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Abstract—In this paper, we propose a distributed Alamouti
space-time code (DASTC) for two-way relay networks employing
a single amplify-and-forward (AF) relay. We first derive closed-
form expressions for the approximated average sum-rate of
the proposed DASTC scheme. Our analysis is validated by
a comparison against the results of Monte-Carlo simulations.
Numerical results verify the effectiveness of our proposedscheme
over the conventional DASTC with one-way communication.

I. I NTRODUCTION

Relay networking has been considered as an efficient
approach to increase the communication range of wireless
systems. However, dual-hop half-duplex relay networks lose
half of the throughput compared to the direct communication
due to the fact that the relay cannot transmit and receive
simultaneously. To overcome this drawback, a two-way (or
bi-directional) relay network has been presented in [1], where
two nodes, namelyS1 andS2, transmit simultaneously to the
relay R in the first hop, and in the second hop the relayR

forwards its received signals to both terminalsS1 andS2. With
this strategy, this loss can be remarkably compensated.

As a result, two-way relay networks have gained great
attention in the research community (e.g., see [1]–[5]). Inview
of the related work of two-way relay networks, the upper and
lower bounds for average sum-rate have been investigated in
[1]. The performance of two-way amplify-and-forward (AF)
relay with network coding has been investigated in [2]. By
giving up the strict separation of downlink and uplink signals
through either time or frequency division duplex, a two-hop
relaying, namely space division duplex relaying, is proposed
in [3]. The exact closed-form expressions of error probability,
average sum-rate for two-way AF relays have been presented
in [4], [5].

Distributed Alamouti space-time code (DASTC) with AF
relays originally applied for one-way relay networks [6] has
recently extended to two-way systems (see, e.g., [7]–[9]).
In particular, a two-way relaying scheme where two sources
equipped with two antennas transmit Alamouti code through
the help of an AF relay has been proposed in [7], [8]. Upper
and lower bounds of average sum-rate have also been derived
for this particular bi-directional relaying system. Another
system in which the burden of deploying multiple antennas

on sources is transferred to the relay has been proposed in
[9]. By assuming that the relay is equipped with two antennas
and each source is equipped with a single antenna, an upper
bound of symbol error probability has been obtained. As
can be observed from all the above schemes, either relay or
source requires multiple antennas which may be prohibited in
practical implementations due to the high demand for low-cost
and small-size portable devices.

To alleviate this requirement and make the system realistic,
a DASTC scheme which all terminals having only one antenna
has been presented for one-way AF relay networks [10], [11].
However, this system still faces loss in spectral efficiency.
Hence, in this paper, we propose a DASTC scheme for
two-way AF relay networks which significantly recovers this
loss. More importantly, unlike the analysis work in [7], [8]
where the bounds of average sum-rate have been shown, we
have derived an asymptotically tight approximation for the
average sum-rate of the proposed two-way scheme. The final
expression is given in the form of Fox’s H-function which
enables us to investigate the performance of the proposed
scheme. In addition, we also provide the numerical results
to verify the correctness of our analysis.

The rest of this paper is organized as follows. In Section II,
we introduce the system model of the proposed DASTC for
two-way AF relay networks. Then, in Section III, we derive the
tight approximation for the average sum-rate of the proposed
scheme. Numerical results are shown in Section IV to validate
the analysis. Finally, we conclude the paper in Section V.

Notation: Throughout the paper, we shall use the following
notation. Vector is written as bold lower case letter and matrix
is written as bold upper case letter. The superscripts∗ and
† stand for the complex conjugate and transpose conjugate,
respectively.IIIn represents then × n identity matrix. ‖AAA‖F
denotes Frobenius norm of the matrixAAA and |x| indicates the
envelope ofx. Ex {.} is the expectation operator over the ran-
dom variablex. A complex Gaussian distribution with mean
µ and varianceσ2 is denoted byCN (µ, σ2). Let us denote
Ñm (mmm,ΣΣΣ) as a complex Gaussian random vector with mean
vectormmm and covariance matrixΣΣΣ. Γ (a, x) is the incomplete
gamma function defined asΓ (a, x) =

