excited states are 1/2 and 3/2, re-
spectively, for which anM1 transition between the hyperfine
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FIG. 2. (a) Intensity of the coherent scattered light (solidred line), in-
coherent natural decay (dash-dotted magenta line), and superradiant
decay in Eq. (18) (dashed blue line) for a nuclear sample of effec-
tive thicknessξ = 10 and a single nuclear transition driven by the
SR pulse. (b) The hyperfine splitting of the nuclear levels produces
quantum beats in the intensity of the scattered light.

sublevels∆m = 0 is driven by the SR pulse. The quantum
beat frequencies were chosen to beΩ0 = ±28.3Γ1, which
are realistic parameters for the Mössbauer transition from the
ground state to the first excited state in57Fe.

It should be mentioned that the expression in Eq. (16), first
derived to describe the propagation and multiple scattering of
gamma rays in resonance with a nuclear absorption line, is
applicable for excitons in different physical systems and pa-
rameter regimes. For instance, it has also been derived to de-
scribe the propagation of short weak laser pulses through reso-
nant matter [30] and has been used experimentally to enhance
transient absorption in the infrared [31]. Experimentally, the
dynamical beat has been observed also in the coherent inter-
action of femtosecond extreme uv-light pulses with Helium
atoms [32]. Here the dynamical beat has been interpreted as
a light propagation effect arising from the dispersion around
an absorption resonance. A light propagation formalism fea-
turing the calculation of the refraction index in the nuclear
medium has been applied also for NFS [33], and is an equiva-
lent approach to the one presented in this work.

C. Control of the coherent decay via magnetic switching

The key to control the cooperative branching ratio is the
coherent decay of the excitonic state. Control of the coher-
ent decay of the nuclear exciton has been already used to

produce gamma echos in NFS experiments originally using
Mössbauer sources [34]. Subsequently nuclear exciton echos
produced by ultrasound vibrations of the sample in NFS of
SR were observed [35]. Here the coherent decay was manipu-
lated via the relative phase between the electromagnetic field
scattered from two sample foils. Alternatively, changing the
hyperfine magnetic field at the nuclear sites also provides a
way to control the coherent decay. Following the experiment
described in Ref. [36] on the effect of an abrupt reversal of
the hyperfine magnetic field direction for NFS of light from
a Mössbauer source, results confirming the feasibility of nu-
clear coherent control also in NFS of SR were presented in
Ref. [17]. The decay rate of57Fe nuclei in a57FeBO3 crystal
excited by 14.4 keV SR pulses was changed by switching the
direction of the crystal magnetization. The nuclear hyperfine
fields were used to partially switch the coherent decay channel
of the nuclear excitation off and subsequently on, demonstrat-
ing the possibility to store nuclear excitation energy.

We address in the following the possibility to suppress the
coherent decay for a nuclear system with hyperfine structure
by changing the magnetic field at the nuclear sites, as de-
scribed in Ref. [17]. A switching of the magnetic field direc-
tion changes the quantization axis for the nuclear system. If
such a rotation is applied almost instantaneously and directly
after the SR excitation, the quantization axis changes and the
population of the hyperfine levels is redistributed according to
the new hyperfine basis. For specific switching times and ro-
tation angles, the transition amplitudes for the coherent decay
can destructively interfere, thus suppressing the coherent de-
cay. The partial suppression and subsequent release of the co-
herent nuclear decay are the consequence of interference be-
tween the hyperfine transitions, bearing a close resemblance
to the underlying effect of electromagnetically induced trans-
parency in quantum optics [28, 37].

A detailed analysis of the effect of the switching time on
the coherent decay intensity and polarization for theM1
Mössbauer transition in iron57Fe has been carried out in
Ref. [20], following the original idea in Ref. [17]. It has been
shown that an almost complete suppression of the coherent de-
cay can be achieved for certain geometry configurations, if the
magnetic field direction is rotated from parallel to the sample
to being perpendicular to the sample and parallel to the light
propagation direction at the time moment when the quantum
beat is at its minimum [17, 20] . Assuming that originally only
∆m = 0 transitions were excited, the complete suppression of
the first order coherent scattering can be obtained by rotating
the magnetic field at the switching timets = (n− 1/2)π/Ω0,
wheren ∈ {1, 2, . . .} andΩ0 is the hyperfine energy correc-
tion for the originally driven∆m = 0 transitions.

