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EQUIDISTRIBUTION OF CUSP FORMS IN THE LEVEL ASPECT

PAUL D. NELSON

Abstract. Let f traverse a sequence of classical holomorphic newforms of fixed weight and increasing
squarefree level q → ∞. We prove that the pushforward of the mass of f to the modular curve of level 1
equidistributes with respect to the Poincaré measure.

Our result answers affirmatively the squarefree level case of a conjecture spelled out by Kowalski, Michel
and Vanderkam (2002) in the spirit of a conjecture of Rudnick and Sarnak (1994).

Our proof follows the strategy of Holowinsky and Soundararajan (2008) who show that newforms of level
1 and large weight have equidistributed mass. The new ingredients required to treat forms of fixed weight
and large level are an adaptation of Holowinsky’s reduction of the problem to one of bounding shifted sums
of Fourier coefficients (which on the surface makes sense only in the large weight limit), an evaluation of
the p-adic integral needed to extend Watson’s formula to the case of three newforms where the level of one
divides but need not equal the common squarefree level of the other two, and some additional technical work
in the problematic case that the level has many small prime factors.
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1. Introduction

1.1. Statement of result. A basic problem in modern number theory and the analytic theory of modular
forms is to understand the limiting behavior of modular forms in families. Let f : H → C be a classical
holomorphic newform of weight k and level q. The mass of f is the finite measure dνf = |f(z)|2yk−2 dx dy
(z = x+iy) on the modular curve Y0(q) = Γ0(q)\H. In a recent breakthrough, Holowinsky and Soundararajan
[14] proved that newforms of large weight k and fixed level q = 1 have equidistributed mass, answering
affirmatively a natural variant1 of the quantum unique ergodicity conjecture of Rudnick and Sarnak [30].

Theorem 1.1 (Mass equidistribution for SL(2,Z) in the weight aspect). Let f traverse a sequence of
newforms of increasing weight k → ∞ and fixed level q = 1. Then the mass νf equidistributes2 with respect
to the Poincaré measure dµ = y−2 dx dy on the modular curve Y0(q).

Kowalski, Michel and Vanderkam [20, Conj 1.5] formulated an analogue of the Rudnick-Sarnak conjecture
in which the roles of the parameters k and q are reversed: they conjectured that the masses of newforms of
fixed weight and large level q are equidistributed amongst the fibers of the canonical projection πq : Y0(q) →
Y0(1) in the following sense.

Conjecture 1.2 (Mass equidistribution for SL(2,Z) in the level aspect). Let f traverse a sequence of
newforms of fixed weight and increasing level q → ∞. Then the pushforward µf := πq∗(νf ) of the mass of f
to Y0(1) equidistributes with respect to µ.

Kowalski, Michel and Vanderkam remark that Conjecture 1.2 follows in the special case of dihedral forms
from their subconvex bounds for Rankin-Selberg L-functions modulo an unestablished extension of Watson’s
formula [42], which is now known by Theorem 4.1 of this paper. Recently Koyama [21], following the method
of Luo and Sarnak [23], proved the analogue of Conjecture 1.2 for unitary Eisenstein series of increasing prime
level by reducing the problem to known subconvex bounds for automorphic L-functions of degree two.

Our aim in this paper is to establish the squarefree level case of Conjecture 1.2. Our result is the first of
its kind for non-dihedral cusp forms.

Theorem 1.3 (Mass equidistribution for SL(2,Z) in the squarefree level aspect). Let f traverse a sequence
of newforms of fixed weight and increasing squarefree level q → ∞. Then µf equidistributes with respect to
µ.

Remark 1.4. Our extension (Theorem 4.1) of Watson’s formula [42] shows that Theorem 1.3 would follow
immediately from an appropriate generalization of the Riemann hypothesis, so one can view Theorem 1.3 as
an unconditionally known consequence of a central unresolved conjecture.

Remark 1.5. One cannot relax entirely the restriction of Theorem 1.3 to newforms, since for instance a cusp
form of level 1 may be regarded as an oldform of arbitrary level q > 1.

Remark 1.6. Rudnick [29] showed that Theorem 1.1 implies that the zeros of newforms of level 1 and weight
k → ∞ equidistribute on Y0(1). Soundararajan [40] asks whether there is an analogue of Rudnick’s result
for newforms of large level. We do not know whether such an analogue exists and highlight here one of the
difficulties in adapting Rudnick’s method. Let f be a newform of weight k and level q, let Z be the left
Γ0(q)-multiset of zeros of f in H and let Z1 be the left Γ-multiset (Γ = PSL(2,Z)) obtained by summing
the images of Z under coset representatives for Γ(1)/Γ0(q). We ask: does Γ\Z1 equidistribute on Y0(1) as

1as spelled out by Luo and Sarnak [24]; we refer to Sarnak [31, 32] and the references in [14] for further discussion.
2We say that a sequence of finite Radon measures µj on a locally compact Hausdorff space X equidistributes with respect

to some fixed finite Radon measure µ if for each function φ ∈ Cc(X) we have µj(φ)/µj (1) → µ(φ)/µ(1) as j → ∞, here and

always identifying a measure µ with the corresponding linear functional φ 7→ µ(φ) :=
∫
X

φ dµ on the space Cc(X).
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q → ∞? Following Rudnick, one may show for φ ∈ C∞
c (H) and Φ(z) =

∑
γ∈Γ φ(γz) that

(1)
12

kψ(q)

∑

z∈Γ\Z1

Φ(z)

#StabΓ(z)
=

∫

Γ\H

Φ dV +

∫

Γ\H

πq∗(log νf )

kψ(q)
∆Φ dV,

where ψ(q) = [Γ(1) : Γ0(q)], ∆ = y2(∂2x + ∂2y) is the hyperbolic Laplacian, and dV is the hyperbolic
probability measure on Γ\H; the formula (1) follows by some elementary manipulations of the identity∫
H
log |z − z0|∆φ(z)y−2 dx dy = 2πφ(z0), which holds for any z0 ∈ H and follows from Green’s identities.

Since the total number of inequivalent zeros is #Γ\Z1 = #Γ0(q)\Z ∼ kψ(q)/12 [36, §2], the first term on the
right hand side of (1) may be regarded as a main term, the second as an error term that one would like to
show tends to 0. An important step towards adapting Rudnick’s method would be to rule out the possibility
that πq∗(log νf )/kψ(q) tends to −∞ uniformly on compact subsets as q → ∞. The difficulty in doing so is
that Theorem 1.3 does not seem to preclude the masses νf from being very small somewhere within each
fiber of the projection Y0(q) → Y0(1). There are further difficulties in adapting Rudnick’s method that we
shall not mention here.

Remark 1.7. Lindenstrauss [22] and Soundararajan [39] proved that Maass eigencuspforms of fixed level
q and large Laplace eigenvalue λ → ∞ have equidistributed mass. We ask: do Maass newforms of large
level q → ∞ (with λ taken to lie in a fixed subinterval of [1/4,+∞], say) satisfy the natural analogue of
Conjecture 1.2? An affirmative answer to this question would follow from a suitable generalization of the
Riemann hypothesis (at least for q squarefree, as in Remark 1.4), but appears beyond the reach of our
methods because the Ramanujan conjecture is not known for Maass forms (compare with [14, p2]).

Remark 1.8. With minor modifications our arguments establish the following stronger hybrid equidistribution
result: for a newform f of possibly varying weight k and squarefree level q, the measures µf = πq∗(νf )
equidistribute as qk → ∞. In this paper we fix the weight k only to simplify the exposition.

Remark 1.9. With minor modifications our arguments should extend to the general case of not necessarily
squarefree levels q as soon as an appropriate extension of Watson’s formula is worked out. However, we shall
invoke the assumption that the level q is squarefree whenever doing so simplifies the exposition. The parts of
our argument that require modification to treat the general case are Lemmas 3.4, 3.15 and 4.4. One should be
able to generalize Lemmas 3.4 and 3.15 using that for any level q the cusps of Γ0(q) fall into classes indexed
by the divisors d of q consisting of φ(gcd(d, q/d)) cusps of width d/ gcd(d, q/d). To generalize 4.4, one must
compute a p-adic integral involving matrix coefficients of supercuspidal representations of GL(2,Qp). We
plan to consider this generalization in future work.

1.2. Comparison with Holowinsky-Soundararajan (2008). Our proof of Theorem 1.3, which concerns
the equidistribution of measures associated to newforms in the level aspect, is modeled after the Holowinsky-
Soundararajan proof of Theorem 1.1, which concerns equidistribution in the weight aspect. Holowinsky [15]
and Soundararajan [38] show by independent arguments that all forms not belonging to some (small) excep-
tional set have equidistributed mass in the large weight limit; in their joint work, Holowinsky-Soundararajan
[14] then prove Theorem 1.1 by showing that the intersection of the exceptional sets of forms not covered by
either of their approaches is empty.

