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MAXIMAL THEOREMS AND SQUARE FUNCTIONS FOR ANALYTIC

OPERATORS ON Lp-SPACES

CHRISTIAN LE MERDY, QUANHUA XU

Abstract. Let T : Lp(Ω) → Lp(Ω) be a contraction, with 1 < p < ∞, and assume that
T is analytic, that is, sup

n≥1
n‖T n − T n−1‖ < ∞ . Under the assumption that T is pos-

itive (or contractively regular), we establish the boundedness of various Littlewood-Paley
square functions associated with T . In particular we show that T satisfies an estimate∥∥(∑∞

n=1
n2m−1

∣∣T n(T − I)m(x)
∣∣2) 1

2

∥∥
p
. ‖x‖p for any integer m ≥ 1. As a consequence we

show maximal inequalities of the form
∥∥sup

n≥0
(n+1)m

∣∣T n(T − I)m(x)
∣∣∥∥

p
. ‖x‖p, for any

integer m ≥ 0. We prove similar results in the context of noncommutative Lp-spaces. We
also give analogs of these maximal inequalities for bounded analytic semigroups, as well as
applications to R-boundedness properties.

2000 Mathematics Subject Classification : 47B38, 46L52, 46A60.

1. Introduction.

Let (Ω, µ) be a measure space, let 1 < p < ∞ and let T : Lp(Ω) → Lp(Ω) be a posi-
tive contraction. Then Akcoglu’s Theorem [1] asserts that T satisfies a maximal ergodic
inequality,

(1.1)
∥∥∥sup
n≥0

1

n+ 1

∣∣∣
n∑

k=0

T k(x)
∣∣∣
∥∥∥
p
. ‖x‖p, x ∈ Lp(Ω).

A well-known question is to determine which operators satisfy a stronger maximal inequality,

(1.2)
∥∥∥sup
n≥0

|T n(x)|
∥∥∥
p
. ‖x‖p, x ∈ Lp(Ω).

In this paper we show that this holds true provided that T is analytic, that is, there exists
a constant K ≥ 0 such that

n‖T n − T n−1‖ ≤ K

for any n ≥ 1 (see Section 2 for some background). More generally, we show that for any
integerm ≥ 0, analytic positive contractions T : Lp(Ω) → Lp(Ω) satisfy a maximal inequality

(1.3)
∥∥∥sup
n≥0

(n + 1)m
∣∣T n(T − I)m(x)

∣∣
∥∥∥
p
. ‖x‖p, x ∈ Lp(Ω).

Note that for any m ≥ 1, the sequence of operators (T n(T − I)m)n≥0 appearing here is
the m-th order discrete derivative of the original sequence (T n)n≥0. The proofs of these
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2 CHRISTIAN LE MERDY, QUANHUA XU

inequalities rely on the boundedness of certain discrete Littlewood-Paley square functions of
independent interest that we establish in Section 3. In particular we will show that for T as
above, we have an estimate

(1.4)
∥∥∥
( ∞∑

n=1

n
∣∣T n(x)− T n−1(x)

∣∣2
) 1

2

∥∥∥
p
. ‖x‖p, x ∈ Lp(Ω).

These maximal theorems and square function estimates extend Stein’s famous results [35, 36]
which show that (1.2), (1.3) and (1.4) hold true in the case when T acts as a contraction
Lq(Ω) → Lq(Ω) for any 1 ≤ q ≤ ∞ and its L2-realization is a positive selfadjoint operator.

LetM be a von Neumann algebra equipped with a normal semifinite faithful trace and for
any 1 ≤ p ≤ ∞, let Lp(M) be the associated noncommutative Lp-space. Let T : M → M be
a positive contraction whose restriction to L1(M)∩M extends to a contraction T : L1(M) →
L1(M). Recall that in this case, T actually extends to a contraction Lq(M) → Lq(M) for
any 1 ≤ q ≤ ∞. It is shown in [17] that T satisfies a noncommutative analog of (1.1).
In the latter paper, a large part of Stein’s work mentioned above is also transfered to the
noncommutative setting. Indeed it is shown that if the L2-realization T : L2(M) → L2(M) is
a positive selfadjoint operator, then for any 1 < p <∞, T satisfies noncommutative analogs
of (1.2) and (1.3). This is generalized in [3] under an appropriate condition on the numerical
range of T : L2(M) → L2(M). We extend these results by showing that for any 1 < p <∞,
the noncommutative analogs of (1.2) and (1.3) hold true provided that T : Lp(M) → Lp(M)
is merely analytic (which is a much weaker assumption).

