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Dedicated to Murray Gerstenhaber and Jim Stasheff

TOPICS IN ALGEBRAIC DEFORMATION THEORY

ANTHONY GIAQUINTO

Abstract. We give a selective survey of topics in algebraic deformation the-
ory ranging from its inception to current times. Throughout, the numerous
contributions of Murray Gerstenhaber are emphasized, especially the common
themes of cohomology, infinitesimal methods, and explicit global deformation
formulas.

1. Introduction

The concept of deformation is pervasive in mathematics. Its aim is to study
objects of some type by organizing them into continuous families and determine how
objects in the same family are related. This is the classic problem of determining the
“moduli” of an algebra or of a more general structure. The moduli are, roughly,
the parameters on which the structure depends. The idea goes back at least to
Riemann who, in his famous treatise [Ri57] on abelian functions, showed that the
Riemann surfaces of genus g form a single continuous family of dimension 3g − 3.
This family is the prototype of a moduli space, a concept central to deformation
theory.

The modern era of deformations began with the pioneering work of Fröhlicher-
Nijenhuis [FN57] and Kodaira-Spencer [KS58] on deformations of complex mani-
folds. In particular, we see in [FN57] the first formal use of infinitesimal (coho-
mological) methods in a deformation problem as the authors prove that if X is a
complex manifold, T its sheaf of holomorphic tangent vectors, then there can be no
perturbation of the complex structure whenever H1(X,T ) = 0. In the monumental
treatise [KS58], Kodaira and Spencer then developed a systematic theory of defor-
mations of complex manifolds, including the infinitesimal and obstruction theories.
For the case of Riemann surfaces, there are no obstructions as H2(X,T ) = 0.

Algebraic deformation theory began with Gerstenhaber’s seminal paper [Ge64].
Although the analytic theory served as a model, numerous new concepts lie within
the realm of algebraic deformation theory. In fact, all formal aspects of analytic
deformations of manifolds are special cases of those in the algebraic theory – this
will be made precise in section 8.

Infinitesimal methods for algebra deformations are governed by Hochschild co-
homology. The study of infinitesimals led to the discovery of the Gerstenhaber
algebra structure on HH∗(A,A), see [Ge63]. The ingredients of a Gerstenhaber
algebra – compatible graded Lie and commutative products – occupy a central
position in “higher structures in mathematics and physics.” Another key higher
structure is that of the various infinity algebras: A∞, L∞ and their generaliza-
tions. These structures have roots in Stasheff’s landmark treatise [Sta63], which,
coincidentally appeared in the same year as [Ge63]. While disjoint at the time,
the ideas in Gerstenhaber’s and Stasheff’s 1963 papers would become closely in-
tertwined in the years to come. Indeed, Gerstenhaber called the entire Hochschild
cohomology HH∗(A,A) the “infinitesimal ring” of A in [Ge63], even though only
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the components of HHi(A,A) with i ≤ 3 had natural interpretations related to in-
finitesimals and obstructions. But more than 30 years later, it became well known
that the entire Hochschild cohomology HH∗(A,A) is the space of infinitesimals of
deformations of A to an A∞ algebra.

This survey only represents a sampling of ideas in algebraic deformation theory.
None of the discussion is new, except for the results in the last section on algebra
variations. Many ideas are only sketched and proofs are omitted. More topics are
left out than included. In particular, the theory of deformation quantization is
largely left out – the reader is referred to Sternheimer’s contribution [Ste] in this
volume and the references therein for the important physical perspective. Also left
out is the deformation theory of infinity algebras, gerbes, stacks, chiral algebras,
affine and dynamical quantum groups, and the like. More comprehensive surveys
of algebraic deformation theory and quantization can be found in the excellent
treatises [GS88] [CKTB05] and [DMZ07].

Algebraic Deformations

Let A be an associative algebra over a commutative ring k.

Definition 1. A formal deformation of A is a k[[t]]-algebra At which is flat and
t-adically complete as a k[[t]]-module, together with an isomorphism A ≃ At/tAt.

For every deformation, there is a k[[t]]-module isomorphism between At and
A[[t]]. Once such an isomorphism is fixed, the multiplication in At is necessarily of
the form

µt : A[[t]]⊗k[[t]] A[[t]] → A[[t]] with µt(a, b) = ab+ µ1(a, b)t+ µ2(a, b)t
2 + · · ·

where ab represents the multiplication of A and each µi ∈ Hom(A⊗A,A) is extended
to be k[[t]]-bilinear. Setting µ0(a, b) = ab, we have µt =

∑

µit
i and µt(a, b) will be

denoted = a ∗ b.
It is clear that one can consider formal deformations of other algebraic struc-

tures (Lie algebras, bialgebras, algebra homomorphisms, etc. ) by modifying the
above definition to suit the appropriate category. The deformation of an algebraic
structure is usually subjected to the same equational constraints as the original
structure:

• Associative algebra A: (a ∗ b) ∗ c = a ∗ (b ∗ c). If A is commutative we can
also require a ∗ b = b ∗ a.

• Lie algebra L: [a, b]t = −[b, a]t and the Jacobi identity for [a, b]t = [a, b] +
[a, b]1t+ [a, b]2t

2 + · · · .
• Bialgebra B: associativity of ∗, coassociativity of ∆t(a) = ∆(a)+∆1(a)t+
· · · , and ∆t(a ∗ b) = ∆t(a) ∗∆t(b).

• Algebra homomorphism φ : A → A′: φt(ab) = φt(a)φt(b) with φt(a) =
φ(a) + φ1(a)t+ φ2(a)t

2 + · · · .

Even though in this note we are concerned with formal deformations, there are
many important and explicit instances for which the deformed products converge
or are even polynomial in t when k = R or C.

2. The deformation philosophy of Gerstenhaber

The pioneering principle of Gerstenhaber is that the equational constraints above
can be naturally interpreted in terms of the appropriate cohomology groups and
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higher structures on them. In particular, the infinitesimal (linear term of the de-
formation) is a cocycle in the cohomology group – Hochschild HH2(A,A) in the
associative case, HarrisonHar2(A,A) in the commutative case, Chevalley-Eilenberg
H2

CE(L,L) in the Lie case, Gerstenhaber-Schack H2
GS(B,B) in the bialgebra case,

and the diagram cohomology H2
d(φ, φ) in the algebra homomorphism case. More-

over, the obstructions to extending infinitesimal and n-th order deformations to
global ones are controlled by the differential graded Lie algebra structure on the
cohomology.

In the associative case, the graded Lie structure (and much more) was laid out
in [Ge63]. There it was shown that the Hochschild cohomology HH∗(A,A) =
⊕

n≥0H
n(A,A) has a remarkably rich structure consisting of two products,

• A graded commutative product where degHHp(A,A) = p,
• A graded Lie product where degHHp(A,A) = p− 1,
• [α,−] is a graded derivation of the commutative product.