The independent arguments of Holowinsky and of Soundararajan each consist of a preliminary “reduction”
step, in which they relate the equidistribution problem to one of showing that certain expressions are small,
followed by an “analysis” step in which they bound such expressions. For Holowinsky, the reduction step
relates the problem to bounding sums roughly of the form

∑
n≤k λf (n)λf (n+ l) with l 6= 0, where λf (n) is

the nth Fourier coefficient of the newform f of weight k and level 1; the analysis step is then an application
of bounds he develops for such sums. For Soundararajan, the reduction step is afforded by Watson’s formula,
which relates the “Weyl periods” µf (φ) for φ a fixed Maass form of level 1 to the central value of the triple
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product L-function L(12 , φ× f × f); the analysis step is provided by the “weak subconvex” bounds that he
develops for the central values of quite general L-functions.

The primary difficulty in adapting the method of Holowinsky and Soundararajan to the level aspect is
that, for quite different reasons, the reduction steps in their independent arguments do not apply without
essential modification. In Soundararajan’s reduction, the reason is simple: Watson’s formula applies to µf (φ)
only when f and φ are newforms of the same squarefree level, while in the level aspect the relevant Weyl
periods are those for which f has large level and φ has level 1. We extend Watson’s formula appropriately in
Theorem 4.1 by computing (Lemma 4.4) a p-adic integral arising in Ichino’s general formula [16], specifically
the integral

(2)

∫

g∈PGL2(Qp)

〈g · φp, φp〉
〈φp, φp〉

〈g · fp, fp〉
〈fp, fp〉

〈g · fp, fp〉
〈fp, fp〉

dg

where φp and fp are local components at p of the adelizations of φ and f , and 〈, 〉 denotes a G-invariant
hermitian pairing. The crucial case for us is when p divides the squarefree level q of the newform f , so that
φp lives in a spherical representation of PGL2(Qp) and fp in a special representation.

On the other hand, Holowinsky’s reduction seems to rely on the asymptotic analysis of certain integrals
that have clear behavior only in the large weight limit. We nevertheless reduce the problem of equidistribution
in the level aspect to one of bounding (smoothed) sums roughly of the form

(3)
∑

d|q

∑

n≤dY

λf (n)λf (n+ dl)

with l 6= 0, where q is the squarefree level of the newform f and Y is a real parameter satisfying 1 ≤ Y ≪
(log q)O(1).

The basic idea behind this reduction, as in Holowinsky’s original arguments, is to approximate µf (φ) for
a nice function φ on Y0(1) in terms of the integral of the Γ(1)-invariant measure φdµf taken over (a smooth
truncation of) the region R consisting of those points z = x+ iy with x ∈ [0, 1] and y ≍ Y −1 for some (small)
flexible parameter Y ≥ 1 (Lemma 3.4); the region R contains roughly Y copies of a fundamental domain for
Γ(1)\H, so that

µf (φ) ≈ Y −1

∫

R

φdµf .

At this point our arguments diverge from those of Holowinsky, since for us f lives on a covering of Y0(1).
The pullback of R under the projection Y0(q) → Y0(1) is the sum of “rectangular” regions Ra indexed by
the cusps a of Γ0(q), so that ∫

R

φdµf =
∑

a

∫

Ra

φ|f |2yk dµ.

Explicitly, we have

Ra = {z ∈ H : xa ∈ [0, 1], ya ≍ (daY )−1},
where da is the width of the cusp a and the proper isometry z 7→ za = xa + iya is chosen so that some
generator of StabΓ0(q)(a) acts on z via za 7→ za + 1.

By Atkin-Lehner theory and our assumption that q is squarefree, we understand how f behaves in each
region Ra: its Fourier coefficients in the variable xa agree up to sign with its Fourier coefficients in x.
Knowing this, one can show with some work that the constant term in the Fourier series for φ contributes
the expected main term for µf (φ). Since φ is invariant under the full modular group and in particular under
z 7→ daza, we have φ(z) = φ(daza), so that the non-constant terms in the Fourier series for φ (indexed by
nonzero integers l) contribute error terms involving sums roughly of the form

∑

a

∑

n

λf (n)λf (n+ dal)

∫ ∞

0

(· · · ),
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where
∫∞

0 (· · · ) is an integral with clear asymptotics only in the large weight limit. Some softer arguments
(Lemma 3.12, Corollary 3.14) show that even for fixed weight, this integral essentially localizes the sum
over n to the range n ≤ dY . Since {da} = {d : d|q} for q squarefree, we indeed reduce to bounding sums
essentially of the form (3).

It remains only to estimate sums like (3). Holowinsky’s bounds (Theorem 3.9) are sufficient to treat such
sums when the level q has few small prime factors (for instance, if q is prime), but a refinement of his bounds
(Theorem 3.10) and some additional technical work (Lemma 3.15) are needed when q has many small prime
factors (for instance, if q is the product of all primes up to some bound).

1.3. Plan for the paper. Our paper is organized as follows. In §2 we recall some standard properties
of our basic objects of study: holomorphic newforms, Maass eigencuspforms, unitary Eisenstein series and
incomplete Eisenstein series.

In §3 we prove the level aspect analogue of Holowinsky’s main result [15, Corollary 3]. We believe that
our key contribution is recognizing the applicability of the computation occupying the latter half of the
proof of Lemma 3.4; while this seems in retrospect like a natural and even obvious step, it was in fact the
final of several approaches that we tried and its discovery resulted in a significant simplification of a more
complicated proof that we had found earlier and do not describe in this paper. We then refine and soften
Holowinsky’s arguments (Theorem 3.10, Lemma 3.12, Corollary 3.14) and carry out some technical work
required to treat levels q having many small prime factors (Lemma 3.15); the main idea in the latter is to
reduce by a convexity argument to the case that q is the product of all primes up to some bound, in which
case the prime number theorem allows one to quantify the heuristic that sufficiently many divisors d of q
satisfy log(d) ≈ log(q).

In §4 we extend Watson’s formula to cover the additional case that we need, building on the work of
many authors [7, 27, 12, 11, 42, 16]. We keep track of various normalizations in the literature and compute a
certain p-adic integral (Lemma 4.4); the computation is not difficult, but requires some careful book-keeping.

In §5 we complete the proof of Theorem 1.3 using the main results of §3 and §4. Sections 3 and 4 are
independent of each other, but both depend upon the definitions, notation and facts recalled in §2.
1.4. Notation and conventions. Recall the standard notation for the upper half-plane H = {z ∈ C :
Im(z) > 0}, the modular group Γ = SL(2,Z), its congruence subgroup Γ0(q) consisting of those elements with
lower-left entry divisible by q, the modular curve Y0(q) = Γ0(q)\H, the natural projection πq : Y0(q) → Y0(1),
the Poincaré measure dµ = y−2 dx dy, and the stabilizer Γ∞ = {± ( 1 n

1 ) : n ∈ Z} in Γ of ∞ ∈ P1(R). We
denote a typical element of H as z = x+ iy with x, y ∈ R.

There is a natural inclusion Cc(Y0(1)) →֒ Cc(Y0(q)) obtained by pulling back under the projection πq;
here Cc denotes the space of compactly-supported continuous functions. For a newform f of weight k on
Γ0(q) the pushforward measure dµf := πq∗(|f |2yk dµ) on the modular curve Y0(1) corresponds, by definition,
to the linear functional

µf (φ) =

∫

Γ0(q)\H

φ(z)|f |2(z)yk dx dy
y2

for φ ∈ Cc(Y0(1)) →֒ Cc(Y0(q)).

We let µ denote the standard measure on Y0(1), so that

µ(φ) =

∫

Γ\H

φ(z)
dx dy

y2
for φ ∈ Cc(Y0(1)).

Since µ and µf are finite, they extend to the space of bounded continuous functions on Y0(1), where we shall
denote also by µ and µf their extensions. In particular, µ(1) denotes the volume of Y0(1) and µf (1) the
Petersson norm of f .

As is customary, we let ε > 0 denote a sufficiently small positive number whose precise value may change
from line to line. We use the asymptotic notation f(x, y, z) ≪x,y g(x, y, z) to indicate that there exists a pos-
itive real C(x, y), possibly depending upon x and y but not upon z, such that |f(x, y, z)| ≤ C(x, y)|g(x, y, z)|
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for all x, y and z under consideration. We write f(x, y, z) = Ox,y(g(x, y, z)) synonymously for f(x, y, z) ≪x,y

g(x, y, z) and write f(x, y, z) ≍x,y g(x, y, z) synonymously for f(x, y, z) ≪x,y g(x, y, z) ≪x,y f(x, y, z).

1.5. Weyl’s criterion. We conclude this introduction with a standard lemma that provides essential mo-
tivation for what follows.