Besides investigating the behaviour of operators and their powers (discrete semigroups), we
consider continuous semigroups (Tt)t≥0, both in the commutative and in the noncommutative
settings. The continuous analog of the maximal inequality (1.2) reads as follows:

(1.5)
∥∥∥sup

t>0

∣∣Tt(x)
∣∣
∥∥∥
p
. ‖x‖p.

We prove that such an estimate holds true whenever (Tt)t≥0 is a bounded analytic semigroup
on Lp(Ω) (with 1 < p < ∞) such that Tt : L

p(Ω) → Lp(Ω) is a positive contraction for any
t ≥ 0. Likewise we show that the noncommutative analog of (1.5) holds true whenever (Tt)t≥0

is a semigroup of positive contractions on Lq(M) for any 1 ≤ q ≤ ∞ and (Tt)t≥0 is a bounded
analytic semigroup on Lp(M) (with 1 < p <∞). These results both extend Stein’s classical
maximal theorem [35, 36] for semigroups and its recent noncommutative counterpart from
[17]. Finally we extend some results from [18, Chapter 5] concerning R-boundedness in the
noncommutative setting.

In the above presentation and later on in the paper, . stands for an inequality up to a
constant which may depend on T and m, but not on x.
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2. Preliminaries.

An operator T : Lp(Ω) → Lp(Ω) is called regular if there is a constant C ≥ 0 such that
∥∥sup
k≥1

|T (xk)|
∥∥
p
≤ C

∥∥sup
k≥1

|xk|
∥∥
p

for any finite sequence (xk)k≥1 in L
p(Ω). Then we let ‖T‖r denote the smallest C for which

this holds. The set of all regular operators on Lp(Ω) is a vector space on which ‖ ‖r is a
norm. We say that T is contractively regular if ‖T‖r ≤ 1. Clearly any positive operator T
is regular and ‖T‖r = ‖T‖ in this case. Thus all statements given for contractively regular
operators apply to positive contractions. It is well-known that conversely, T is regular with
‖T‖r ≤ C if and only if there is a positive operator S : Lp(Ω) → Lp(Ω) with ‖S‖ ≤ C, such
that |T (x)| ≤ S(|x|) for any x ∈ Lp(Ω) (see [27, Chap. 1]). Furthermore, T is contractively
regular if T acts as a contraction Lq(Ω) → Lq(Ω) for any 1 ≤ q ≤ ∞.

We recall some definitions and simple facts about sectorial operators and analyticity.
Throughout we let X denote an arbitrary (complex) Banach space and we let B(X) denote
the algebra of all bounded operators on X . Next for any angle ω ∈ (0, π), we introduce

Σω =
{
z ∈ C

∗ : |Arg(z)| < ω
}
,

the open sector of angle 2ω around (0,∞).
Let A : D(A) ⊂ X → X be a (possibly unbounded) closed linear operator, with dense

domain D(A). We let σ(A) denote the spectrum of A and for any λ ∈ C \ σ(A), we let
R(λ,A) = (λ−A)−1 denote the corresponding resolvent operator. We say that A is sectorial
if there exists an angle θ ∈ (0, π) such that σ(A) is contained in the closed sector Σθ and

(S)θ ∃K ≥ 0
∣∣ |λ|‖R(λ,A)‖ ≤ K, λ ∈ C\Σθ.

Then we let ω(A) be the infimum of all θ such that (S)θ holds, and this real number is called
the type of A. It is well-known that if (S)θ holds true for some θ ∈ (0, π), then there exists
ε > 0 such that (S)θ−ε holds true as well. Thus,

(2.1) (S)θ ⇐⇒ ω(A) < θ.

Let (Tt)t≥0 be a bounded strongly continuous semigroup on X . We call it a bounded
analytic semigroup if there exists a positive angle α ∈

(
0, π

2

)
and a bounded analytic family

z ∈ Σα 7→ Tz ∈ B(X) extending (Tt)t>0. Let −A be the infinitesimal generator of (Tt)t≥0.
Analyticity has two classical characterizations in terms of that operator. First, (Tt)t≥0 is a
bounded analytic semigroup if and only if Tt(X) ⊂ D(A) for any t > 0 and there exists a
constant K ≥ 0 such that ‖tATt‖ ≤ K for any t > 0. Note here that since Tt = e−tA, we
have

(2.2) tATt = −t
∂

∂t

(
Tt
)
, t > 0.