A graded k-module satisfying the above conditions is a Gerstenhaber algebra. Other
notable examples are

∧∗
L (where L is a Lie algebra), H∗(X,

∧∗
T ) (where X is

a manifold and T is its sheaf of tangent vectors), and the diagram cohomology
H∗

d (A,A) of an arbitrary presheaf A of k-algebras (to be defined in Section 8).
The Chevalley-Eilenberg, Harrison, and bialgebra cohomology cohomologies carry
graded Lie brackets, but are not Gerstenhaber algebras in general.

In [Ge63], the commutative and Lie products on the Hochschild cohomology
HH∗(A,A) are defined at the cochain level and are proved to descend to the level
of cohomology. An intrinsic interpretation of the graded Lie structure was given by
Stasheff in [Sta93]. There he proved that the Gerstenhaber bracket coincides with
the natural graded bracket on Coder(BA,BA), where BA is the bar complex of A.

Returning to the equational constraints for a deformation of an algebra A, the
associativity of µt can succinctly be expressed in terms of the Gerstenhaber bracket
as [µt, µt] = 0. Writing µt = µ0+µ

′ it follows that 2[µ0, µ
′]+ [µ′, µ′] = 0. Since the

coboundary in the shifted Hochschild complex C∗(A,A)[1] is δ = [µ0,−], the first
summand is 2δµ′. Thus we arrive at the fundamental associativity equivalences

(1) µt associative ⇐⇒ [µt, µt] = 0 ⇐⇒ δ(µ′) +
1

2
[µ′, µ′] = 0.

Thus µt is associative if and only if µ′ satisfies the Maurer-Cartan equation. Al-
though not explicitly stated as such, the idea that deformations are governed by a
differential graded Lie algebra and solutions to the Maurer-Cartan equation goes
back to Gerstenhaber’s original paper [Ge64].

3. Algebras with Deformations

The search for deformations of an algebraic structure A begins with the appro-
priate cohomology group (usually H2(A,A)) which comprises the infinitesimals.
Given an infinitesimal µ1, the basic question is whether it can be integrated to a
full deformation or not. In other words, is it possible to find µ2, µ3, . . . such that
µ′ =

∑

i≥1 µit
i satisfies the Maurer-Cartan equation. Of course, the vanishing of

the obstruction group (usually H3(A,A)) guarantees that any infinitesimal is in-
tegrable, but this is rarely the case. A necessary condition in general is that the
primary obstruction, [µ1, µ1], must equal zero. There are then higher obstructions
which must vanish in order for µ1 to be integrable. Thus, a reasonable starting
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point for deformations is to first determine which infinitesimals have a vanishing
primary obstruction. Remarkably, in several fundamentally important cases, all
infinitesimals µ1 with [µ1, µ1] = 0 can be integrated. In fact, some of the most
celebrated theorems in deformation theory are expressions of this phenomenon.

Perhaps the most studied algebra deformations are those which lie in the realm
of deformation quantization, a concept introduced in the seminal paper [BFFLS78].
Suppose X is a real manifold and A = C∞(X). Then HH2(A,A) can be identified
with the space of bivector fields α ∈ Γ(X,∧2T ), and the primary obstruction to α
is the Schouten bracket [α, α]. The condition [α, α] = 0 asserts that α determines
Poisson structure on X . In [BFFLS78] it was asked whether any Poisson structure
can be quantized. The affirmative answer to this question is one of the jewels of
deformation theory.

Theorem 1 (Kontsevich). Any Poisson manifold can be quantized. More gen-
erally, there is, up to equivalence, a canonical correspondence between associative
deformations of the algebra A and formal Poisson structures αt = α1t+α2t

2 + · · ·
on A.

Also in [Ko97] is a remarkable explicit quantization formula for X = Rn. The
formula involves certain weighted graphs which determine the ∗-product expansion.
A physical interpretation of the deformation quantization formula in terms of path
integrals of models in string theory was made precise by Cattaneo and Felder in
[CF00]. In the case where X is a smooth algebraic variety, quantization of Poisson
brackets is also possible, but significant modifications of the approach are necessary,
see [Ko01], [VdB07], and [Ye05].

Another case where the primary obstruction to integrating an infinitesimal is
the only one is in the realm of quantum groups. Consider a Lie bialgebra a. The
cocommutator, δ : a → a ⊗ a, can be extended to an infinitesimal deformation
of the coalgebra structure of Ua which is compatible with the Lie bracket on a,
and hence the multiplication in Ua. The cocommutator may thus be viewed as an
infinitesimal whose primary obstruction vanishes. Drinfel’d asked in [Dr92] whether
any Lie bialgebra can be quantized. The affirmative answer to this question is
another famous result in deformation theory.

Theorem 2 (Etingof-Kazhdan). Any Lie bialgebra can be quantized. That is, if
a is a Lie bialgebra, then there exists a Hopf algebra deformation of Ua whose
infinitesimal is the cocommutator of a.

The quantization of Ua depends on a choice of Drinfel’d associator. It is known
that associators are not unique and are notoriously difficult to compute with.

Many of the results pertaining to quantization of solutions to the various types of
classical Yang-Baxter equation can also be viewed as examples of the phenomenon
that in certain situations, the primary obstruction to integrating an infinitesimal
structure is the only one. Some of these instances will be discussed in Section 7.

In general, the condition [µ1, µ1] = 0 does not guarantee that an infinitesimal
µ1 is integrable. The earliest known example is geometric in nature and predates
the algebraic theory. In [Do60], Douady exhibited an example of an infinitesimal
deformation (in the Kodaira-Spencer sense) of the Heisenberg group whose primary
obstruction vanishes, yet its secondary obstruction, a Lie-Massey bracket fails to
vanish. More recently and in the algebraic case, Mathieu has given examples of
commutative Poisson algebras which cannot be quantized, see [Mat97].



TOPICS IN ALGEBRAIC DEFORMATION THEORY 5

4. Algebras without deformations

A deformation At of an algebra A is trivial if there is a k[[t]]-algebra isomorphism
Φt : At → A[[t]] which reduces the identity modulo t. An algebra is rigid if it has
no non-trivial deformations. The cohomology results of Section 2 provide the first
elementary result in deformation theory.

Theorem 3. If H2(A,A) = 0 then A is rigid.

Algebras which satisfy the hypothesis of Theorem 3 are called absolutely rigid.
Here are some notable examples of absolutely rigid algebras in various categories.

• Any separable k-algebraA is rigid as these are characterized byHHn(A,−)
for all n ≥ 1.

• The enveloping algebra Ug of a finite dimensional semisimple Lie algebra
g is rigid as an algebra as HHn(Ug, Ug) = 0 for n ≥ 1. It does admit
deformations as a Hopf algebra.