The family of probability measures φ 7→ µf (φ)/µf (1) obtained as the squarefree level q and the newform
f vary is equicontinuous for the supremum norm on Cc(Y0(1)), since∣∣∣∣

µf (φ1)

µf (1)
− µf (φ2)

µf (1)

∣∣∣∣ ≤ sup |φ1 − φ2|

for any bounded functions φ1, φ2 on Y0(1). Thus Theorem 1.3 follows if we can show that µf (φ)/µf (1) →
µ(φ)/µ(1) as q → ∞ for a set of bounded functions φ the uniform closure of whose span contains Cc(Y0(1)).

Such a spanning set is furnished [19] by the the Maass eigencuspforms and the incomplete Eisenstein series,
as defined in §2. We have µ(φ) = 0 for a Maass eigencuspform φ because φ and the constant function 1 lie in
orthogonal eigenspaces of the (self-adjoint) hyperbolic Laplacian, so we obtain the following reformulation
of our main theorem.

Lemma 1.10 (“Weyl’s criterion”). Suppose that for each fixed Maass eigencuspform φ, we have

µf (φ)

µf (1)
→ 0 as q → ∞,

and for each fixed incomplete Eisenstein series φ, we have

µf (φ)

µf (1)
→ µ(φ)

µ(1)
as q → ∞;

in neither case need the convergence be uniform in φ. Then Theorem 1.3 is true.

1.6. Acknowledgements. We thank Dinakar Ramakrishnan for suggesting this problem and for his very
helpful feedback and comments on earlier drafts of this paper. We also thank Abhishek Saha for his careful
reading of and useful comments on an earlier draft.

2. Background on automorphic forms

We collect here some standard properties of classical automorphic forms. We refer to Serre [35], Shimura
[36], Iwaniec [18, 19] and Atkin-Lehner [1] for complete definitions and proofs.

2.1. Holomorphic newforms. Let k be a positive even integer, and let α be an element of GL(2,R) with
positive determinant; the element α acts on H by fractional linear transformations in the usual way. Given
a function f : H → C, we denote by f |kα the function z 7→ det(α)k/2j(α, z)−kf(αz), where j

((
a b
c d

)
, z
)
=

cz + d.
A holomorphic cusp form on Γ0(q) of weight k is a holomorphic function f : H → C that satisfies

f |kγ = f for all γ ∈ Γ0(q) and vanishes at the cusps of Γ0(q). A holomorphic newform is a cusp form that is
an eigenform of the algebra of Hecke operators and orthogonal with respect to the Petersson inner product
to the oldforms.3 We say that a holomorphic newform f is a normalized holomorphic newform if moreover
λf (1) = 1 in the Fourier expansion

(4) yk/2f(z) =
∑

n∈N

λf (n)√
n
κf (ny)e(nx),

3The terms we leave undefined are standard and their precise definitions, which may be found in the references mentioned
above, are not necessary for our purposes.
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where κf (y) = yk/2e−2πy and e(x) = e2πix; in that case the Fourier coefficients λf (n) are real, multiplicative,
and satisfy [4, 5] the Deligne bound |λf (n)| ≤ τ(n), where τ(n) denotes the number of positive divisors of

n. If γ ∈ Γ0(q) and z′ = γz = x′ + iy′, then y′k/2f(z′) = (j(γ, z)/|j(γ, z)|)kyk/2f(z), so that in particular
z 7→ yk|f(z)|2 is Γ0(q)-invariant and our definition of µf given in Section 1.4 makes sense.

To a newform f one attaches the finite part of the adjoint L-function L(ad f, s) =
∏

p Lp(ad f, s) and its

completion Λ(ad f, s) = L∞(ad f, s)L(ad f, s) =
∏

v Lv(ad f, s), where p traverses the set of primes and v
the set of places of Q; the local factors Lv(ad f, s) are as in [42, §3.1.1]. The Rankin-Selberg method [28, 33]
and a standard calculation [42, §3.2.1] show that

(5) µf (1) :=

∫

Γ0(q)\H

|f |2(z)yk dx dy
y2

= q
Γ(k − 1)

(4π)k−1

k − 1

2π2
L(ad f, 1) ≍k qL(ad f, 1).

As in the analogous weight aspect [14, p7], the work of Gelbart-Jacquet [8] (following Shimura [37]) and the
theorem of Hoffstein-Lockhart [13, Theorem 0.1] (with appendix by Goldfeld-Hoffstein-Lieman) imply that

(6) L(ad f, 1)−1 ≪k log(eq),

where e is Euler’s number.
Let σ traverse a set of representatives for the double coset space Γ∞\Γ/Γ0(q). Then the points aσ :=

σ−1∞ ∈ P1(Q) traverse a set of inequivalent cusps of Γ0(q). The integer dσ := [Γ∞ : Γ∞ ∩σΓ0(q)σ
−1] is the

width of the cusp aσ, while

wσ := σ−1

(
dσ

1

)

is the scaling matrix for aσ, which means that z 7→ zσ := wσz is a proper isometry of H under which
zσ 7→ zσ + 1 corresponds to the action on z by a generator for the Γ0(q)-stabilizer of aσ.

If the bottom row of σ−1 is (c, d), then dσ = q/(q, c2); moreover, as σ varies, the multiset of widths {dσ}
is the set {d : d|q} of positive divisors of q [19, §2.4]. In particular, c and dσ are coprime, so we may and
shall assume (after multiplying σ on the left by an element of Γ∞ if necessary) that dσ divides d. Since q
is squarefree, the numbers dσ and q/dσ are coprime, so that wσ is an Atkin-Lehner operator “WQ” in the
sense of [1, p138]. Thus by applying [1, Thm 3] to the newform f , we obtain

(7) f |kwσ = ±f.
Since f is Γ0(q)-invariant, the property (7) does not depend upon the choice of coset representatives σ.

2.2. Maass eigencuspforms. AMaass cusp form (of level 1) is a Γ-invariant eigenfunction of the hyperbolic
Laplacian ∆ := y−2(∂2x + ∂2y) on H that decays rapidly at the cusp of Γ. By Selberg’s “λ1 ≥ 1/4” theorem

[34] there exists a real number r ∈ R such that (∆ + 1/4 + r2)φ = 0; our arguments use only that r ∈
R ∪ i(−1/2, 1/2), and so apply verbatim in contexts where “λ1 ≥ 1/4” is not known.

A Maass eigencuspform is a Maass cusp form that is an eigenfunction of the (non-archimedean) Hecke
operators and the involution T−1 : φ 7→ [z 7→ φ(−z̄)], which commute one another as well as with ∆. A
Maass eigencuspform φ has a Fourier expansion

(8) φ(z) =
∑

n∈Z 6=0

λφ(n)√
|n|

κir(ny)e(nx)

where κir(y) = 2|y|1/2Kir(2π|y|) sgn(y)
1+δ
2 with Kir the standard K-Bessel function, sgn the signum func-

tion, and δ ∈ {±1} the T−1-eigenvalue of φ. We have |κs(y)| ≤ 1 for all s ∈ iR∪ (−1/2, 1/2) and all y ∈ R∗
+.

A normalized Maass eigencuspform further satisfies λφ(1) = 1; in that case the coefficients λφ(n) are real,
multiplicative, and satisfy, for each x ≥ 1, the Rankin-Selberg bound [19, Theorem 3.2]

(9)
∑

n≤x

|λφ(n)|2 ≪φ x.
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Because f(−z̄) = f(z) for any normalized holomorphic eigencuspform f , we have µf (φ) = 0 whenever
T−1φ = δφ with δ = −1. Thus we shall assume throughout this paper that δ = 1, i.e., that φ is an even
Maass form.

2.3. Eisenstein series. Let s ∈ C and z ∈ H. The real-analytic Eisenstein series E(s, z) =
∑

Γ∞\Γ Im(γz)s

converges normally for Re(s) > 1 and continues meromorphically to the half-plane Re(s) ≥ 1/2 where the
map s 7→ E(s, z) is holomorphic with the exception of a unique simple pole at s = 1 of constant residue
ress=1 E(s, z) = µ(1)−1. The Eisenstein series satisfies the invariance E(s, γz) = E(s, z) for all γ ∈ Γ and
admits the Fourier expansion

(10) E(s, z) = ys +M(s)y1−s +
1

ξ(2s)

∑

n∈Z 6=0

λs−1/2(n)√
|n|

κs−1/2(ny)e(nx),

where λs(n) =
∑

ab=n(a/b)
s, κs(y) = 2|y|1/2Ks(2π|y|), M(s) = ξ(2s− 1)/ξ(2s), ξ(s) = ΓR(s)ζ(s), ΓR(s) =

π−s/2Γ(s/2), and ζ(s) =
∑

n∈N n
−s (for Re(s) > 1) is the Riemann zeta function. The identity |M(s)| = 1

for Re(s) = 1/2 follows from (for instance) the functional equation for the zeta function and the prime
number theorem. When Re(s) = 1/2 we call E(s, z) a unitary Eisenstein series.