∫∞

x
ta−1e−tdt and

Kn (.) is thenth-order modified Bessel function of the second
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II. SYSTEM MODEL OF DISTRIBUTED ALAMOUTI

SPACE-TIME CODES WITH TWO-WAY AF RELAYING

In this section, we introduce the system model of the
proposed DASTC scheme with two-way AF relaying. Consider
a wireless AF relay network consisting of three terminals as
shown in Fig. 1. Two sources, namelyS1 and S2, exchange
the information through the assistance of an AF relayR. Each
terminal is equipped with a single antenna which operates
in half-duplex mode. We also assume that the channel for
all links induces quasi-static fading, i.e., the channel remains
constant for a block spanning over at least six symbols-
intervals and varies independently for every block. Due to the
channel reciprocity, we note that channel gains ofA −→ B

andB −→ A links, with A,B ∈ {S1, S2,R}, are identical.
The communications of the proposed two-way AF DASTC

scheme occur in three phases. In the first phase, bothS1 and
S2 transmit the first row of Alamouti code [12] toR with the
same transmit power per symbolPs. The received signal at
the relayR is given by

yyyR = h1sss1 + h2xxx1 + nnnR (1)

where sss1 = [ s1 s2 ] and xxx1 = [ x1 x2 ] are the two
first rows of the Alamouti codes generated byS1 and S2,
respectively. The channel coefficients for the link fromS1 and
S2 to R, respectively denoted ash1 andh2, follow a Rayleigh
distribution, i.e.,h1 ∼ CN (0,Ω1) and h2 ∼ CN (0,Ω2).
The vectornnnR is the complex additive white Gaussian noise
(AWGN) with zero mean and varianceN0.

In the second phase,R amplifies the received signal, i.e.,
yyy
R
, with the same power constraint as in the first phase and

forwards toS2 while S1 sends the second row of the Alamouti
code toS2. The received signal at the sourceS2, yyy

2
, is written

as

yyy2 = h2GyyyR + h0sss2 + nnn2 (2)

where G is the scalar amplifying gain at the relay,h0 ∼
CN (0,Ω0) is the channel gain for the link betweenS1 andS2,
sss2 = [ −s∗2 s∗1 ] is the second row of the Alamouti code,
andnnn2 is the AWGN vector with zero mean and varianceN0.

Similarly, in the third phase,R transmitGyyyR whereasS2
sends the second row of the Alamouti code toS1. The received
signal at the sourceS1, yyy1, is shown as

yyy
1
= h1GyyyR + h0xxx2 + nnn1 (3)

wherexxx2 = [ −x∗
2 x∗

1 ] is the second row of Alamouti code
andnnn1 is the AWGN vector with zero mean and varianceN0.

The amplifying gainG is determined to satisfy the aver-
age power constraint between the relay and source, i.e.,R

consumes the same amount of power as each source. In this
paper, we assume channel state information (CSI)-assistedAF
relay, i.e., the relay perfectly knows instantaneous values of
the channel gainsh1 and h2. Taking these information into
account, we have

E

{

‖GyyyR‖2F
}

= E

{

‖sssi‖2F
}

= E

{

‖xxxi‖2F
}

(4)

yielding

G2 =

(

|h1|2 + |h2|2 +
1

γ̄

)−1

(5)

whereγ̄ = Ps/N0 is the average signal-to-noise ratio (SNR).
With sufficient large SNR, the amplifying gain can be tightly
approximated as

G2 ≈
(
|h1|2 + |h2|2

)−1
(6)

It is assumed that the two sources have perfect knowledge
of the corresponding channel coefficients to fully cancel self-
interference. Hence, the received signal atS1 andS2 given in
(3) and (2) can readily be formed, respectively, as follows:

yyy1 = hhhXXX + zzz1 (7)

yyy2 = hhhSSS + zzz2 (8)

where hhh = [ Gh1h2 h0 ], zzz1 = Gh1nnnR + nnn1, zzz2 =

Gh2nnnR + nnn2, SSS =

[
s1 s2
−s∗2 s∗1

]

, andXXX =

[
x1 x2

−x∗
2 x∗

1

]

.