Second, (Tt)t≥0 is a bounded analytic semigroup if and only if A is sectorial and ω(A) < π
2
.

According to (2.1), this is also equivalent to saying that A satisfies (S)π
2
. We refer e.g. to

[15, 30] for proofs and complements on semigroups.
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We will make a crucial use of H∞-calculus and square functions for sectorial operators.
Here are the basic notions and results which will be needed. For more information, we refer
e.g. to [11, 19, 21, 23].

For any θ ∈ (0, 2π), we define

H∞(Σθ) = {f : Σθ → C | f is analytic and bounded}.

This is a Banach algebra with the norm

‖f‖H∞(Σθ) = sup
{
|f(λ)| : λ ∈ Σθ}.

Then let H∞
0 (Σθ) ⊂ H∞(Σθ) be the subalgebra of all f for which there exist two constants

s, C > 0 such that
|f(λ)| ≤ C min

{
|λ|s, |λ|−s

}
, λ ∈ Σθ.

For any sectorial operator A, for any θ ∈ (ω(A), π) and for any f ∈ H∞
0 (Σθ), we define

f(A) =
1

2πi

∫

Γγ

f(λ)R(λ,A) dλ,

where ω(A) < γ < θ and Γγ is the boundary ∂Σγ oriented counterclockwise. This integral
is well-defined, its definition does not depend on γ and the resulting mapping f 7→ f(A) is
an algebra homomorphism from H∞

0 (Σθ) into B(X). We say that A has a bounded H∞(Σθ)
functional calculus if the latter homomorphism is bounded, that is, there exists a constant
C > 0 such that

‖f(A)‖ ≤ C‖f‖H∞(Σθ), f ∈ H∞
0 (Σθ).

Consider now the specific case when X = Lp(Ω), with 1 < p < ∞. On such a space,
Cowling, Doust, McIntosh and Yagi have proved a remarkable equivalence result between the
boundedness of H∞ functional calculus and certain square function estimates. In particular
they established the following key result.

Proposition 2.1. [11] Let A be a sectorial operator on Lp(Ω) and assume that there exists
θ0 ∈ (0, π) such that A admits a bounded H∞(Σθ) functional calculus for any θ ∈ (θ0, π).
Then for any θ ∈ (θ0, π) and any ϕ ∈ H∞

0 (Σθ), there exists a constant C ≥ 0 such that

(2.3)
∥∥∥
(∫ ∞

0

∣∣ϕ(tA)x
∣∣2 dt
t

) 1

2

∥∥∥
p
≤ C‖x‖p, x ∈ Lp(Ω).

Let us now turn to discrete semigroups. Let T ∈ B(X). We say that T is power bounded
if the set

(2.4) PT = {T n : n ≥ 0}

is bounded. Then we say that T is analytic if moreover the set

(2.5) AT =
{
n(T n − T n−1) : n ≥ 1

}

is bounded. This notion of discrete analyticity goes back to [10]. Since (T n − T n−1)n≥1 is
the ‘discrete derivative’ of the sequence (T n)n≥0, we can regard n(T n − T n−1) as a discrete
analog of t ∂

∂t
(Tt). In view of (2.2), the boundedness of (2.5) is therefore a natutal discrete

analog of the boundedness of {tATt : t > 0}.
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The most important result concerning discrete analyticity is perhaps the following char-
acterization: an operator T : X → X is power bounded and analytic if and only if

(2.6) σ(T ) ⊂ D and
{
(λ− 1)R(λ, T ) : |λ| > 1

}
is bounded.

This property is called the ‘Ritt condition’. The key argument for this characterization is due
to O. Nevanlinna [29], however we refer to [25, 28] for a complete proof and complements.
Let us gather a few observations which will be used later on in the paper. First we note that
(2.6) implies that

(2.7) σ(T ) ⊂ D ∪ {1}.

Indeed, ‖R(λ, T )‖ ≥ d(λ, σ(T ))−1 for any λ /∈ σ(T ). Second, (2.6) implies the existence of a
constant K ≥ 0 such that |λ− 1|‖R(λ, T )‖ ≤ K whenever Re(λ) > 1. This means that

A = I − T

satisfies (S)π
2
. According to (2.1), this implies that A is a sectorial operator of type < π

2
.

Hence

(2.8) ∃ θ ∈
(
0, π

2

) ∣∣ σ(T ) ⊂ 1− Σθ.

In this case, the bounded analytic semigroup (Tt)t≥0 generated by −A is given by

(2.9) Tt = e−tetT , t ≥ 0.