2.4. Incomplete Eisenstein series. Let Ψ ∈ C∞
c (R∗

+) be a nonnegative-valued test function with Mellin

transform Ψ∧(s) =
∫∞

0
Ψ(y)y−s−1 dy. Repeated partial integration shows that |Ψ∧(s)| ≪Ψ,A (1 + |s|)A

for each positive integer A, uniformly for s in vertical strips. The Mellin inversion formula asserts that
Ψ(y) =

∫
(2)

Ψ∧(s)ys ds
2πi , where

∫
(σ)

denotes the integral taken over the vertical contour from σ − i∞ to

σ + i∞. To such Ψ we attach the incomplete Eisenstein series

(11) E(Ψ, z) =
∑

γ∈Γ∞\Γ

Ψ(Im(γz)).

The sum has a uniformly bounded finite number of nonzero terms for z in a fixed compact subset of H. By
Mellin inversion, the rapid decay of Ψ∧ and Cauchy’s theorem, we have

(12) E(Ψ, z) =

∫

(2)

Ψ∧(s)E(s, z)
ds

2πi
=

Ψ∧(1)

vol(Γ\H)
+

∫

(1/2)

Ψ∧(s)E(s, z)
ds

2πi
.

Let φ = E(Ψ, ·) be an incomplete Eisenstein series. Note that µ(φ) = Ψ∧(1). By comparing (12) and
(10), we may express the Fourier coefficients φn(y) in the Fourier series φ(z) =

∑
n∈Z φn(y)e(nx) as

φn(y) =

∫

(1/2)

Ψ∧(s)

ξ(2s)

λs−1/2(n)√
|n|

κs−1/2(ny)
ds

2πi
(n 6= 0),(13)

φ0(y) =
µ(φ)

µ(1)
+

∫

(1/2)

Ψ∧(s)
(
ys +M(s)y1−s

) ds

2πi
(n = 0).(14)

3. Main estimates

We prove a level aspect analogue of Holowinsky’s main bound [15, Corollary 3]. To formulate our result,
define for each normalized holomorphic newform f and each real number x ≥ 1 the quantities

(15) Mf (x) =

∏
p≤x(1 + 2|λf (p)|/p)
log(ex)2L(ad f, 1)

, Rf (x) =
x−1/2

L(ad f, 1)

∫

R

∣∣∣∣
L(ad f, 12 + it)

(1 + |t|)10
∣∣∣∣ dt.

In §5 we shall refer only to the definitions (15) and the statement of the following theorem, not its proof.
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Theorem 3.1. Let f be a normalized holomorphic newform of weight k and squarefree level q. If φ is a
Maass eigencuspform, then

µf (φ)

µf (1)
≪k,φ,ε log(eq)

εMf (q)
1/2.

If φ is an incomplete Eisenstein series, then

µf (φ)

µf (1)
− µ(φ)

µ(1)
≪k,φ,ε log(eq)

εMf(q)
1/2 (1 + Rf (q)) .

In this section k is a positive even integer, f is a normalized holomorphic newform of weight k and
squarefree level q, and φ is a Maass eigencuspform or incomplete Eisenstein series. In §3.1 we reduce
Theorem 3.1 to a problem of estimating shifted sums (see Definition 3.2). In §3.2 we apply a refinement of
[15, Theorem 2] to bound such shifted sums. In §3.3 we complete the proof of Theorem 3.1.

3.1. Reduction to shifted sums. Fix once and for all an everywhere nonnegative test function h ∈
C∞

c (R∗
+) with Mellin transform h∧(s) =

∫∞

0
h(y)y−s−1 dy such that h∧(1) = µ(1). In what follows, all

implied constants may depend upon h without mention.

Definition 3.2. To the parameters s ∈ C, l ∈ Z6=0 and x ≥ 1 we associate the shifted sums

Ss(l, x) =
∑

n∈N
m:=n+l∈N

λf (m)√
m

λf (n)√
n
Is(l, n, x),

where Is(l, n, x) is an integral depending upon our fixed test function h:

Is(l, n, x) =

∫ ∞

0

h(xy)κs(ly)κf (my)κf (ny)y
−1 dy

y
, m := n+ l.

Our aim in this section is to reduce Theorem 3.1 to the problem of bounding such shifted sums. We shall
subsequently refer to the statement below of Proposition 3.3 but not the details of its proof.

Proposition 3.3. Let Y ≥ 1. If φ is a Maass eigencuspform of eigenvalue 1/4 + r2, then

µf (φ)

µf (1)
=

1

Y µf (1)

∑

l∈Z 6=0

|l|<Y 1+ε

λφ(l)√
|l|
∑

d|q

Sir(dl, dY ) +Oφ,ε(Y
−1/2).

If φ = E(Ψ, ·) is an incomplete Eisenstein series, then

µf (φ)

µf (1)
− µ(φ)

µ(1)
=

1

Y µf (1)

∫

R

Ψ∧(12 + it)

ξ(1 + 2it)




∑

l∈Z 6=0

|l|<Y 1+ε

λit(l)√
|l|
∑

d|q

Sit(dl, dY )



dt

2π

+Oφ,ε

(
1 +Rf (q)

Y 1/2

)
.

Our proof follows a sequence of lemmas. Let k, f, q, Y, φ, h be as above and let hY be the function
y 7→ h(Y y). To hY we attach the incomplete Eisenstein series E(hY , z) by the usual recipe (11).

Lemma 3.4. We have the following approximate formula for the quantity µf (φ):

Y µf (φ) =
∑

d|q

∫ ∞

y=0

hY (dy)

∫ 1

x=0

φ(dy)|f |2(z)yk dx dy
y2

+Oφ(Y
1/2µf (1)).
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Proof. By Mellin inversion and Cauchy’s theorem as in (12), we have

Y µf (φ) = µf (E(hY , ·)φ)−
∫

(1/2)

h∧(s)Y sµf (E(s, ·)φ) ds
2πi

.

The argument of [15, Proof of Lemma 3.1a] shows without modification that

(16)

∫

(1/2)

h∧(s)Y sµf (E(s, ·)φ) ds
2πi

≪φ Y
1/2µf (1);

since the proof is short, we sketch it here. By the Fourier expansion for E(s, z) and the rapid decay of φ(z) as
y → ∞, we have E(s, z)φ(z) ≪φ |s|O(1) for Re(s) = 1/2 and z in the Siegel domain {z : x ∈ [0, 1], y > 1/2}
for Γ\H. By the rapid decay of h∧ we have h∧(s)Y sE(s, z)φ(z) ≪φ Y

1/2|s|−2 for s, z as above; the estimate
(16) follows by integrating in z against µf and then integrating in s.

Having established that Y µf (φ) = µf (E(hY , ·)φ) + Oφ(Y
1/2µf (1)), it remains now only to evaluate

µf (E(hY , ·)φ). Let Γ∞\Γ/Γ0(q) = {σ} be a set of double-coset representatives as in §2.1, and set

dσ = [Γ∞ : Γ∞ ∩ σΓ0(q)σ
−1].

By decomposing the transitive right Γ-set Γ∞\Γ into Γ0(q)-orbits

Γ∞\Γ = ⊔Γ∞\Γ∞σΓ0(q) = ⊔σ(σ−1Γ∞σ ∩ Γ0(q)\Γ0(q)),

we obtain

E(hY , z) =
∑∑

σ∈Γ∞\Γ/Γ0(q)

γ∈σ−1Γ∞σ∩Γ0(q)\Γ0(q)

hY (Im(σγz)).

By invoking the Γ0(q)-invariance of z 7→ φ(z)|f |2(z)yk dxdy
y2 and unfolding the sum over γ ∈ σ−1Γ∞σ ∩

Γ0(q)\Γ0(q) with the integral over z ∈ Γ0(q)\H, we get

µf (E(hY , ·)φ) =
∑

σ∈Γ∞\Γ/Γ0(q)

∫

σ−1Γ∞σ∩Γ0(q)\H

hY (Im(σz))φ(z)|f |2(z)yk dx dy
y2

.

The change of variables z 7→ σ−1z transforms the integral above into
∫

Γ∞∩σΓ0(q)σ−1\H

hY (y)φ(z)|f |2(σ−1z)Im(σ−1z)k
dx dy

y2
.

Integrating over a fundamental domain for Γ∞ ∩ σΓ0(q)σ
−1 = {±

(
1 dσn

1

)
: n ∈ Z} acting on H, we get

∫ ∞

y=0

hY (y)

∫ dσ

x=0

φ(z)|f |2(σ−1z)Im(σ−1z)k
dx dy

y2
.

Applying now the change of variables z 7→ dσz gives
∫ ∞

y=0

hY (dσy)

∫ 1

x=0

φ(dσz)
∣∣f |kσ−1

(
dσ

1

)∣∣2 (z)yk dx dy
y2

.