Experimentally, the magnetic switching is facilitated in
crystals that allow for fast rotations of the strong crystalmag-
netization via weak external magnetic fields. For iron, one of
the most suitable host materials isFeBO3, a canted antifer-
romagnet with a plane of easy magnetization parallel to the
(111) surfaces. Initially, a constant weak magnetic field in-
duces a magnetization parallel to the crystal plane surfaceand
aligns the magnetic hyperfine field~B at the nuclei. The hy-
perfine field is strong, on the order of 30 T, leading to a pro-
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nounced Zeeman shift of the magnetic sublevels. The mag-
netic switching is then achieved by a pulsed magnetic field in
a perpendicular crystal plane, that rotates the magnetization
by an angleβ and realigns the hyperfine magnetic field. Be-
cause of the perfection of the crystal, the desired rotationof
the magnetization occurs abruptly, over less than 5 ns [38].
The effective decay rate in Eq. (7) then becomes

Γ̃(t) ≃ 1

t

∫ t

0

(Γ′
1 + Γ2 + Γc(s)Θ(ts − s)) ds . (21)

In the equation above, we use ”≃” instead of ”=” because
the switching is not perfect and only the leading first order
scattering of the coherent decay is suppressed.

Compared to the ideal conditions of Eqs. (8), the realistic
case presents two important differences. First, as it has been
discussed in Section II B, the coherent decay is no longer su-
perradiant forτ ≫ 1/ξ. The magnetic switching is therefore
most efficient when performed as soon as possible after the
excitation, during the time span of the superradiant coherent
decay. Second, it is not possible to suppress the coherent de-
cay immediately after the excitation, and thusts > 0. For the
already addressed case of the Mössbauer transition in57Fe,
the first moment when the magnetic switching is possible with
complete suppression of the coherent decay is given by the
first quantum beat minimumts = π/(2Ω0) ≃ 8 ns. The same
scheme can be used for anyM1 transition, independent of the
ground and excited states spins, by using an appropriate ge-
ometry that allows the SR pulse to drive only the∆m = 0
transitions. To some degree, the shortest possible switching
time can be changed by controlling the magnitude of the hy-
perfine magnetic field at the nuclei, for instance by cooling
the sample. Nevertheless, these two differences will lead to
reduced enhancement of the branching ratio compared to the
ideal case.

D. Survey of suitable Mössbauer nuclei

At present there are more than 40 isotopes with transitions
for which the Mössbauer effect has been observed. However,
most of the research on this topic is related to the57Fe iso-
tope and its traditional Mössbauer 14.4 keV transition. Nu-
clides suitable for Mössbauer spectroscopy should possess
excited nuclear states with lifetimes in the range ofµs to
approx. 10 ps, and transition energies between 5 and 180
keV. Longer (shorter) lifetimes than indicated lead, accord-
ing to the Heisenberg uncertainty principle, to too narrow
(broad) emission and absorption lines, which no longer ef-
fectively overlap. Transition energies beyond 180 keV cause
too large recoil effects which destroy the resonance, while
gamma quanta with energies smaller than 5 keV are mostly
absorbed in the source and absorber material. In order to find
out whether a particular nuclear transition proceeds recoilless,
one should calculate the Lamb-Mössbauer factor, which can
be approximated in the Debye model as [39]

fLM = exp

{

− 2ER

kBθD

(

1 + 4
T 2

θ2D

∫

θD

T

0

xdx

ex − 1

)}

. (22)

Here,kB is the Boltzmann constant,θD the Debye tempera-
ture,ER the recoil energy of the transition andT the temper-
ature of the sample. The Lamb-Mössbauer factor determines
the probability that the recoilless absorption and emission oc-
curs without exciting lattice vibrations and changing the state
of the particular nucleus. The closer to onefLM is, the larger
the fraction of recoilless excitation in NFS. Enriched iron57Fe
at room temperature, for instance, hasfLM = 0.804 [40].

Among the Mössbauer elements that have been experimen-
tally confirmed, eight of them have more than one Mössbauer
transition and present an interesting three-level system for the
cooperative branching ratio control as the ones shown in Fig-
ure 1. This would allow for instance for enhanced storage of
energy in an isomeric state, or isomer depletion. However,
none of the levels involved are really long-lived and therefore
do not present the incentive of isomeric state population. It is
possible that other nuclear transitions of the Mössbauer iso-
topes with energies and lifetimes within the required param-
eters might be also proceeding recoillessly. In particularin-
teresting are the Mössbauer nuclei which present an isomeric
state, such as189Os or 178Hf. The178m2Hf isomer is a high-
energy long lived isomer withτ = 31 y andE = 2.4 MeV
[41]. The isomer’s conveniently long lifetime and high excita-
tion energy of 2.4 MeV make it particularly attractive for the
study of possible energy release on demand. Until now, the at-
tempts to trigger the energy release from the 31-year178m2Hf
isomer via broadband SR have been a highly controversial is-
sue [42–45].