Here, the new noise vectorzzzi, with i ∈ {1, 2}, is the complex

Gaussian vector, i.e.,zzzi ∼ Ñ2

(

000, N0

(
1 + |hi|2 G2

)
III2

)

. It is
important to note thatSSS andXXX are Alamouti space-time codes
constructed atS1 andS2, respectively.

III. AVERAGE SUM-RATE OF DISTRIBUTED ALAMOUTI

SPACE-TIME CODES WITH TWO-WAY AF RELAYING

In this section, we investigate the information-theoreticper-
formance of the proposed DASTC with two-way AF relaying
presented in Section II. As mentioned above, since the channel
model is assumed to be ergodic block fading, we can describe
the average sum-rate as follows:

Csum= E

{
2

3
log2 det

(

III2 +
1

N0 (1 +G2|h2|2)
hhh†RRRssshhh

)

+
2

3
log2 det

(

III2 +
1

N0 (1 +G2|h1|2)
hhh†RRRxxxhhh

)}

(9)

whereRRRsss andRRRxxx are the covariance matrices of Gaussian
codewords and the pre-factor2/3 accounts for the fact that
each source received information consisting of two symbols



over three time slots. Due to the orthogonality of Alamouti
codeword, it is easy to see thatRRRsss = E

{

SSSSSS†
}

= 2PsIII2 and

RRRxxx = E

{

XXXXXX†
}

= 2PsIII2. Then we can rewrite (9) as

Csum =

E

{
2

3
log2

[(

1 + 2γ̄
|h1|2|h2|2 + |h0|2

(
|h1|2 + |h2|2

)

|h1|2 + 2|h2|2

)

×
(

1 + 2γ̄
|h1|2|h2|2 + |h0|2

(
|h1|2 + |h2|2

)

|h2|2 + 2|h1|2

)]}

(10)

where (10) is established by the fact thatdet (III +AAABBB) =
det (III +BBBAAA). For notational simplicity, let us denoteγi =
2γ̄|hi|2 with i = 0, 1, 2. Moreover, in the high SNR regime,
i.e., γ̄ is sufficient large, the average sum-rateCsum given in
(10), after some manipulations, can be tightly approximated
as

3 ln 2

2
Csum≈ E

{

ln

(
γ1γ2

γ1 + 2γ2

)}

︸ ︷︷ ︸

I1

+E

{

ln

(
γ1γ2

γ2 + 2γ1

)}

︸ ︷︷ ︸

I2

+ 2E

{

ln

(

1 +
γ0 (γ1 + γ2)

γ1γ2

)}

︸ ︷︷ ︸

I3

(11)

In order to calculate (11), we first start our derivation by
considering the similarity betweenI1 andI2 in (11). To eval-
uate the integralI1 we utilize the probability density function
(PDF) ofZ derived in Lemma 1 given in the Appendix. From
(25), we have

I1 =

2∑

u=1

1∑

v=0

∞∫

0

Av
ln z

1 + z
zu exp(−β1z)Kv (αz) dz (12)

where

α = 2

√
2

γ̄1γ̄2
, β1 =

1

γ̄2
+

2

γ̄1
A0 = α2, A1 = αβ1

To further simplify (12), we will expressln z/(1 + z) and
exp (−αz)Kv (αz) in terms of the Meijer’s G-function with
the help of [13, eq. (8.4.6.13)] and [13, eq. (6.4.23.3)] as
follows:

ln z

1 + z
= −πG2,2

3,3

(

z

∣
∣
∣
∣
∣

0, 0, 1/2

0, 0, 1/2

)

(13)

exp (−αz)Kv (αz) =
√
πG2,0

1,2

(

2αz

∣
∣
∣
∣
∣

1/2

v,−v

)

(14)

whereGm,n
p,q (·) is the Meijer’s G-function [13, eq. (8.2.1.1)].