Since f |kσ−1
(
dσ

1

)
= ±f by the consequence (7) of Atkin-Lehner theory (using here that q is squarefree),

we find that

µf (E(hY , ·)φ) =
∑

σ∈Γ∞\Γ/Γ0(q)

∫ ∞

y=0

hY (dσy)

∫ 1

x=0

φ(dσz)|f |2(z)yk
dx dy

y2
.

Since {dσ} = {d : d|q}, we obtain the claimed formula. �
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In the expression for Y µf (φ) given by Lemma 3.4, we expand φ in a Fourier series φ(z) =
∑

l∈Z φl(y)e(lx)
and consider separately the contributions from l in various ranges; specifically, we set

S0 =
∑

d|q

∫ ∞

y=0

hY (dy)

∫ 1

x=0

φ0(dy)|f |2(z)yk
dx dy

y2
,

S(0,Y 1+ε) =
∑

d|q

∫ ∞

y=0

hY (dy)

∫ 1

x=0

∑

0<|l|<Y 1+ε

φl(dy)|f |2(z)yk
dx dy

y2
,

S≥Y 1+ε =
∑

d|q

∫ ∞

y=0

hY (dy)

∫ 1

x=0

∑

|l|≥Y 1+ε

φl(dy)|f |2(z)yk
dx dy

y2
,

so that

(17)
∑

d|q

∫ ∞

y=0

hY (dy)

∫ 1

x=0

φ(dz)|f |2(z)yk dx dy
y2

= S0 + S(0,Y 1+ε) + S≥Y 1+ε .

We treat these contributions in Lemmas 3.6, 3.7 and 3.8, respectively; in doing so we shall repeatedly use
the following technical result.

Lemma 3.5. The quantity µf (E(hY , ·)) satisfies the formulas and estimates

µf (E(hY , ·)) =
∑

d|q

∫ ∞

y=0

hY (dy)

∫ 1

x=0

|f |2(z)yk dx dy
y2

= Y µf (1) (1 + Ef (qY ))

= Y µf (1)
(
1 +Ok

(
Y −1/2Rf (q)

))
,

where

Ef (x) :=
2π2

x

∫

(1/2)

h∧(s)
( x
4π

)s Γ(s+ k − 1)

Γ(k)

ζ(s)

ζ(2s)

L(ad f, s)

L(ad f, 1)

ds

2πi
.

Moreover, µf (E(hY , ·)) ≪ Y µf (1).

Proof. The first equality follows from the same argument as in the proof of Lemma 3.4, the second from the
Mellin formula and the unfolding method by a direct computation, the third from the bounds |Γ(k − 1/2 +
it)| ≤ Γ(k− 1/2)|, ζ(1/2+ it) ≪ (1 + |t|)1/4 and |ζ(1 + 2it)| ≫ 1/ log(1 + |t|) as in [38, p7]. Finally, because
the quantity µf (E(hY , ·)) is majorized by the integral of the Γ-invariant measure µf over the region on
which the function Γ∞\H ∋ z 7→ hY (y) does not vanish and because that region contains ≪ Y fundamental
domains for Γ\H [19, Lemma 2.10], we have µf (E(hY , ·)) ≪ Y µf (1). �

Lemma 3.6 (The main term S0). If φ is a Maass eigencuspform, then φ0(y) = 0 and S0 = 0. If φ is an
incomplete Eisenstein series, then

S0 = Y µf (1)

(
µ(φ)

µ(1)
+Oφ

(
1 +Rf (q)

Y 1/2

))
.

Proof. If φ is a Maass eigencuspform then φ0(y) = 0 holds by definition, hence S0 = 0. Suppose otherwise
that φ is an incomplete Eisenstein series. It follows from (14) that for every y ∈ R∗

+ such that hY (y) 6= 0,
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we have φ0(y) = µ(φ)/µ(1) +Oφ(Y
−1/2). Thus two applications of Lemma 3.5 show that

S0 = µf (E(hY , ·))
(
µ(φ)

µ(1)
+Oφ(Y

−1/2)

)

= Y µf (1)

(
1 +O

(
Rf (q)

Y 1/2

))(
µ(φ)

µ(1)
+Oφ(Y

−1/2)

)

= Y µf (1)

(
µ(φ)

µ(1)
+Oφ

(
1 +Rf (q)

Y 1/2

))
.

�

Lemma 3.7 (The essential error term S(0,Y 1+ε)). If φ is a Maass eigencuspform, then

S(0,Y 1+ε) =
∑

0<|l|<Y 1+ε

λφ(l)√
|l|
∑

d|q

Sir(dl, dY ).

If φ is an incomplete Eisenstein series, then

S(0,Y 1+ε) =

∫

R

Ψ∧(12 + it)

ξ(1 + 2it)

∑

0<|l|<Y 1+ε

λit(l)√
|l|
∑

d|q

Sit(dl, dY )
dt

2π

Proof. Follows by integrating the Fourier expansion (4) of a newform, the Fourier expansion (8) of a Maass
cusp form, and the formula (13) for the non-constant Fourier coefficients of an Eisenstein series. �

Lemma 3.8 (The trivial error term S≥Y 1+ε). We have S≥Y 1+ε ≪φ,ε Y
−10µf (1).

Proof. Lemma 3.8 follows from Lemma 3.5 and the following claim: for all y ∈ R∗
+ such that hY (y) 6= 0,

we have
∑

|l|≥Y 1+ε |φl(y)| ≪φ,ε Y
−11. The claim is proved in [15, §3.2], as follows. When φ is a cusp form

of eigenvalue 1/4 + r2, so that φl(y) = y−1/2λφ(l)κir(ly), the claim follows from the exponential decay of
l 7→ κir(ly) for l ≥ Y 1+ε and y ≍ Y −1 together with the polynomial growth of l 7→ λφ(l). When φ is an
incomplete Eisenstein series, the integral formula (13) and standard bounds for the K-Bessel function show
that for each positive integer A, we have φl(y) ≪φ,ε,A τ(l)Y A−1/2|l|−A(1 + Y/|l|)ε; the claim then follows
by summing over |l| ≥ Y 1+ε. �

Proof of Proposition 3.3. By Lemma 3.4 and equation (17), we have

µf (φ)

µf (1)
=

1

Y µf (1)

(
S0 + S(0,Y 1+ε) + S≥Y 1+ε

)
+Oφ,ε(Y

−1/2).

Proposition 3.3 follows by combining the results of Lemma 3.6, Lemma 3.8 and Lemma 3.7. �

3.2. Bounds for individual shifted sums. We bound the individual shifted sums appearing in Definition
3.2; in subsequent sections we shall need only our main result, Corollary 3.14. We first recall a special case
of Holowinsky’s bound [15, Theorem 2].

Theorem 3.9 (Holowinsky). Let ε ∈ (0, 1). Then for x ≥ 1 and l ∈ Z6=0, we have

∑

n∈N
m:=n+l∈N
max(m,n)≤x

|λf (m)λf (n)| ≪ε τ(l)
x
∏

p≤x(1 + 2|λf (p)|/p)
log(ex)2−ε

Unfortunately, Theorem 3.9 is insufficient for our purposes because τ(ql) can be quite large, even larger
asymptotically than every power of log(eq), when q has many small prime factors. The following refinement
will suffice.
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Theorem 3.10. With conditions as in the statement of Theorem 3.9, we have

(18)
∑

n∈N
m:=n+l∈N
max(m,n)≤x

|λf (m)λf (n)| ≪ε

x
∏

p≤x(1 + 2|λf (p)|/p)
log(ex)2−ε

Proof. In [26, Thm 3.1], we generalized Holowinsky’s bound [15, Thm 2] to totally real number fields. Along
the way we proved a pair of results [26, Thm 4.10] and [26, Thm 7.2] either of which give Theorem 3.10 in the
special case F = Q. We could just as easily give the proof here in the special case F = Q, but spare ourselves
the trouble since we have already carried it out in greater generality; let us also emphasize that our proof is
self-contained and does not depend upon other literature concerning QUE and its generalizations. �

Remark 3.11. A bound of the form (18) but with an unspecified dependence on the parameter l may be
derived from the work of Nair [25]. We have attempted to quantify this dependence by working through the
details of Nair’s arguments, and have shown that they imply

(19)
∑

n∈N
m:=n+l∈N
max(m,n)≤x

|λf (m)λf (n)| ≪ε τm(l)
x
∏

p≤x(1 + 2|λf (p)|/p)
log(ex)2−ε

for some m ≥ 2 (probably m = 2) and all 0 6= |l| ≤ x1/16−ε; in deducing this we have used the Ramanujan
bound |λf (p)| ≤ 2. This strength and uniformity falls far short of what is needed in treating the level aspect
of QUE.