• The coordinate ring O(V ) of a smooth affine variety V is rigid as a com-
mutative algebra as Harn(O(V ),O(V )) = 0 for n ≥ 1 – a more precise
interpretation of the cohomology O(V ) will be given in Section 6. It does
admit noncommutative deformations however.

• The m-th Weyl (Heisenberg) algebra Am is rigid as HHn(Am, Am) = 0 for
n ≥ 1.

The converse of Theorem 3 is known to be false in many instances. Richardson
has provided in [Ri67] examples of rigid Lie algebras L with H2

CE(L,L) 6= 0. In the
associative case, Gerstenhaber and Schack have given examples of rigid associative
algebras when char(k) = p in [GS86]. Remarkably, the question of whether there
exist rigid associative algebras A in characteristic zero with HH2(A,A) 6= 0 is still
an open question even in the case where A is a finite-dimensional C-algebra.

The rigid algebras of Gerstenhaber and Schack in char(k) = p are not everyday
examples. The smallest rigid algebra constructed with HH2(A,A) 6= 0 is a 669-
dimensional algebra over F2. The algebra is a poset algebra of a suspension of a
triangulation of the projective plane.

The proof of the rigidity of these algebras despite non-zero HH2(A,A) is based
on an elementary but fundamental theorem of [GS86] concerning relative Hochschild
cohomology. If S is a subalgebra of A then a cochain F ∈ Cn(A,A) is S-relative if

(2) F (sa1, . . . , an) = sF (a1, . . . , an), F (a1, . . . , ans) = F (a1, . . . , an)s,

and F (. . . , ais, ai+1, . . .) = F (. . . , ai, sai+1, . . .)

for all s ∈ S and ai ∈ A. Further, an S-relative cochain F is reduced if F (a1, . . . , an) =
0 whenever any ai ∈ S.

Theorem 4. If S is a separable subalgebra of k, then the inclusion of the complex of
reduced S-relative cochains into the full Hochschild complex induces an isomorphism
of cohomology.

The theorem significantly reduces cohomology computations whenever A has a
large separable subalgebra. For example, a poset algebra is a subset of the algebra
of n×n matrices and one may take S to be the diagonal matrices. Using Theorem
4 it is elementary to show that the Hochschild cohomology of the poset algebra
coincides with the simplicial cohomology of the geometric realization or nerve (see
Section 8) of the poset.
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Another application of the theorem is in the computation of the cohomology of
a crossed product algebras. Let V be a finite dimensional k-vector space, SV its
symmetric algebra, and G a finite group which acts on V , and hence on SV . For
x ∈ SV and g ∈ G denote the action of g on x by xg. The crossed product SV ⋉G
has underlying space SV ⊗ kG, with the usual multiplication in SV and kG, and
relations (1⊗ g)(x⊗ 1) = xg ⊗ g for x ∈ SV and g ∈ G. For simplicity, we omit the
tensor product symbol and write an element x⊗ g simply as xg.

When |G| is invertible in k, then Maschke’s Theorem asserts that kG is separable
– let us assume this here. In this case, we may compute HH∗(SV ⋉ G,SV ⋉ G)
using reduced kG-relative cochains. For such a cochain F , we have

F (x1g1, x2g2 . . . , xngn) = F (x1, x
g1
2 . . . , xg1···gn−1

n ) g1 · · · gn.

The right side of the equation is an element of Cn(SV, SV ⋉ kG) and it is easy to
see that it is G-invariant in the sense that

gF (x1, . . . , xn)g
−1 = F (gx1g

−1, . . . , gxng
−1).

Therefore we obtain

HH∗(SV ⋉G,SV ⋉G) ≃ (HH∗(SV, SV ⋉G))G.

A complete computation of the cohomology can be found in many sources, and
one which explicitly uses kG-relative cohomology is [Pi06]. There is interest in
crossed product cohomology and deformations as they have geometric implications
for orbifolds (see [CGW04]) and in the theory of symplectic reflection algebras (see
[EG02] and Section 9 of this survey).

It is interesting to note that some of the rigid algebras listed above naturally
appear in parametrized families, a seeming contradiction to the general theory.
For example, consider Oλ = C[x, y] with y2 = x(x − 1)(x − λ), the ring of regular
functions on an affine elliptic curve. If λ is close to λ′ then Oλ ≇ Oλ′ . Nevertheless,
HH2(Oλ,Oλ) = 0. According to Kontsevich, the problem here is that the variety,
being affine, is not compact and formal deformation theory for non-compact objects
can give “nonsensical” results, see [Ko01]. In the associative case, a “compact”
object is a finite-dimensional algebra and so we expect other nonsensical results for
some infinite-dimensional algebras. Here is such an example: the first quantized
Weyl algebra Aq = C〈x, y〉/(qxy − yx − 1) is not isomorphic to A1 for q near 1.
However, as noted above, HH2(A1, A1) = 0. To put this into a formal deformation
theoretic perspective, let q = 1 + t. Then there is indeed an analytic isomorphism
φ : A1[[t]] → Aq[[t]], but it has zero radius of convergence. A similar phenomenon
happens for the situation with Oλ and Oλ′ . The problem is that passing to the
formal power series versions of these algebras has trivialized the deformations.

The above examples suggest that the classic deformation theory of a single alge-
bra does not always detect the dependency of an algebra on parameters. However,
the more general diagram cohomology theory of Section 8 can detect such de-
pendencies, but does not show how the algebras vary with the parameters. The
construction of the algebras with varying moduli can be accomplished through the
idea of a variation of algebras. This concept will be addressed in Section 10.

5. Universal Deformation Formulas

The process of constructing deformations using the infinite step-by-step proce-
dure of extending deformations of order n to n + 1 for each n ≥ 1 is impractical.
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There are instances though in which a closed form for µt is known. One is the
explicit quantization of Poisson brackets on Rn given in [Ko97]. Another comes
from the use of “universal deformation formulas” which are, in essence, Drinfel’d
twists which act on a certain classes of algebras. The prototypical example of this
type of formula was given by Gerstenhaber in [Ge68]. There it was observed that
if φ and ψ are commuting derivations of any associative algebra (in characteristic

zero), then a ∗ b =
∑

φn(a)ψn(b)
tn

n!
is associative. The most famous use of this

idea gives the Moyal product. For example, if A = k[x, y] with φ = ∂x and ψ = ∂y,
then we have x ∗ y− y ∗ x = t, and the deformation is isomorphic to the first Weyl
algebra as long as t 6= 0. When φ = x∂x and ψ = y∂y then the deformation is
graded and isomorphic to the skew-polynomial ring k〈x, y〉/(qxy− yx) with q = et.
These examples can of course be extended to higher dimensions.