The 189mOs 30.814 keV isomer with natural lifetime
τ0 = 5.8 h has possible triggering levels at 97.35 keV and
216.663 keV. Out of these, the transition to the 97.35 keV is
more likely to be recoilless due to its smaller energy. Os-
mium’s Debye temperature is somewhat uncertain, with tab-
ulated values ofθD = 411 ± 94 K [46]. Assuming a value
of 500 K, we obtain using Eq. (22) a Lamb-Mössbauer factor
of only 0.1. In the case of178m2Hf, the isomer has an experi-
mentally confirmed triggering level at 2573.5 keV, 126.1 keV
above the metastable state. The excitation of the isomer to
this level would however not proceed recoillessly due to the
high transition energy. A controversial low-lying triggering
level at about 40 keV above the isomer observed by Ref. [42]
in triggering experiments using broadband SR light could not
be confirmed by other groups [43, 44]. If such a level exists,
precise knowledge of its position is desirable for the efficient
coherent excitation of the triggering transition via monochro-
matized SR light. For the case of confirmed triggering tran-
sitions, the Lamb-Mössbauer factor for energies of around40
keV reaches for hafnium a value of approx. 0.2. Since both
osmium and hafnium have rather small Lamb-Mössbauer fac-
tors, one can envisage implanting the isomers into a host mate-
rial with higher Debye temperature. Estimating the recoilless
fraction of absorption and emission in nuclear transitionsfor
impurities in hard crystalline host materials requires however
dedicated calculations.

Another practical issue is whether a fast efficient mag-
netic switching is possible in crystals containing178m2Hf or
189mOs isomers. Although the advantageousFeBO3 crystal
can only provide fast magnetic switching for57Fe, other mag-
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FIG. 3. The time-dependent coherent widthΓc(τ ) corresponding to
the scattered intensity spectrum presented in Figure 2b. See text for
further explanations.

netic materials may be used for different nuclei as189mOs or
178m2Hf. Thin films in multilayer structures with high co-
ercitivity, for instance, allow for a good control of the crys-
tal magnetization. Due to specific layer couplings, multilayer
and superlattice systems can exhibit a richness of magnetic
properties that is not found in bulk materials [14]. Very thin
layers of almost all transitive metals can be deposited on su-
perpolished wafers by rf-magnetron sputtering in a rare gasat-
mosphere [14, 47]. Depending on what nucleus is envisaged,
the host material with proper magnetic properties should be
sought for. Also, depending on the multipolarity and the nu-
clear state spins of the involved levels, the geometry and the
switching parameters have to be investigated, following the
procedure described in Ref. [20].

III. RESULTS

To assess the performance of cooperative branching ratio
control and state-selective x-ray pumping in NFS, we have in-
vestigated a general test case of a nuclear three level system
with a M1 |G〉 ↔ |E〉 transition driven by the SR pulse, as
depicted in Figure 1(a). The third intermediate level is as-
sumed to be metastable. We are interested to find out which
fraction of the originally excited nuclei|E〉 reach the isomeric
state|I〉 and how does their number depend on the sample
properties. The nuclear level population dependence on the
dimensionless timeτ can be calculated from Eqs. (3). For
this general case we have made the approximationΓ′

1 = Γ1.
Assuming an initial geometry of the setup such that the SR
pulse only drives the∆m = 0 transitions, there are mainly
two nuclear parameters that determine the scattered light in-
tensity and subsequently the pumping performance. One of
them is the hyperfine energy correctionΩ0, and the other one
is the natural, incoherent branching ratiob1, see Eq. (2). Ad-
ditionally, the effective thickness of the sample, correspond-
ing to the number of Mössbauer nuclei present in the sample,
also plays an important role, as it will be discussed later on.
Although the effective thickness depends on the radiative nu-
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FIG. 4. The populationN(τ )/N0 of the three nuclear levels as a
function of the dimensionless time parameterτ for unperturbed co-
herent decay. The single-nucleus branching ratio was takenfor this
caseb = 0.5 and the effective thickness of the sampleξ = 10. The
horizontal dotted lines indicate the steady state values.

clear resonance cross sectionσR, ξ is rather considered to be
a sample than a nuclear parameter.