A mild strengthening of (18) subject to the additional constraint 4l2 ≤ x appears in the recent book
of Iwaniec-Friendlander [6, Thm 15.6], which was released after we completed the work of this paper. The
condition 4l2 ≤ x makes their result inapplicable in our treatment of the level aspect of QUE, where l can be
nearly as large as x. However, it seems to us that one can remove this condition by a suitable modification
of their arguments.

Recall from Definition 3.2 that the sums Ss(l, x) involve a certain integral Is(l, n, x).

Lemma 3.12. For each positive integer A, the integral Is(l, n, x) satisfies the upper bound

Is(l, n, x) ≪k,A

√
mn ·min

(
1,

max(m,n)

x

)−A

uniformly for s ∈ iR ∪ (−1/2, 1/2), n ∈ N, l ∈ Z6=0, and x ≥ 1. Here m := n+ l, as usual.

Proof. Let s, l,m, n be as above, and let A ≥ 0. Then |κs(y)| ≤ 1, so that by the Mellin formula we have

Is(l, n, x) ≤
∫ ∞

0

h(xy)κf (my)κf (ny)y
−1 dy

y

=

∫

(A)

h∧(w)xw
∫

R∗
+

yw−1κf (my)κf (ny)
dy

y

dw

2πi

=
(
√
mn)k

(
4π
(
m+n

2

))k−1

∫

(A)

h∧(w)

(
x

4π
(
m+n

2

)
)w

Γ(w + k − 1)
dw

2πi

≪k,A

√
mn

(
max(m,n)

x

)−A

.

Here we used the arithmetic mean-geometric mean inequality, the elementary bound Γ(w + k − 1) ≪k,A 1
for Re(w) = A, and the rapid decay of h∧. The case A = 0 gives Is(l, n, x) ≪k

√
mn, which combined with

the case that A is a positive integer yields the assertion of the lemma. �



14 PAUL D. NELSON

Remark 3.13. See [26, Lem 4.3] and [26, Cor 4.4] for a fairly sharp refinement of Lemma 3.12.

Corollary 3.14. The shifted sums Ss(l, x) satisfy the upper bound

(20) Ss(l, x) ≪k,ε

x
∏

p≤x(1 + 2|λf (p)|/p)
log(ex)2−ε

uniformly for s ∈ iR ∪ (−1/2, 1/2) and x ≥ 1.

Proof. Let us temporarily denote by Tf(x, l, ε) the right hand side of (20). By Definition 3.2 and Lemma
3.12, we need only show that

(21)
∑

n∈N
m:=n+l∈N

|λf (m)λf (n)| ·min

(
1,

max(m,n)

x

)−A

≪ε Tf (x, l, ε)

for some positive integer A. Take A = 2. We may assume that x ≥ 10. By Theorem 3.10 and the Deligne
bound |λf (p)| ≤ 2, the left hand side of (21) is

≪ε Tf (x, l, ε)

∞∑

n=0

2−nA2n
(

log(ex)

log(e2nx)

)2−ε ∏

x<p≤2nx

(1 + 2|λf (p)|/p)

≪ Tf (x, l, ε)

∞∑

n=0

2−(A−1)n exp

(
4 log

log(2nx)

log(x)

)
.

The inner sum converges and is bounded uniformly in x, so we obtain the desired estimate (21). �

3.3. Bounds for sums of shifted sums. We complete the proof of Theorem 3.1 by bounding the sums of
shifted sums that arose in Proposition 3.3.

Lemma 3.15. For each ε ∈ (0, 1) and each squarefree number q, we have

∑

d|q

d

log(ed)2−ε
≪ q log log(e2q)

log(eq)2−ε
≪ε

q

log(eq)2−2ε
.

Proof. Suppose that q is the product of r ≥ 1 primes q1 < · · · < qr. Let p1 < · · · < pr be the first r primes,
so that pi ≤ qi for i = 1, . . . , r. Define β(x) = x/ log(e2x)2−ε; we have chosen this particular definition so
that β is increasing on R≥1 and β(x) ≍ x/ log(ex)2−ε for x ∈ R≥1. The map

R≥1 ∋ x 7→ log β(ex) = x− (2− ε) log(2 + x)

is convex, so that for each a = (a1, . . . , ar) ∈ {0, 1}r we have

(22)
β(qa1

1 · · · qar
r )

β(q1 · · · qr)
≤ β(pa1

1 q
a2

2 · · · qar
r )

β(p1q2 · · · qr)
≤ β(pa1

1 p
a2

2 q
a3

3 · · · qar
r )

β(p1p2q3 · · · qr)
≤ · · · ≤ β(pa1

1 · · · par
r )

β(p1 · · · pr)
.

The prime number theorem implies that log(p1 · · · pr) = r log(r)(1 + o(1)), where the notation o(1) refers
to the limit as r → ∞; we may and shall assume that r is sufficiently large (and at least 100) because the
assertion of the lemma holds trivially when q has a bounded number of prime factors. Set r0 = ⌊r/10⌋.
Observe that

pr−r0+1 · · · pr = exp
(
r log(r) − (r − r0) log(r − r0) + o(r log(r))

)
(23)

= exp

(
r0 log(r) + (r − r0) log

(
r

r − r0

)
+ o(r log(r))

)

= exp (r0 log(r)(1 + o(1)))

≪ (p1 · · · pr)1/9
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and

(24) log(p1 · · · pr0) = r0 log(r0)(1 + o(1)) ≍ r log(r)(1 + o(1)) = log(p1 · · · pr).
Let Ω0 denote the set of all a ∈ {0, 1}r for which a1 + · · · + ar ≤ r0 and Ω1 the set of all a ∈ {0, 1}r for
which a1 + · · ·+ ar > r0, so that {0, 1}r = Ω0 ⊔ Ω1. Then by (23) we have

(25)
∑

a∈Ω0

β(pa1

1 · · · par
r )

β(p1 · · · pr)
≤ 2r

β(pr−r0+1 · · · pr)
β(p1 · · · pr)

≪ 2r(p1 · · · pr)−7/8 ≤ 8
√
2.

If a ∈ Ω1, then (24) implies β(pa1

1 · · · par
r )/β(p1 · · · pr) ≍ pa1−1

1 · · · par−1
r , so that

(26)
∑

a∈Ω1

β(pa1

1 · · · par
r )

β(p1 · · · pr)
≪

∑

d|p1···pr

1

d
≤ (1 + o(1))eγ log log(p1 · · · pr) ≪ log log(e2q).

Since β(x) ≍ x/ log(ex)2−ε for x ∈ R≥1, it follows from (22), (25) and (26) that

∑

d|q

d

log(ed)2−ε

q

log(eq)2−ε

≍
∑

d|q

β(d)

β(q)
=

∑

a∈{0,1}r

β(qa1

1 · · · qar
r )

β(q1 · · · qr)
≪ log log(e2q),

which establishes the lemma. �

Corollary 3.16. Let Y ≥ 1 with Y ≤ c1 log(eq)
c2 for some c1, c2 ≥ 1. Then our sum of shifted sums

satisfies the estimate
∑

d|q

Ss(dl, dY ) ≪k,ε,c1,c2

qY
∏

p≤q(1 + 2|λf (p)|/p)
log(eq)2−ε

,

uniformly for s ∈ iR ∪ (−1/2, 1/2) and x ≥ 1.

Proof. By Corollary 3.14, we have

(27)
∑

d|q

Ss(dl, dY ) ≪k,ε Y


 ∏

p≤qY

(
1 + 2

|λf (p)|
p

)
∑

d|q

d

log(ed)2−ε
.

By the Deligne bound |λf (p)| ≤ 2, the part of the product in (27) taken over q < p ≤ qY is≪ log(eY )4 ≪c1,c2

log log(eeq)4. The claim now follows from Lemma 3.15. �

Lemma 3.17. Let ε > 0, Y ≥ 1. If φ is a normalized Maass eigencuspform, then

∑

0<|l|<Y 1+ε

|λφ(l)|√
|l|

≪φ,ε Y
1/2+2ε,

where (as indicated) the implied constant may depend upon φ. On the other hand, if t ∈ R, then

∑

0<|l|<Y 1+ε

|λit(l)|√
|l|

≪ε Y
1/2+2ε,

where the implied constant does not depend upon t.

Proof. Follows from the Cauchy-Schwarz inequality, partial summation, the Rankin-Selberg bound (9) for
λφ and the uniform bound |λit(l)| ≤ τ(l) for λit. �
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Proof of Theorem 3.1. Suppose that φ is a normalized Maass eigencuspform of eigenvalue 1
4 + r

2. By Propo-
sition 3.3, we have

(28)
µf (φ)

µf (1)
=

1

Y µf (1)

∑

0<|l|<Y 1+ε

λφ(l)√
|l|
∑

d|q

Sir(dl, dY ) +Oφ,ε(Y
−1/2).