Moreover, the Meijer’s G-function is a special case of the
Fox’s H-function [13, eq. (8.3.2.21)]

Gm,n
p,q

(

z

∣
∣
∣
∣
∣

(ap)

(bq)

)

= Hm,n
p,q

(

z

∣
∣
∣
∣
∣

(ap, 1)

(bq, 1)

)

(15)

By combining (13), (14), and (15) with (12), we obtain

I1 = −
2∑

u=1

1∑

v=0

π3/2Av

∞∫

0

zu exp [− (β1 − α) z]

×H2,2
3,3

[

z

∣
∣
∣
∣
∣

(0, 1), (0, 1), (1/2, 1)

(0, 1), (0, 1), (1/2, 1)

]

×H2,0
1,2

[

2αz

∣
∣
∣
∣
∣

(1/2, 1)

(v, 1), (−v, 1)

]

dz (16)

Then, the integralI1 can be calculated with the help of [14,
eq. (2.6.2)] as follows:

I1 = −π3/2
2∑

u=1

1∑

v=0

Av (β1 − α)
−u−1

H1,2,0,2,2
1,[3:1],0,[3:2]







1
α+β1

2α
α+β1

∣
∣
∣
∣
∣
∣
∣
∣

(1 + u, 1)
(1/1, 1); (0, 1), (0, 1), (1/2, 1)

(0, 1), (0, 1), (12 , 1); (v, 1), (−v, 1)







(17)

whereHK,N,N ′,M,M ′

E,[A:C],F,[B:D][·] is the generalized Fox’sH-function
[14, eq. (2.2.1)]. Similarly, we can obtain the closed-form
expression forI2.

We next evaluate the integralI3 by utilizing the PDF ofT
derived in Lemma 2 given in the Appendix. From (32), we
have

I3 =

2∑

n=1

ξn

∞∫

0

ln (1 + t) (t+ ζ)
−3−n

× 2F1

(

3 + n, n+ 1
2 ;

7
2 ;

t+η
t+ζ

)

dt (18)

Then we exchange the variablet+η
t+ζ = x

x+1 and as-
sume that the relaying protocol is symmetric, i.e.,γ̄1 =
γ̄2, yielding η = 0. We next expressln(1 + ζx) and

(1 + x)
−a

2F1

(

a, b; c; x
x+1

)

in terms of the Meijer’s G-
function with the help of [13, eq. (8.4.6.5)] and [13,
eq. (8.4.49.26)] as follows:

ln(1 + ζx) = G1,2
2,2

(

ζx

∣
∣
∣
∣
∣

1, 1

1, 0

)

(19)

(1 + x)−3−n
2F1

(

3 + n, n+ 1
2 ;

7
2 ;

x
x+1

)

= G1,2
2,2

(

x

∣
∣
∣
∣
∣

−2− n, 1
2 − n

0,−2n

)

(20)

By combining (19) and (20) with (18), we have

I3 =

2∑

n=1

ξn

∞∫

0

G1,2
2,2

(

x

∣
∣
∣
∣
∣

−2− n, 1
2 − n

0,−2n

)

×G1,2
2,2

(

ζx

∣
∣
∣
∣
∣

1, 1

1, 0

)

dx (21)



The integral given in (21) can be finalized in the form of Fox’s
H-function by using [15, eq. (7.811.1)] and [13, eq. (8.3.2.21)]
yielding I3 as follows:

I3 =

2∑

n=1

ξnH
4,2
4,4

[

ζ

∣
∣
∣
∣
∣

(0, 1), (2n, 1), (1, 1), (1, 1)

(2 + n, 1), (n− 1
2 , 1), (1, 1), (0, 1)

]

(22)