In Figure 3 we present the time dependence of the coher-
ent decay widthΓc(t) as obtained numerically according to
Eq. (20) from the intensity of the scattered radiation in Fig-
ure 2b. While the coherent width is large close toτ = 0, it
becomes negligible afterwards. The quantum beat due to the
presence of two driven hyperfine transitions appearing in the
intensity appears also in the time dependence of the coherent
decay width.

The numerical results for the time dependence of the nu-
clear levels population are given in Figure 4 for the case
of a natural, incoherent branching ratio ofb = 0.5, Ω0 =
±28.3ΓE andξ = 10. The coherent decay only plays an im-
portant role immediately after the SR pulse, andΓc(t) ≃ 0
for increasingτ ≫ 1/ξ. For τ . 1/ξ, practically all decay
of the excited state|E〉 occurs to the ground state, with very
small population of the isomeric state|I〉. However, at larger
times the coherent decay is practically zero and the remaining
excited nuclei decay to the|G〉 and|I〉 states according to the
incoherent branching ratio.

Magnetic switching offers the possibility to reduce the ef-
fective period of the coherent decay, by suppressing it be-
ginning with the first minimum of the quantum beatts =
π/(2Ω0). The time-dependent population of the three nuclear
levels can be obtained from solving the set of equations (3)
with the partly suppressed coherent widthΓc(t)Θ(ts−t). Nu-
merical results are presented in Figure 5 for the same case of
a incoherent branching ratio ofb = 0.5 and an effective thick-
ness of the sample ofξ = 10. We see that more nuclei decay
to the isomeric state than in the case of unperturbed coherent
decay presented in Figure 4.

The effective thicknessξ (corresponding to the number of
Mössbauer nuclei in the sample) determines the coherent nu-
clear widthΓc(0) = ξΓE at the incidence of the SR pulse.
Since the number of nuclei excited by the SR pulse depends
on both the number of Mössbauer nuclei in the sample and
on the width of the nuclear excited state, we haveN0 ∼ ξ2.
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FIG. 5. The populationN(τ )/N0 of the three nuclear levels as a
function of time for suppressed coherent decay starting with ts =
π/(2Ω0). The incoherent branching ratio is taken to beb = 0.5 and
the effective thickness of the sample isξ = 10. The horizontal dotted
lines indicate the steady state values.
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FIG. 6. Excited state population for the unperturbed coherent decay
(no switching) for several effective thickness parametersξ.

The coherent scattering on a thick sample is therefore more
efficient in pumping the nuclear excited state|E〉. A larger
effective thickness increases the number of excited nucleiin
the sample and also the speed of the coherent decay. In order
to separate these two aspects, we investigate the dependence
of the excited state populationNE(τ)/N0 on the thickness
parameterξ in Figure 6 for the case of unperturbed coherent
decay. The time-dependence of the excited state population
for the thickness parametersξ = 10, 20, 30, 40 and80 is pre-
sented. The main differences occur for small timesτ . At large
timesτ , only the incoherent decay determines the decay of the
excited state, and the excited state population becomes almost
the same for all consideredξs. As it appears from Figure 6, for
the chosen effective thickness parameters, the coherent decay
accounts only for the decay of about a half of the originally
excited nuclei. This fraction is increasing with increasing ξ.
The remaining half of the excited state population decays in-
coherently, under the natural exponential decay law with the
incoherent branching ratiob.

The population of the isomeric state|I〉 decreases with the
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FIG. 7. Steady-state isomeric state population plotted against the ef-
fective thickness parametersξ. The black dashed line shows the case
of unperturbed coherent decay without switching. The red solid line
shows corresponding results with coherent control of the branching
ratio. The blue dash-dotted line indicates the single-particle result
without cooperative decay.

effective thickness parameter, as shown in Figure 7. This fig-
ure shows the steady state population of the isomeric state af-
ter the excited state population has completely decayed. How-
ever, the actual number of nuclei that have reached the iso-
meric state|I〉 is given byN0 Pi(t) and will in fact increase
with the thickness parameterξ. The linear dependence ofN0

on ξ dominates the non-linear behavior shown in Figure 7.
Let us now consider the case of magnetic switching sup-

pression of the coherent decay. The new dependence of the
isomeric state population|I〉 on ξ is shown as solid red line
in Figure 7. Compared to the case of no switching, the iso-
meric state population for eachξ is larger. Nevertheless, with
increase of the thickness parameter, the population of the iso-
meric state decreases as in the case without switching. More-
over, towards highξ, the population of the isomeric state with
and without switching becomes approximately the same. This
is due to the relation between the sample effective thickness
ξ and the coherent decay speed-up. As discussed in Sec-
tion II B, the coherent decay is superradiant only for times
τ . 1/ξ. The larger the thickness of the sample, the faster
is the coherent decay extinguished, leaving active only the
incoherent decay channels. The effect on the switching at
τs = tsΓE = π/56.6 = 0.055 is therefore less and less ef-
ficient for increasingξ, since most of the superradiant decay
occurs before the switching.