Recall the formula (5) for µf (1) ≍k qL(ad f, 1) and the definition (15) of Mf (q). We shall ultimately choose

Y ≪k log(eq)O(1), so Corollary 3.16 gives the bound

(29)
1

Y µf (1)

∑

d|q

Sir(dl, dY ) ≪k,ε log(eq)
εMf (q).

By (29) and Lemma 3.17 applied to (28), we find that

µf (φ)

µf (1)
≪k,φ,ε log(eq)εMf (q)

∑

0<|l|<Y 1+ε

|λφ(l)|√
|l|

+ Y −1/2

≪φ,ε Y 1/2+2ε log(eq)εMf (q) + Y −1/2.

Choosing Y = max(1,Mf (q)
−1) ≪k log(eq)O(1) gives the cuspidal case of the theorem.

Suppose now that φ = E(Ψ, ·) is an incomplete Eisenstein series. Proposition 3.3, Corollary 3.16 and
Lemma 3.17 show, as in the cuspidal case, that

µf (φ)

µf (1)
− µ(φ)

µ(1)
≪k,φ,ε Y 1/2+2ε log(eq)εMf (q)

∫

R

∣∣∣∣
Ψ∧(12 + it)

ξ(1 + 2it)

∣∣∣∣ dt+
1 +Rf (q)

Y 1/2

≪k,φ Y 1/2+2ε log(eq)εMf (q) +
1 +Rf (q)

Y 1/2
.

The same choice of Y as above completes the proof. �

4. An extension of Watson’s formula

Watson [42], building on earlier work of Garrett [7], Piatetski-Shapiro and Rallis [27], Harris and Kudla
[12], and Gross and Kudla [11], proved a beautiful formula relating the integral of the product of three
modular forms to the central value of their triple product L-function. Unfortunately, Watson’s formula
applies only to triples of newforms having the same squarefree level. In §5 we shall refer only to the
statement of the following extension of Watson’s formula to the case of interest, not the details of its proof.

Theorem 4.1. Let φ be a Maass eigencuspform of level 1 and f a holomorphic newform of squarefree level
q, as in §2. Then

∣∣∣
∫
Γ0(q)\H

φ(z)|f |2(z)yk dx dy
y2

∣∣∣
2

∫
Γ\H

|φ|2(z)yk dx dy
y2

(∫
Γ0(q)\H

|f |2(z)yk dxdy
y2

)2 =
1

8q

Λ(φ× f × f, 12 )

Λ(adφ, 1)Λ(ad f, 1)2
.

The L-functions L(· · · ) =
∏

p Lp(· · · ) and their completions Λ(· · · ) = L∞(· · · )L(· · · ) =
∏

v Lv(· · · ) are as

in [42, §3].
Remark 4.2. For simplicity, we have stated Theorem 4.1 only in the special case that we need it, but our
calculations (Lemma 4.4) lead to a slightly more general formula. Let ψj (j = 1, 2, 3) be newforms of weight
kj and level qj . We allow the possibility kj = 0, in which case we require that ψj be a Maass form. Then one
can read off from Ichino [16] and Lemma 4.4 a formula for the integral of ψ1ψ2ψ3 provided that k1+k2+k3 = 0,
that the qj are squarefree, that for each prime divisor p of q1q2q3 we have {vp(q1), vp(q2), vp(q3)} = {1, 1, 0}
as unordered sets (here vp(n) is the power to which p divides an integer n).
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Watson proved his formula only for three forms of the same squarefree level because Gross and Kudla
[11] evaluated the p-adic zeta integrals of Harris and Kudla [12] only when (the factorizable automorphic
representations generated by) the three forms are special at p; Harris and Kudla had already considered the
case that all three forms are spherical at p. Ichino [16] showed that the local zeta integrals of Harris and
Kudla are equal to simpler integrals over the group PGL(2,Qp). Ichino and Ikeda [17, §7, §12] computed
these simpler integrals when all three forms are special at p. Since we are interested in the integral of φ|f |2
when φ has level 1 and f has squarefree level q, we must consider the case that two representations are special
and one is spherical. We remark in passing that Böcherer and Schulze-Pillot [2] considered similar problems
for modular forms on definite rational quaternion algebras in the classical language, but their results are not
directly applicable here.

To state (a special case of) Ichino’s result, we introduce some notation. Let v denote a typical place of
Q and p a typical prime number. Let G = PGL(2)/Q, Gv = G(Qv), K∞ = SO(2)/{±1}, Kp = G(Zp), and

GA = G(A) =
∏′

v Gv, where A =
∏′

v Qv is the adele ring of Q. Regard φ and f as pure tensors φ = ⊗φv and

f = ⊗fv in (factorizable) cuspidal automorphic representations πφ = ⊗πφ,v and πf = ⊗πf,v of GA =
∏′

Gv.
Set f̄v =

(
−1

1

)
· fv and f̄ = ⊗f̄v. Then fp = f̄p for all (finite) primes p. Although the vectors φv and fv

are defined only up to a nonzero scalar multiple, the matrix coefficients

Φφ,v(gv) =
〈gv · φv, φv〉
〈φv, φv〉

, Φf,v(gv) =
〈gv · fv, fv〉
〈fv, fv〉

, Φf̄ ,v(gv) =
〈gv · f̄v, f̄v〉
〈f̄v, f̄v〉

are well-defined; here gv belongs to Gv and 〈, 〉v denotes the (unique up to a scalar) Gv-invariant hermitian
pairings on the irreducible admissible self-contragredient representations πφ,v and πf,v. Let dgv denote the
Haar measure on the group Gv with respect to which vol(Kv) = 1. Define the local integrals

Iv =

∫

Gv

Φφ,v(gv)Φf,v(gv)Φf̄ ,v(gv) dgv

and the normalized local integrals

(30) Ĩv =

(
ζv(2)

3

ζv(2)

Lv(
1
2 , φ× f × f)

Lv(1, adφ)Lv(1, ad f)2

)−1

Iv,

Finally, recall from §2 that ξ(s) = ΓR(s)ζ(s), where ΓR(s) = π−s/2Γ(s/2) and ζ(s) is the Riemann zeta
function.

Theorem 4.3 (Ichino). We have Ĩv = 1 for all but finitely-many places v, and the ratio of integrals
∣∣∣ ξ(2)−1

[Γ:Γ0(q)]

∫
Γ0(q)\H

φ|f |2yk dx dy
y2

∣∣∣
2

ξ(2)−1
∫
Γ\H |φ|2 dx dy

y2

(
ξ(2)−1

[Γ:Γ0(q)]

∫
Γ0(q)\H

|f |2yk dx dy
y2

)2

equals the ratio of L-values (times normalized local integrals)

ξ(2)−1

23
ξ(2)3

ξ(2)

Λ(12 , φ× f × f)

Λ(1, adφ)Λ(1, ad f)2

∏

v

Ĩv.

Proof. See [16, Theorem 1.1, Remark 1.3]. We have taken into account the relation between classical modular
forms and automorphic forms on the adele group GA (see Gelbart [9]) and the comparison (see for instance
Vignéras [41, §III.2]) between the Poincaré measure on the upper half-plane and the Tamagawa measure on
GA. �

We know by work of Harris and Kudla [12], Gross and Kudla [11], Watson [42], Ichino [17], and Ichino

and Ikeda [17] that Ĩ∞ = 1 and Ĩp = 1 for all primes p that do not divide the level q. We contribute the
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following computation, from which Theorem 4.1 follows upon cancelling common factors in the statement of
Theorem 4.3.

Lemma 4.4. Let p be a prime divisor of the squarefree level q. Then Ĩp = 1/p.

Before embarking on the proof, let us introduce some notation and recall formulas for the matrix coef-
ficients Φφ,p and Φf,p. Let Gp = PGL2(Qp), let Kp = PGL2(Zp), and let Ap be the subgroup of diagonal
matrices in Gp. Recall the Cartan decomposition Gp = KpApKp. For y ∈ Q∗

p we write a(y) = ( y 1 ) ∈ Ap.
The representation πφ,p is unramified principal series with Satake parameters αφ(p) and βφ(p); for clarity

we write simply α = αφ(p) and β = βφ(p) in this proof. The vector φp lies on the unique Kp-fixed line in
πφ,p. The matrix coefficient Φf,p is bi-Kp-invariant, so by the Cartan decomposition we need only specify
Φφ,p(a(p

m)) for m ≥ 0, which is given by the Macdonald formula [3, Theorem 4.6.6]

(31) Φφ,p(a(p
m)) =

1

1 + p−1
p−m/2

[
αm 1− p−1 β

α

1− β
α

+ βm
1− p−1 α

β

1− α
β

]
.