By substituting (17) and (22) in (11) and considering the fact
that I2 can be obtained in a similar form ofI1, the sum-rate
of DASTC with two-way AF relay can be shown as

Csum≈ −2π3/2

3 ln 2

2∑

k=1

2∑

u=1

1∑

v=0

Av (βk − α)
−u−1

H1,2,0,2,2
1,[3:1],0,[3:2]







1
α+βk

2α
α+βk

∣
∣
∣
∣
∣
∣
∣
∣

(1 + u, 1)
(1/1, 1); (0, 1), (0, 1), (1/2, 1)

(0, 1), (0, 1), (12 , 1); (v, 1), (−v, 1)







+
4

3 ln 2

2∑

n=1

ξnH
4,2
4,4

[

ζ

∣
∣
∣
∣
∣

(0, 1), (2n, 1), (1, 1), (1, 1)

(2 + n, 1), (n− 1
2 , 1), (1, 1), (0, 1)

]

(23)

IV. N UMERICAL RESULTS

In this section, we provide the numerical results to verify the
proposed two-way DASTC and the correctness of our analysis
in two specific examples. The path loss of each link follows
an exponential-decay model: if the distance between the two
sources is equal tod, thenΩ0 ∝ d−α where an exponent of
α = 4 corresponds to a typical non line-of-sight propagation
[7]. Here we assume that theS1 −→ S2 link has unit channel
mean power, i.e.,Ω0 = 1. In the first example, we consider the
symmetric relaying protocol, i.e.,Ω0 = Ω1 = Ω2 = 1. In the
second example, we assume that the geometry for locations of
three communicating terminals is co-linear where the relayis
placed half way between the two sources, i.e.,Ω1 = Ω2 = 16
andΩ0 = 1.

Fig. 2 and Fig. 3 illustrate the average sum-rate of DASTC
in two-way AF relay networks versus average SNR for the
two considered examples. As can be observed from these two
figures, the analysis is very tight from the middle to high
SNR regime. Specifically, from SNR=10 dB the analytical and
simulation curves perfectly match with each other which verify
the tightness of our approximation.

More importantly, the proposed two-way DASTC scheme
outperforms the conventional one-way system in terms of the
spectral efficiency in the whole considered range of SNR.
In particular, at SNR=30 dB, the proposed scheme enhances
the average sum-rate to 3.8 bps/Hz in both Example 1 and 2
compared to the conventional one. It is interesting to observe
that with a fixed value ofΩ0 the gain is unchanged, irrespective
of the relay’s location.

V. CONCLUSIONS

We have proposed a DASTC scheme for two-way AF
relay networks that circumvents the loss in spectral efficiency
inherently occurred in conventional one-way DASTC system.
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Fig. 2. Average sum-rate of DASTC with symmetric relaying protocol.

0 5 10 15 20 25 30

3

6

9

0
 = 1

1
 = 

2
 = 16

 Two-Way DASTC (Analysis)
 Two-Way DASTC (Simulation)
 One-Way DASTC

SNR (dB)

 

 

A
ve

ra
ge

 S
um

-R
at

e 
(b

ps
/H

z)

Fig. 3. Average sum-rate of DASTC with co-linear relaying protocol.

We also derive the tight approximation for the average sum-
rate of the proposed scheme. The closed-form expression
for approximated sum-rate is given in the form of Fox’s
H-function which readily allows us to analyze the spectral
efficiency of the proposed scheme. The numerical results
provided have validated our analysis.

APPENDIX

The following lemmas will be helpful in the paper.
Lemma 1: Let γi andγj be statistically independent and not

necessarily identically distributed (i.n.i.d.) exponential random
variables with hazard ratēγi andγ̄j , respectively. Suppose that
the ratio ofZ takes the form

Z =
γiγj

γi + 2γj
(24)

Then, we obtain the PDF of random variableZ as

pZ (z) = αz exp (−βiz) [αK0 (αz) + βiK1 (αz)] (25)

whereα = 2
√

2
γ̄iγ̄j

andβi =
1
γ̄j

+ 2
γ̄i

.