Definition 2. Suppose B = (B,∆, 1, ǫ) is a bialgebra with comultiplication ∆, unit
1, and counit ǫ. A universal deformation formula (UDF) based on B is an element
F ∈ (B ⊗B)[[t]] such that

((∆⊗ 1)(F ))(F ⊗ 1) = ((1 ⊗∆)(F ))(1 ⊗ F ) and (ǫ⊗ 1)F = (1 ⊗ ǫ)F = 1⊗ 1.

The virtue of a UDF is that for any B-module algebra A, the product a ∗ b =
µ ◦ F (a⊗ b) is associative and hence is a deformation of A, see [GZ98].

Example 1. Suppose B is commutative and let r ∈ P ⊗ P where P is the space
of primitive elements. Then F = exp(tr) is a UDF. Primitive elements of B act
as derivations of any B-module algebra and so this UDF gives a wide range of
Moyal-type deformations.

Example 2. Let B = Us, where s is the Lie algebra with basis {H,E} and relation

[H,E] = E. Set H〈n〉 = H(H + 1) · · · (H + n − 1). Then F =
∑ tn

n!
H〈n〉 ⊗ En

is UDF. For an example of its use, take A = k[x, y] with the derivations H = x∂x
and E = x∂y. The deformed algebra has the relation x ∗ y − y ∗ x = tx2 and is
the Jordan quantum plane. Numerous generations of this UDF can be found in
[KLO01], [LS02] and the references therein.

Example 3. Let g ⊗ g be a Lie algebra and let r ∈ g ∧ g satisfy [r, r] = 0, where
[−,−] is the Schouten bracket. Drinfel’d has shown in [Dr83] that there exists a
UDF F = 1 ⊗ 1 + tr + O(t2). Examples 1 and 2 are of this form. It should be
noted that [r, r] = 0 means that r is a skew-symmetric solution of the classical
Yang-Baxter equation.

Example 4. Let B be the bialgebra generated by {D1, D2, σ} with relations D1D2 =
D2D1, Diσ = qσDi (i = 1, 2), and comultiplication

∆(D1) = D1 ⊗ σ + 1⊗D1, ∆(D2) = D2 ⊗ 1 + σ ⊗D1, ∆(σ) = σ ⊗ σ.

Then F = expq(tD1⊗D2) is a UDF, where the q-exponential is the usual exponential
series with n! replaced by nq!.

Note that for any B-module algebra, σ acts as an automorphism and. the el-
ements D1, D2 act as commuting skew derivations with respect to σ. Thus, this
UDF provides q-Moyal type deformations. For example, it can be used to de-
form the quantum plane k〈x, y〉/(qxy − yx) to the first quantized Weyl algebra
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Aq = k〈x, y〉/(qxy − yx − 1). Formulas of this type were also used in [CGW04]
to deform certain crossed products SV ⋉G.

Recently, universal deformation formulas have arisen naturally in the work of
Connes and Moscovici on Rankin-Cohen brackets and the Hopf algebraH1 of trans-
verse geometry, see [CM04]. Rankin-Cohen brackets are families of bi-differential
operators on modular forms. These brackets can be assembled to give universal
deformation formulas. Some applications appear in [CM04]. The formulas based
on H1 are also connected to certain topics in deformation quantization as it relates
to the Poisson geometry of groupoids and foliations. see [BTY07].

6. Commutative Algebras and the Hodge Decomposition

Let A be a commutative algebra over a field of characteristic zero. In [Ba68],
Barr proved that the Harrison cohomology Harn(A,A) is a direct summand of the
Hochschild cohomology HHn(A,A). The key to this splitting was Barr’s discovery
of an idempotent en inQSn, the rational group algebra of the symmetric group. The
symmetric group acts on Cn(A,M) (the Hochschild n-cochains ofA with coefficients
in a symmetric A-bimodule M) via σF (a1, . . . , an) = F (aσ1, . . . , aσn). Barr proved
that δ(enF ) = en+1(δF ), where δ is the Hochschild coboundary operator. Thus
HHn(A,M) splits as enHH

n(A,M)⊕ (1− en)HH
n(A,M), and the latter piece is

Harn(A,M). Barr’s work received little attention until 1987 when Gerstenhaber
and Schack extended the splitting, see [GS87]. In QSn there are n mutually orthog-
onal idempotents en(1), . . . , en(n) with the property that δ(en(r)F ) = en+1(r)(δF )
for all F ∈ Cn(A,M). The relation between the idempotents and coboundary give
the following fundamental theorem.

Theorem 5 (Hodge Decomposition). Suppose char(k) = 0 and let A be a commu-
tative algebra and M a symmetric A-bimodule. Then there is a splitting

HHn(A,M) = HH1,n−1(A,M)⊕HH2,n−2(A,M)⊕ · · · ⊕HHn,0(A,M)

where HHr,n−r(A,M) is the cohomology of the complex e∗(r)C
∗(A,M).

Around the same time as the Gerstenhaber-Schack paper [GS87], Loday, using
different techniques, exhibited a splitting of the Hochschild and cyclic cohomologies
of a commutative algebra, see [Lo88], [Lo89].

The idempotents en(r), which have independent interest apart from cohomology,
are most easily described using the following elegant generating function discovered
by Garsia in [Ga90]:

∑

e(r)n xr =
1

n!

∑

σ∈Sn

sgn(σ)(x − dσ)(x − dσ + 1) · · · (x− dσ + n− 1)σ

where dσ is the number of descents in σ, i.e. the number of i with σ(i) > σ(i+ 1).
The following diagram, in which HHi,n−i(A,M) is abbreviated as Hi,n−i, is

instructive in understanding the Hodge decomposition.
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. .
.

H5,0 −→ · · ·

H4,0 −→ H4,1 −→ · · ·

H3,0 −→ H3,1 −→ H3,2 −→ · · ·

H2,0 −→ H2,1 −→ H2,2 −→ H2,3 −→ · · ·

H1,0 −→ H1,1 −→ H1,2 −→ H1,3 −→ H1,4 −→ · · ·

In the diagram, vertical columns represent the breakup of HHn(A,M), start-
ing with n = 1, and the horizontal arrows display the Hochschild coboundary.
The bottom row, HH1,∗(A,M), is the Harrison cohomology Har(A,M) which is
associated to Barr’s idempotent. The idempotent en(0) is the skew-symmetrizer
1

n!

∑

σ∈Sn

(−1)σσ and it follows that the diagonal components, HHn,0(A,M) are the

skew multi-derivations,
∧n

A Der(A), of A into M . If A = O(V ), the ring of regular
functions on a smooth affine variety V , then the celebrated Hochschild-Kostant-
Rosenberg Theorem asserts thatHHn(A,A) =

∧n

A Der(A), where Der(A). In terms
of the Hodge decomposition, the Theorem becomes HHn(A,A) = HHn,0(A,A). In
particular, Har2(A,A) = 0 and these algebras have no commutative deformations.
In the case V is not smooth, one expects the components HHr,n−r(A,A) to encode
information regarding the singularities. Some interesting results by Fronsdal in this
direction can be found in [Fr07].