The representation πf,p is an unramified quadratic twist of the Steinberg representation of Gp. The vector
fp lies on the unique Ip-fixed line in πf,p, where Ip is the Iwahori subgroup of Kp consisting of matrices
that are upper-triangular mod p. Thus to determine Φf,p, we need only specify the values it takes on
representatives for the double coset space Ip\Gp/Ip, whose structure we now recall following [10, §7] (see
also [17, §7] for a similar discussion). Define the elements

w1 =

(
1

1

)
, w2 =

(
p−1

p

)
, ω =

(
1

p

)

of Gp. Note that since Gp = PGL2(Qp), we have w2
1 = w2

2 = ω2 = 1. For w in the group Wa = 〈w1, w2〉
generated by w1 and w2, let λ(w) be the length of the shortest string expressing w in the alphabet {w1, w2},
so that λ(w1) = λ(w2) = 1. Extend λ to the group W̃ = 〈w1, w2, ω〉 via the formula λ(ωiw) = λ(w) when
w ∈Wa, so that in particular λ(ω) = 0. We have a Bruhat decomposition Gp = ⊔w∈W̃ IpwIp; unwinding the
definitions, this reads more concretely as

Gp =

(
⊔n∈ZIp

(
pn

1

)
Ip

)
⊔
(
⊔n∈ZIpw1

(
pn

1

)
Ip

)
,

but we shall not adopt this perspective. With our normalization of measures we have vol(IpwIp) = (p +

1)−1pλ(w). Suppose temporarily that πf,p is (the trivial twist of) the Steinberg representation. The matrix
coefficient Φf,p is bi-Ip-invariant and given by

Φf,p(ω
jw) = (−1)j(−p−1)λ(w)

for all j ∈ {0, 1} and w ∈Wa. In particular

(32) Φf,p(ω
jw)2 = (p−2)λ(w).

In the general case that πf,p is a possibly-nontrivial unramified quadratic twist of Steinberg, the formula
(32) for the squared matrix coefficient still holds.

Proof of Lemma 4.4. Having recalled the formulas above, we see that

Ip =

∫

Gp

Φφ,p(g)Φf,p(g)
2 dg =

∑

w∈W̃

vol(IpwIp)Φφ,p(w)(p
−2)λ(w)(33)

= (p+ 1)−1
∑

w∈W̃

Φφ,p(w)(p
−1)λ(w),
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where Φφ,p is given by (31). The evaluation of the Poincaré series

(34)
∑

w∈W̃

tλ(w) = 2
1 + t

1− t
,

where t is an indeterminate, is asserted and used in [17, §7], but we need a slightly more precise result

here. For w ∈ W̃ let us write µ(w) for the unique nonnegative integer with the property that KpwKp =

Kpa(p
µ(w))Kp. Then we claim that for indeterminates x, t we have the relation of formal power series

(35)
∑

w∈W̃

xµ(w)tλ(w) =
(1 + x)(1 + t)

1− xt
.

Note that we recover (34) upon taking x = 1. To prove (35), observe that since ωw1 = w2ω and ω2 = 1,

every element w of W̃ is of the form uabn = ωa(w1w2)
nwb

1 or vabn = ωa(w2w1)
nwb

2 for some a ∈ {0, 1},
b ∈ {0, 1}, and n ∈ Z≥0. Computing uabn and vabn explicitly to be

u00n =

(
pn

p−n

)
, u01n =

(
pn

p−n

)
,

u10n =

(
p−n

pn+1

)
, u11n =

(
p−n

pn+1

)
,

v00n =

(
p−n

pn

)
, v01n =

(
p−n

pn

)
,

v10n =

(
pn

p1−n

)
, v11n =

(
pn

p1−n

)
,

we see that this parametrization of W̃ is unique except that ua00 = va00 for each a ∈ {0, 1}; furthermore, we
can read off that µ(uabn) = 2n+ a, that µ(vabn) = 2(n+ b)− a, and that λ(uabn) = λ(vabn) = 2n+ b. Thus

∑

w∈W̃

xµ(w)tλ(w) = (1 + x) +
∑

b=0,1

∑

n≥0

2n+b>0

t2n+b
∑

a=0,1

(
x2n+a + x2(n+b)−a

)

= (1 + x) +
∑

b=0,1

∑

n≥0

2n+b>0

t2n+bx2n+b−1
∑

a=0,1

(
x1+a−b + x1+b−a

)

= (1 + x) + (1 + x)2
∑

m>0

tmxm−1,

from which (35) follows upon summing the geometric series. We now combine (31), (33) and (35), noting
that the series converge because |α| < p1/2 and |β| < p1/2; the contributions to the formula (33) for Ip of
the two terms in the formula (31) for Φφ,p(a(p

m)) are respectively

(p+ 1)−1(1 + p−1)−1 1− p−1 β
α

1− β
α

(1 + p−1/2α)(1 + p−1)

1− p−3/2α

and

(p+ 1)−1(1 + p−1)−1
1− p−1 α

β

1− α
β

(1 + p−1/2β)(1 + p−1)

1− p−3/2β
.

Summing these fractions by cross-multiplication and then simplifying, we obtain

Ip = p−1(1− p−1)
(1 + αp−1/2)(1 + βp−1/2)

(1− αp−3/2)(1− βp−3/2)
.
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Recall the definition (30) of Ĩp. The local L-factors are given by (see [42, §3.1])
Lp(1, ad f) = ζp(2), Lp(1, adφ) = [(1 − α2p−1)(1 − p−1)(1− β2p−1)]−1,

Lp(
1
2 , φ× f × f) = [(1− αp−1/2)(1− βp−1/2)(1 − αp−3/2)(1 − βp−3/2)]−1,

thus the normalized local integral Ĩp is

Ĩp = p−1(1− p−1)
(1− αp−1/2)(1− βp−1/2)(1 + αp−1/2)(1 + βp−1/2)

(1− α2p−1)(1− p−1)(1 − β2p−1)
= p−1,

as asserted. �

5. Proof of Theorem 1.3

We combine Theorem 3.1 and Theorem 4.1 with Soundararajan’s weak subconvex bounds [38] to complete
the proof of Theorem 1.3. Fix a positive even integer k. Let f be a newform of weight k and squarefree level
q. Fix a Maass eigencuspform or incomplete Eisenstein series φ. We will show that the “discrepancy”

Df (φ) :=
µf (φ)

µf (1)
− µ(φ)

µ(1)
.

tends to 0 as q → ∞, thereby fulfilling the criterion of Lemma 1.10, by combining the complementary
estimates for Df (φ) provided below by Proposition 5.2 and Proposition 5.3.

Lemma 5.1. The quantities Mf (x) and Rf (x) (15) appearing in the statement of Theorem 3.1 satisfy the
estimates

Mf(q) ≪k,ε log(eq)
1/6+εL(ad f, 1)1/2, Rf (q) ≪k,ε

log(eq)−1+ε

L(ad f, 1)
≪k log(eq)ε

Proof. The bound for Mf(q) follows from the proof of [14, Lemma 3] with “k” replaced by “q,” noting that
λf (p)

2 ≤ 1 + λf (p
2) for all primes p. The bound for Rf (q) follows from the arguments of [38, Example 1],

[14, Lemma 1] with “k” replaced by “q” and the lower bound (6) for L(ad f, 1). �

Proposition 5.2. We have Df (φ) ≪k,φ,ε log(eq)
1/12+εL(ad f, 1)1/4.

Proof. Follows immediately from Theorem 3.1 and Lemma 5.1. �

Proposition 5.3. We have Df(φ) ≪k,φ,ε log(eq)−δ+εL(ad f, 1)−1, where δ = 1/2 if φ is a Maass eigen-
cuspform and δ = 1 if φ is an incomplete Eisenstein series.

Proof. If φ is a Maass eigencuspform, then the analytic conductor of φ× f × f is ≍ k4q4 ≍k q
4, so Theorem

4.1 and the arguments of Soundararajan [38, Example 2] with “k” replaced by “q” show that
∣∣∣∣
µf (φ)

µf (1)

∣∣∣∣
2

≪k,φ

L(φ× f × f, 12 )

q · L(ad f, 1)2 ≪ε
1

log(eq)1−εL(ad f, 1)2
.

If φ = E(Ψ, ·) is an incomplete Eisenstein series, then the unfolding method as in Lemma 3.5 and the bound
for Rf (q) given by Lemma 5.1 show that

µf (φ)

µf (1)
− µ(φ)

µ(1)
=

2π2

q

∫

(1/2)

Ψ∧(s)
( q

4π

)s Γ(s+ k − 1)

Γ(k)

ζ(s)

ζ(2s)

L(ad f, s)

L(ad f, 1)

ds

2πi

≪k,φ Rf (q) ≪k,ε
log(eq)−1+ε

L(ad f, 1)
.

�
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Proof of Theorem 1.3. By Propositions 5.2 and 5.3, there exists δ ∈ {1/2, 1} such that

Df (φ) ≪k,φ,ε min
(
log(eq)−δ+εL(ad f, 1)−1, log(eq)1/12+εL(ad f, 1)1/4

)
;

it follows by the argument of [14, §3] with “k” replaced by “q” that Df (φ) → 0 as q → ∞. �
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