Finally, in Figure 8 we show a comparison of the coopera-
tive branching ratiobc(τ) calculated with and without switch-
ing at ts for ξ = 10 and an incoherent branching ratio of
b = 0.5. Eventually, if by varying the hyperfine magnetic
field (and consequently the hyperfine energy correctionΩ0)
the switching occurs immediately after the formation of the
exciton and suppresses all the coherent decay, one obtains an
enhancement factor of the isomeric state population of approx.
1.70 for ξ = 10, 1.86 forξ = 40 and 1.93 forξ = 80. A
more straightforward alternative for eliminating the coherent
decay channel immediately after the excitation is to destroy
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FIG. 8. The cooperative branching ratiobc(τ ) corresponding to an
incoherent branching ratio ofb = 0.5 with and without switching at
τ = 0.055 for an effective thickness parameter ofξ = 10.

the phase coherence of the exciton, e.g., by applying a spa-
tially inhomogeneous external field. The obtained enhance-
ment factor is in direct relation with the previously made ob-
servation that the coherent decay accounts only for the decay
of about a half of the originally excited nuclei. The main ad-
vantage for the pumping of the isomeric state|I〉 is therefore
rather occurring due to large coherent widthΓc(0) which in-
creases the excitation probability of the originally populated
state|E〉. Since the effective thickness can take very large
values (an effective thickness ofξ = 100 corresponds to the
actual sample thickness of about 20µm in the case of iron
57Fe), the enhancement factor can be substantial. However,
the actual lengthlc over which the SR light is coherent and can
produce the cooperative excitation is limited by scattering and
absorption processes. As an example, the enhancement for the
14.4 keV resonance in57Fe, one of the most used Mössbauer
transitions in NFS, is limited by photoabsorption to103 [13].

IV. CONCLUSIONS

In this paper we have studied the effects of coherent reso-
nant scattering of SR light off nuclei that present a three-level
scheme with a metastable target state. The two investigated
x-ray pumping configurations correspond to the population or
the depletion of the long-lived nuclear state, respectively. The
additional coherent decay channel that arises due to spatial co-
herence effects renders the tabulated constant branching ratios
that only include the incoherent decay channels obsolete.

We have therefore introduced a cooperative branching ra-

tio for the three-level system, which monitors the evolution
of the nuclear excited levels population and accounts for the
additional time-dependence of the coherent decay of the exci-
ton. This cooperative branching ratio is time-dependent and
at short times after the excitation can be very different than
the incoherent, natural branching ratio. The possibility to con-
trol this cooperative branching ratio and to increase the isomer
population or depletion in our three level system by magnetic
switching was investigated.

In the ideal case, assuming purely superradiant decay of the
nuclear exciton with constant rate and the possibility of instan-
taneous suppression of the coherent decay, the population in
the target state can be enhanced via cooperative branching ra-
tio control. The superradiant enhancement factorξ has been
identified to be the effective thickness of the sample, limited
only by the coherence length of the SR pulse.

Although at first sight promising, the enhancement brought
by control of the coherent decay in the actual implementation
in NFS of SR turns out to be only of a factor of approx. 2. The
main reason for this is that the decay is only initially superra-
diant, and the suppression of the coherent decay is only pos-
sible after a minimum non-zero time. However, the creation
of a nuclear exciton, which has as requirement the recoilless
nuclear absorption and decay, can enhance the nuclear excita-
tion probability by up to three orders of magnitude. The en-
hancement of the excitation probability itself is then reflected
in the population of the other two nuclear states|I〉 and|G〉.
We conclude therefore that release on demand of the nuclear
energy stored in isomers is facilitated by coherence effects
when occurring by driving a Mössbauer transition to a trigger-
ing level. An experimental verification of the Mössbauer and
magnetic switching properties of nuclei in metastable states
is the first step for coherent control of nuclear state popula-
tion and decay properties. In this direction, improvement in
sample preparation and techniques related to thin films of ra-
dioactive atoms as host material open new possibilities in the
investigation of exotic, unstable nuclei or isomeric states. In
conjunction with the present overall trend to perform tradi-
tional nuclear and atomic physics experiments originally de-
veloped on stable nuclei with radioactive, metastable or exotic
nuclear species, such investigations are on their way.
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