Proof: Let us rewriteZ in a more tractable form as

Z = (X + Y )
−1 (26)

whereX = 1/γi andY = 2/γj. Then, after some algebraic
simplifications together with the help of [15, eq. (3.471.9)],
the moment generating function (MGF) ofX andY can be
expressed as, respectively

ΦX (s) = EX {exp (−sx)} = 2

√
s

γ̄i
K1

(

2

√
s

γ̄i

)

(27)

ΦY (s) = EY {exp (−sy)} = 2

√

2s

γ̄j
K1

(

2

√

2s

γ̄j

)

(28)

As can be seen from (26), since1/Z is the sum of two
statistically independent random variables, by using (27)and
(28), the MGF of1/Z can be expressed as

Φ1/Z (s) = 4

√

2

γ̄iγ̄j
sK1

(

2

√
s

γ̄i

)

K1

(

2

√

2s

γ̄j

)

(29)

Then, the cumulative distribution function (CDF) of1/Z,
F1/Z (x), can be shown as

F1/Z (x) = 1− L−1{Φ1/Z (s) /s}|1/x (30)

whereL−1{.} stands for the inverse Laplace transform. From
(29) and (30) together with [16, eq. (13.2.20)], we have

FZ (z) = 1− αz exp (−βiz)K1 (αz) (31)

whereα = 2
√

2
γ̄iγ̄j

andβi =
1
γ̄j

+ 2
γ̄i

. By differentiating (31)

with respect toz and using the fact thatdKv(z)
dz = −Kv−1 (z)−

v
zKv (z) [15, eq. (8.486.12)], we obtain (25) which completes
the proof.

Lemma 2: Let γ0, γ1, and γ2 be the three i.n.i.d. expo-
nential random variables with hazard ratesγ̄0, γ̄1, and γ̄2,
respectively, then the PDF ofT = γ0

γ1+γ2

γ1γ2
is given by

pT (t) =

2∑

n=1

ξn
1

(t+ζ)3+n 2F1

(

3 + n, n+ 1
2 ;

7
2 ;

t+η
t+ζ

)

(32)

where

ξn =
√
π

(
4√
γ̄1γ̄2

)n
Γ (3 + n) Γ (3− n)

Γ (7/2)
̟n

̟0 =
4

γ̄0γ̄1γ̄2
, ̟1 =

2 (γ̄1 + γ̄2)

γ̄0 (γ̄1γ̄2)
3/2

ζ = γ̄0

(
1

γ̄1
+

1

γ̄2
+

2

γ̄1γ̄2

)

, η = γ̄0

(
1

γ̄1
+

1

γ̄2
− 2

γ̄1γ̄2

)

and 2F1 (a, b; c; z) is the Gauss hypergeometric function [17,
eq. (2.12.1)].

Proof: SinceT = γ0
γ1+γ2

γ1γ2
, by definingW = γ1γ2

γ1+γ2
, we

have

FT (t) =

∫ ∞

0

[

1− exp

(

−wt

γ̄0

)]

pW (w) dw (33)

Following similar steps as in Lemma 1, we obtainpW (w) as

pW (w) =
2w

γ̄1γ̄2
exp

[

−
(

1

γ̄1
+

1

γ̄2

)

w

]

×
[

2K0

(
2w√
γ̄1γ̄2

)

+

(
γ̄1 + γ̄2
γ̄1γ̄2

)

K1

(
2w√
γ̄1γ̄2

)]

(34)

By substituting (34) in (33) and taking the derivative with
respect tot, we obtain the PDF ofT as

pT (t) =
2∑

n=1

̟n

∞∫

0

w2 exp

[

−
(

t

γ̄0
+

1

γ̄1
+

1

γ̄2

)

w

]

×Kn

(
2w√
γ̄1γ̄2

)

dw (35)

It is observed that the integral given in (35) can be simplified
by using [13, eq. (6.621.3)] which results in (32). This
completes the proof.
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