It is clear that the refinement of HH∗(A,A) provided by the Hodge decom-
position can be useful. For example, if HH∗(A,A) is infinite dimensional, then
its Euler-Poincare characteristic is not well-defined. However, its partial Euler-
Poincare characteristics (alternating sums of dimHr,∗−r(A,A)) may all be defined.
Here is an example which illustrates this phenomenon. Let A = k[ǫ]/ǫ2 be the ring
of dual numbers. It is well-known that HHn(A,A) has dimension one for all n ≥ 1.
Using the Hodge decomposition, one can show that HHn(A,A) = Hk,n−k(A,A),

where k = ⌊
n+ 1

2
⌋. The partial Euler-Poincare characteristics are deformation

invariant and as such they can be helpful in detecting whether a given scheme is a
deformation of another one.

N. Bergeron and Wolfgang showed that the components
⊕k

r=1HH
r,n−r(A,A)

consist of those classes of cocycles vanishing on (k+1)-shuffles but not onm-shuffles
for any m < k + 1, see [BW95] for the precise definition and explanation. This
generalizes the fact that Harrison cohomology consists of those cocycles vanishing
on 2-shuffles. Another fact proved in [BW95] is that HHr,n−r(A,A) behaves well
with respect to the filtration Fm =

⊕

r≥mHH∗,r(A,A) in the sense that [Fp,Fq] ⊂
Fp+q.
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Other instances of cohomology decompositions arising from group actions are
possible. For example, F. Bergeron and N. Bergeron found in [BB92] a type B de-
composition. Specifically, they showed that there are n idempotents in the descent
algebra of the Weyl group of type B, the group of signed permutations on n letters.
Moreover, if A is an algebra with involution andM is a symmetric A-bimodule, then
there is an action of Bn on A⊗n with the property that the idempotents are com-
patible with the Hochschild coboundary map. Thus there is a “type B” splitting of
the cohomology. This raises the question of whether there are idempotents in the
descent algebras of other Coxeter systems (W,S) which decompose HH∗(A,M) for
algebras A with a suitable W -action.

7. Bialgebra Deformations

It was clear that, after discovery of quantum groups in the 1980’s, there should
be a cohomology theory of bialgebras with the usual features related to deforma-
tions. In [GS90a] Gerstenhaber and Schack introduced such a theory which we now
describe.

The Gerstenhaber-Schack bialgebra cohomology H∗
GS(B,B

′) is defined for cer-
tain matched pairs of bialgebras B and B′. For simplicity, we only describe here the
case B′ = B (any bialgebra is matched with itself). Since B is a bialgebra, any ten-
sor power B⊗m is both a B-bimodule and a B-bicomodule and thus the Hochschild
cohomology HH∗(B,B⊗m) and the coalgebra (Cartier) cohomology H∗

c (B
⊗m, B)

are well-defined. Set Cp,q(B,B) = Homk(B
⊗p, B⊗q). The Hochschild cobound-

ary operator provides a map δh : Cp,q(B,B) → Cp+1,q(B,B) while the coalgebra
coboundary yields δc : Cp,q(B,B) → Cp,q+1(B,B). These coboundaries commute
giving the Gerstenhaber-Schack complex

C∗,∗
GS(B,B) with Cn

GS(B,B) =
⊕

p+q=n

p,q>0

Cp,q(B,B) and δGS = δh + (−1)qδc.

The bialgebra cohomology H∗
GS(B,B) is then the homology of this complex.

There are variants of this theory. For example, if one takes p > 0, q ≥ 0 in the
definition of Cn

GS(B,B), then the resulting cohomology controls the deformations
of B to a Drinfel’d (quasi-Hopf) algebra, see [GS90b], [MS96]. Markl has shown in
[Mar07] that H∗

GS(B,B) does carries an intrinsic graded bracket. In fact, Markl’s
construction shows the existence of a bracket for any type of (bi)algebra over an
operad or PROP.

For the rest of this section, B will denote either O(G) or Ug, where G is a
reductive algebraic group and g = Lie(G). In these cases, the bialgebra cohomology
is easy to compute since HHn(−,O(G)) = 0 and the Hn

c (Ug,−) vanish in positive
dimensions. Explicitly, if B = O(G) or Ug then Hn

GS(B,B) =
∧n

g/(
∧n

g)g,
where (

∧

g)g is the space of g-invariants in
∧n

g [GS90b]. The Schouten bracket
on

∧∗
g corresponds to the graded Lie algebra structure on Hn

GS(B,B). There
are no invariants in g ∧ g and, up to a scalar multiple, there is a unique non-zero
invariant in

∧3
g. The infinitesimal bialgebra deformations of B are then elements

r ∈ g ∧ g. The condition [r, r] = 0 in H3
GS(B,B) means either that r is a solution

to the classical Yang-Baxter equation (CYBE) (in the case [r, r] = 0) or that it is
a solution to the modified CYBE (in the case that [r, r] is a non-zero invariant).
Any solution to either of these Yang-Baxter equations gives a Poisson-Lie group
structure on G.
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The quantization problem for both types of r-matrices is solved. For r a solution
to the CYBE, the quantization is given by the UDF associated to r, see Example 3
of Section 5 and [Dr83]. For the solutions to the modified CYBE, the quantization
can be deduced from the “dynamical twist” found in [ESS00]. The quantizations
of [Dr83] and [ESS00] are universal in the sense that they lie in (Ug ⊗ Ug)[[t]],
and so they provide a quantum Yang-Baxter matrix in End(V ⊗ V )[[t]] for any
representation V of g. Computing this R-matrix from the universal quantization
can require great effort. However, in [GGS93] a simple explicit “GGS” formula
was conjectured to quantize any modified r-matrix for g = sl(n) and V = kn, the
vector representation. After performing computer checks for over ten thousand
cases, the GGS formula was proven correct by Schedler in [Sc00]. The proof is far
from elementary as it uses intricate combinatorial manipulations to show that the
universal solution of [ESS00] coincides with the simple GGS formula. Something is
wanting for a simpler proof and real meaning of the GGS formula. It would also be
interesting to extend the result to yield elementary quantizations of the modified
r-matrices in the symplectic and orthogonal cases.

The bialgebra cohomology of O(G) also guarantees that any deformation is
equivalent to one with a deformed product ∗ which is compatible with the orig-
inal comultiplication ∆. A deformation of the form (O(G), ∗,∆) is called preferred.
Similarly, all bialgebra deformations of Ug are preferred, although in this case it is
the original multiplication which is unchanged. The standard quantization Oq(G)
is equivalent to a preferred deformation but no such presentation has been exhibited
– even in the simplest case of Oq(SL(2)). As in the case of Lie bialgebra quantiza-
tion, the difficulty in performing explicit computations seems to be that preferred
deformations are linked with a choice of Drinfel’d associator. See [BGGS04] for
a more complete discussion of deformation quantization as it relates to quantum
groups.

Returning to the Yang-Baxter equations, it should be noted that the moduli
space of solutions to the MCYBE for a simple Lie algebra has been constructively
described by Belavin and Drinfeld in [BD82]. The solutions fall into a finite dis-
joint union of components, each of which is determined by an “admissible triple”
(certain combinatorial data associated with the root system). In contrast, an ex-
plicit classification of solutions to the CYBE is intractable, for it would require as
a special case the knowledge of all abelian Lie subalgebras of g. There is however
a non-constructive description of such r-matrices in terms of “quasi-Frobenius” Lie
algebras, see [BD82], [Sto91]. A Lie algebra q is quasi-Frobenius if there is a non-
degenerate function φ : q∧q → k which is a two-cocycle in the Chevalley-Eilenberg
cohomology. The Lie algebra is Frobenius if the two-cocycle can be taken to be a
coboundary, that is, if φ(a, b) = F ([a, b]) for some F ∈ q∗. If B = (Bij) is the matrix

of φ with respect to some basis {x1, . . . , xm} of q, then r =
∑

B−1
ij xi ∧xj is a solu-

tion to the CYBE. In [GG98] it was shown that some solutions to the CYBE arise
as degenerations of solutions to the MCYBE, and others do not. Perhaps it may
be feasible to describe all of these “boundary” solutions using the Belavin-Drinfel’d
triples.

8. Diagrams of algebras

A “diagram” of algebras is a contravariant functor A from a small category C
to the category of associative k-algebras, i.e. a presheaf of algebras over C. So for
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each i ∈ Ob(C) there is an algebra Ai and for each morphism i → j there is an
algebra map φij : Aj → Ai. Presheaves of algebras are abundant and surface in a
variety of contexts: A single algebra is a diagram over a one-object category with
only the identity morphism. A diagram over the category with two objects and
one non-trivial morphism u : 0 → 1 is nothing but a homomorphism of algebras
φ : B → A. The structure sheaf OX on a quasi-projective variety X is a diagram
of commutative algebras over the category U of open subsets of X . Here U is a
category in which the morphisms correspond to inclusion maps.

In a series of papers, Gerstenhaber and Schack developed natural cohomology
and deformation theories for diagrams and proved a number of remarkable results.
A description of the theory can be found in the survey [GS88]. The Hochschild co-
homology of sheaves of algebras and abelian categories studied [Hi05] and [LVdb06]
are closely related to the Gerstenhaber-Schack diagram cohomology.

Perhaps the most useful and difficult result in diagram cohomology theory is
the General Cohomology Comparison Theorem (see Theorem 6) which asserts, in
a sense, that the cohomology and deformation theories of an arbitrary diagram are
no more general than that of a single algebra. In order to explain more clearly what
this means we give a quick review of the basics of the theory.

An A-bimodule M is a contravariant functor from C to the category of abelian
groups assigning to every i ∈ Ob(C) an Ai-bimodule Mi and to every morphism
u : i → j in C a map T ij : Mj → Mi which is required to be an Aj-bimodule map.
Here, Mi becomes an Aj-module by virtue of the algebra homomorphism φij .

Just as in the case of a single algebra, there are various descriptions of the
diagram cohomology H∗

d (A,M). Once the requisite categorical machinery is laid
out, one may define H∗

d (A,M) = ExtA−A(A,M). There is also a cochain descrip-
tion which is quite useful and we present this here. There is a cochain complex
(C∗

d(A,M), δd) whose homology coincides with ExtA−A(A,M). The description of
C∗

d(A,M) has both algebraic and simplicial aspects. The nerve Σ of C is the simpli-
cial complex whose 0-simplices are the objects of C and the p-simplices are the com-
posable maps σ = (i0 → ii → · · · → ip). For simplicity we write σ = (i0, . . . , ip).
The boundary of σ is ∂σ =

∑

(−1)jσj , where σj is the j-th face of σ obtained by
omitting ij .

For a diagramA andA-bimoduleM, the n-cochains are Cn
d (A,M) =

⊕

p+q=n C
p,q
d (A,M),

where

Cp,q
d (A,M) =

∏

p−simplices
(i0,...,ip)

Cq(A(ip),M(i0)).

Fix Γ ∈ Cp,q
d (A,M). The diagram coboundary will have two components:

δalgΓ ∈ Cp,q+1
d (A,M) and δsimp ∈ Cp+1,q

d (A,M). The algebraic component is
defined by (δalgΓ)

σ = δh(Γ
σ) where δh : Cq(Aip ,Mi0) → Cq+1(Aip ,Mi0) is the

ordinary Hochschild coboundary operator. The simplicial component is defined as
follows. Let σ = (i0, . . . , ip+1) be a p+ 1-simplex. For faces σj with 1 ≤ j ≤ p, we
have Γσj ∈ Cq(Aip+1 ,Mi0), while Γσ0 ∈ Cq(Aip+1 ,Mi1) and Γσp+1 ∈ Cq(Aip ,Mi0).
The extreme cases Γσ0 and Γσp+1 lie in different cochain groups than the others, but
there are adjustments however which correct this. For σ0 note that the composite
T i0i1Γσ0 ∈ Cq(Aip+1 ,Mi0). For σp+1 define Γσp+1φip+1ip ∈ Cq(Aip+1 ,Mi0) by

Γσp+1φip+1ip(a1, . . . , aq) = Γσp+1(φip+1ipa1, . . . , φ
ip+1ipaq).
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Now set

(δsimpΓ)
σ = “Γ∂σ” = T i0i1Γσ0 − Γσ1 + Γσ2 − · · ·+ (−1)pΓσpφipip+1.

The full diagram coboundary is then

δd = δalg + (−1)pδsimp

and the diagram cohomologyH∗
d (A,M) is defined to be the homology of the complex

C∗
d(A,M) =

⊕

p+q=n

Cp,q
d (A,M) with δd = δalg + (−1)pδsimp.

Note that the cohomology of the bottom row H∗,0
d (A,M) coincides with the sim-

plicial cohomology of Σ(C) with local coefficients M.
A deformation of A is a diagram of k[[t]]-algebras whose reduction modulo t is A.

The diagram cohomology H∗
d (A,A) is too large to govern deformations of A since

the simplicial cohomology of Σ(C) may not be trivial. There are remedies such as
using “asimplicial” cochains or adjoining a terminator to C, see [GS88]. Naturally,
we would like a graded Lie structure on H∗

d (A,A) which controls obstructions. It
turns out that, unlike the case of a single algebra, the natural bracket on C∗

d(A,A)
gives the structure of only a homotopy graded Lie algebra. Proving that this bracket
descends to a graded Lie structure at the cohomology level would be at best a nasty
computation using the cochain description. However, the following very difficult
and useful result of [GS88] settles this question.

Theorem 6 (General Cohomology Comparison Theorem). Associated to each dia-
gram A is a single k-algebra A!! such that the cohomology and deformation theories
of A are naturally isomorphic to those of A!!. In particular, H∗

d (A,A) is a Gersten-
haber algebra.

The diagram algebra A!! is rather complicated and we will not describe it here,
although we will see a special case in Section 10. The proof of Theorem 6 relies
on the Special Cohomology Comparison Theorem which is the case when A is a
poset. To derive the general case, Gerstenhaber and Schack perform a barycentric
subdivision of A. It turns out that the second subdivision of an arbitrary diagram
is a poset and subdivision preserves the cohomology. Van den Bergh and Lowen
have proved Special Cohomology Comparison Theory for prestacks in [LVdb09].

Another important result in diagram cohomology theory is the following theorem
which completely reconciles the Kodaira-Spencer manifold deformation theory with
the Gerstenhaber-Schack diagram deformation theory.

Theorem 7. Let X be a smooth compact algebraic variety with tangent bundle T .
Suppose U be an affine open cover of X and let A be the restriction of OX to U .
Then there is a Gerstenhaber algebra isomorphism H∗

d (A,A) ≃ H∗(X,
∧∗

T ).

Using the theorem, one sees that

H2
d(A,A) ≃ H2(X,OX)

⊕

H1(X,T )
⊕

H0(X,∧2T ).

The middle term consists of the infinitesimal deformations of X in the Kodaira-
Spencer theory. The last term is the space of infinitesimal deformations of X to
“non-commutative” spaces; those with vanishing primary obstruction are precisely
the Poisson structures onX and, by Theorem 1, these are quantizable. The meaning
of the first term of H2

d(A,A) is not well-understood.
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Besides applications to geometric situations, diagrams naturally arise in other
contexts. For example, given an algebra A and an A-moduleM , one can deform the
action of A on M in the evident way, and it is relatively easy in this case to deduce
the appropriate deformation cohomology. More generally, one can simultaneously
deform A and its action on M in a compatible way. These situations are special
cases of diagram deformations. Indeed, the original A-module structure on M
is simply an algebra homomorphism φ : A → End(M), and hence is a diagram.
Deformations of this diagram yield the various possibilities of deforming A, the
action of A on M , or both. The general theory automatically yields appropriate
cohomology and obstruction theories. In Section 10 the diagram cohomology theory
will be used to cohomologically explain how certain rigid algebras can appear in
naturally parametrized families.

9. Deforming relations

Suppose an algebra is given as A = TX/J where X is the k-module spanned
by finitely many generators xi, TX is the tensor algebra, and J is the ideal of
relations. If Jt is an ideal of TX [[t]] which reduces to J modulo t, then a natural
question is whether At = TX [[t]]/Jt is a deformation of A or not. Associativity of
At is automatic but to be a deformation it must be flat as a k[[t]]-module. There
is no efficient way in general to determine if the relations in Jt insure flatness. An
elementary case where flatness fails is the following: Let A = k[x, y, z] and let Jt be
generated by yx− (1 + t)txy, zx− xz − ty2 and yz − zy. When t = 0 all variables
commute and the polynomial algebra k[x, y, z] is obtained. For t 6= 0, the deformed
relations allow for a PBW-type ordering in which every monomial of At can be
reduced to one of the form xiykzk. However, the element t(1 + t)y3 lies in Jt and
so At has t-torsion and thus is not flat.

Flatness is relatively easy to check for certain deformations of Koszul algebras,
which comprise an important class of quadratic algebras. An algebra A is quadratic
if A = TX/J , with J is generated by relations R ⊂ X ⊗ X . Since the relations
are homogeneous, such algebras are N-graded, A =

⊕

i≥0A[i] and dimA[i] < ∞

for each i. In particular, A[0] = k. A quadratic algebra A is Koszul if its dual
A! is isomorphic to the Yoneda algebra Ext∗A(k, k). Variations of the following
fundamental theorem have appeared in several places in the literature, most notably
in the works of Drinfel’d [Dr86] and Braverman-Gaitsgory [BG96].

Theorem 8 (Koszul Deformation Criterion). Suppose that A = TX/J is Koszul
and At = TX [[t]]/Jt, where Jt is generated by relations Rt ⊂ (X ⊗ X)[[t]] which
reduce to J modulo t. Then At is a deformation of A if and only if At[3] is a flat
k[[t]]-module.

The point of the theorem is that in the Koszul case, flatness in dimensions greater
than 3 is a consequence of flatness in degree 3. Flatness in the cases of degrees 1
and 2 is automatic.

One of the most interesting and explicit uses of the Koszul deformation criterion
has been carried out by Etingof and Ginzburg in the theory of symplectic reflection
algebras, which are deformations of crossed product algebras SV ⋉G, see [EG02].
One can try to deform SV ⋉G by imposing additional relations of the form xy−yx =
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κ(x, y) where x, y ∈ V and κ(x, y) = −κ(y, x) ∈ CG. For an arbitrary skew-
symmetric function κ, the underlying vector space of the resulting algebra, Aκ, will
be smaller than that of A0 = SV ⋉G – that is, the deformation will not be flat.

In the case where V is a symplectic vector space and G ∈ Sp(V ), Etingof and
Ginzburg have an explicit and remarkable classification of which skew forms κ lead
to deformations. To describe these, we first need some notation. Suppose V is a
complex vector space equipped with a skew bilinear form ω : V × V → C, and let
G be a finite subgroup of Sp(V ). An element s ∈ G is a symplectic reflection if
the rank of 1 − s is 2. The set of all symplectic reflections is denoted S. For each
s ∈ S, let ωs denote the form on V with radical Ker(1 − s) and which coincides
with ω on Im(1 − s). The triple (V, ω,G) is indecomposable if V can not be split
into a non-trivial direct sum of G-invariant symplectic subspaces.

Theorem 9 (Etingof-Ginzburg). Suppose (V, ω,G) is an indecomposable triple,
and let κ : V ×V → CG be a skew form. Then Aκ is a flat deformation of SV ⋉G
if and only if there exists a G-invariant function c : S → C, s 7→ cs and a constant
t, such that

κ(x, y) = tω(x, y) +
∑

s∈S

csωs(x, y)s.

As stated earlier, the applications of symplectic reflection algebras are many.
Here is one particularly interesting one. The center of SV ⋉ G is the algebra
(SV )G of G-invariant polynomial functions, which can be viewed as the functions
on the orbit space V/G. If e = 1

|G|

∑

g∈G g is the symmetrizing idempotent in

CG, then the spherical subalgebra of Aκ is defined to be eAκe. It is known that
eA0e ≃ (SV )G, and so eAκe provides a non-commutative deformation of (SV )G.
However, if t = 0 then the algebra eAκe is commutative. Thus the symplectic
reflection algebras can provide geometric deformations of V/G.

Returning to Theorem 8, there are algebras where, unlike the symplectic reflec-
tion algebras, there is no evident ordered or PBW-type basis of At. For example,
Sklyanin (or elliptic) deformations of polynomial algebras have this property. The
simplest case is the algebra with generators {x, y, z} and relations

ax2 + byz + czy = 0, ay2 + bzx+ cxz = 0, az2 + bxy + cyx = 0.

The triple (a, b, c) = (0, 1,−1) gives the polynomial algebra k[x, y, z], but for generic
(a, b, c) the relations are such that there is no PBW-type basis. One way to prove
flatness is to associate certain geometric data (an elliptic curve E and point η ∈ E)
to the algebra in question. The geometric information allows one to construct a
factor ring of the Sklyanin algebra which can be exploited to establish flatness. A
survey of elliptic deformations of polynomial algebras can be found in [Od02].

10. Variation of algebras

As mentioned in section 4, an algebra with H2(A,A) = 0 may depend essentially
on parameters and so the classic deformation theory of A does not detect this
dependence. If we instead pass to an appropriate diagram of algebras, it is possible
in many cases to detect the dependence of A on parameters from the diagram
cohomology and construct the new algebra with the concept of algebra variation.
In this section we give a brief account of [GG08b].

Suppose that we have k-algebras A,B,B′ and monomorphisms φ : B → A and
φ′ : B′ → A such that A is generated by the images φ(B) and φ′(B′). If V is the
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direct sum of the underlying k-modules of B and B′ then A = TV/J , where J is
the ideal of TV generated by relations which we write in the form R(φ(b), φ(b′)) for
b ∈ B and b′ ∈ B′. In this case we have a diagram A over the poset C = {0, 1, 1′}:

0

����
��
��
��
��
��
�

��0
00

00
00

00
00

00
A

A //

1 1′ B

φ

FF













B′.

φ′

YY2222222222222

Now consider a deformation At of A in which the algebras A, B, and B′ remain
fixed but the homomorphism φ is deformed as φt = φ+tφ1+t

2φ2+· · · and similarly
assume φ′ is deformed to φ′t. We can use the same relations determining A with
deformed inputs to construct a new algebra At.

Definition 3. Suppose A,B,B′, V, R,A and At are as above. Let Jt be the ideal of
TV [[t]] generated by all elements of the form R(φt(b), φ

′
t(b

′)) for b ∈ B and b′ ∈ B′.
The algebra At = TV [[t]]/Jt is called a variation of A.

A variation At is certainly associative but there is no guarantee that it is flat, and
as noted earlier, there is in general no easy way to determine when such algebras are
flat. The concept of variation can clearly be generalized by letting A be generated
by more than two subalgebras.

It is important to note that not all algebras of the form TV [[t]]/Jt where Jt is
an ideal of TV [[t]] with J0 = J are variations of A. As an example, take A to be
commutative. Then we have in J all relations of the form φ(b)φ′(b′) − φ′(b′)φ(b).
The ideal Jt defining the variation At will therefore have all relations of the form
φt(b)φ

′
t(b

′)− φ′t(b
′)φt(b) and so At remains commutative.

Let us return now to the deformation of the diagram A in the above figure
obtained by replacing φ with φt and φ′ with φ′t. Its infinitesimal lies in H2

d(A,A)
and is the class of a cocycle of the form Γ = (ΓA,ΓB,ΓB′ ,ΓBA,ΓB′A) with

(3) ΓA ∈ HH2(A,A), ΓB ∈ HH2(B,B), ΓB′ ∈ HH2(B′, B′),

ΓBA ∈ HH1(B,A) and ΓB′A ∈ HH1(B′, A).

The first three components of Γ have algebraic dimension 2 and simplicial dimension
0 while the last two have algebraic and simplicial dimension 1 as these correspond
to the 1-simplices of the underlying category. The deformation At may be viewed
as an integral of this cohomology class. We also assign this class to the variation
At.

Even if the algebras A, B, and B′ are absolutely rigid, H2
d(A,A) may not vanish

in general as HH1(B,A) = Der(B,A) 6= 0 and similarly for HH1(B′, A). In this
case, Γ obviously can be taken to be of the form (0, 0, 0,ΓBA,ΓB′A). However, if the
characteristic of k is zero, then we may further assume that Γ = (0, 0, 0, 0,ΓB′A).
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Remark 1. The diagram algebra A!! associated to A (see Theorem 6) can be viewed
as the algebra of 3× 3 matrices of the form







a1 a2 a3

0 b 0

0 0 b′






, with ai ∈ A, b ∈ B, b′ ∈ B′,

where the multiplication in A!! uses the convention that ba = φ(b)a and similarly
for b′a. Even in this simple case it is difficult to see how to canonically relate the
cohomology and deformations of A with those of A!!.

We end with a reconsideration of the first quantized Weyl algebra Aq = C[x, y]
with relation qxy − yx = 1. Having already remarked that Aq is not isomorphic
to A1 for q near 1, yet HH2(A1, A1) = 0. Consider now whether A1 can be varied
to Aq. Using our earlier notation, suppose A = A1, B = C[x], and B′ = C[y]
and let φ : B → A and φ : B′ → A be the inclusion maps. All of these algebras
are absolutely rigid. Thus, based on the comments above, it suffices to vary the
inclusion morphism of C[y] into A1. The question becomes whether there exists an
element y′ ∈ A1[[t]] of the form y+ tη1 + t2η2 + · · · , ηi ∈ A1 such that the relation
[x, y′] = xy′ − y′x = 1 is equivalent to having [x, y] = 1 − txy, for this would give
(1 + t)xy − yx = 1, i.e., Aq[[t]] with q = 1 + t. There are indeed elements y′ of the
desired form. In [GG08b], it is shown that one may take

y′ = y + a1(t)xy
2 + a2(t)x

2y3 + . . . , where ar(t) =
tr+1

(1 + t)r+1 − 1
.

Thus, Aq is a variation of A1. It is easy to use the formula for y′ to show that the
corresponding diagram infinitesimal is Γ = (0, 0, 0, 0, δ), where δ ∈ Der(C[y], A1) is
the derivation with δ(y) = xy2. This is a non-trivial cohomology class in H2

d(A,A)
and so the diagram cohomology has detected the variation from A1 to Aq.

It is instructive to note that in the power series representation of the ar(t) there
could be no value of t for which all the series converge, for each ar(t) is a rational
function with a pole wherever t has the form ω − 1 where ω is an (r + 1)st root of
unity and every neighborhood of 0 in C contains infinitely many of these. Those
Aq with q a root of unity are in some sense ‘unreachable’ from A1. Nevertheless, y

′

can actually be evaluated for any complex number t with 1 + t not a root of unity.
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61, exposé.
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