We now recall the definition of R-boundedness (see [4, 7]). Let (εk)k≥1 be a sequence of
independent Rademacher variables on some probability space Ω0. Let Rad(X) ⊂ L2(Ω0;X)
be the closure of Span{εk ⊗ x : k ≥ 1, x ∈ X} in the Bochner space L2(Ω0;X). Thus for
any finite family x1, . . . , xn in X , we have

∥∥∥
∑

k

εk ⊗ xk

∥∥∥
Rad(X)

=
(∫

Ω0

∥∥∥
∑

k

εk(s) xk

∥∥∥
2

X
ds

) 1

2

.

By definition, a set F ⊂ B(X) is R-bounded if there is a constant C ≥ 0 such that for any
finite families T1, . . . , Tn in F , and any x1, . . . , xn in X , we have∥∥∥

∑

k

εk ⊗ Tk(xk)
∥∥∥
Rad(X)

≤ C
∥∥∥
∑

k

εk ⊗ xk

∥∥∥
Rad(X)

.

Obviously any R-bounded set is bounded and if X is isomorphic to a Hilbert space, then all
bounded subsets of B(X) are automatically R-bounded. However if X is not isomorphic to
a Hilbert space, then B(X) contains bounded subsets which are not R-bounded [2, Prop.
1.13].

Let (Ω, µ) be a measure space and let 1 < p < ∞. Then Rad(Lp(Ω)) ≈ Lp(Ω; ℓ2). Hence
a set F ⊂ B(Lp(Ω)) is R-bounded if and only if we have an estimate

∥∥∥
(∑

k

∣∣Tk(xk)
∣∣2
) 1

2

∥∥∥
p
≤ C

∥∥∥
(∑

k

|xk|
2
) 1

2

∥∥∥
p

for finite families (Tk)k in F and (xk)k in X .
We shall now consider these general definitions for specific sets of operators. Let (Tt)t≥0 be

a bounded analytic semigroup on X . We say that this is an R-bounded analytic semigroup
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if there exists a positive angle α > 0 such that {Tz : z ∈ Σα} is R-bounded. It was observed
in [37] that this holds true if and only if the two sets

{
Tt : t > 0

}
and

{
tATt : t > 0

}

are R-bounded.
Accordingly we will say that an operator T ∈ B(X) is an R-analytic power bounded

operator if the two sets PT and AT from (2.4) and (2.5) are R-bounded.
The above notions of R-analyticity were introduced by Weis [37] for the continuous case

and Blunck [5] for the discrete one. In both cases they played a crucial role in the solution
of maximal regularity problems on UMD Banach spaces, see the above papers for more
information. R-boundedness for sectorial operators is also a key tool for various questions
regarding H∞ functional calculus, see in particular [19, 21, 18].

The next result is well-known to specialists.

Proposition 2.2. Let (Tt)t≥0 be a bounded analytic semigroup on Lp(Ω), with 1 < p < ∞,
and assume that ‖Tt‖r ≤ 1 for any t ≥ 0. Let −A be the generator of (Tt)t≥0. Then there
exists θ ∈

(
0, π

2

)
such that A admits a bounded H∞(Σθ) functional calculus.

Proof. By [13] (see also [23, Thm. 4.13]), the operator A admits a bounded H∞(Σθ) func-
tional calculus for any θ > π

2
. On the other hand, it follows from [38, Section 4] that (Tt)t≥0

is an R-bounded analytic semigroup. Applying [19, Prop. 5.1] we deduce the result. �

We end this section with a few notation. For any complex number a and any r > 0, we
will let D(a, r) denote the open disc of center a and radius r. We let D = D(0, 1) be the
usual unit disc. Also we let P denote the algebra of complex polynomials in one variable.

3. Square functions on Lp(Ω).

Throughout the next two sections we let (Ω, µ) be a measure space and we fix some
1 < p < ∞. We will establish general square function estimates for analytic contractively
regular operators on Lp(Ω) (see Theorem 3.3 below).

We will need the following elementary fact.

Lemma 3.1. Let U ⊂ C be an open set and let Γ ⊂ U be a compact C1-curve. Let ϕ : U →
B(Lp(Ω)) be an analytic function. Then there exists a contant C ≥ 0 such that

∥∥∥
(∫

Γ

∣∣ϕ(λ)x
∣∣2 |dλ|

)1

2

∥∥∥
p
≤ C‖x‖p

for any x ∈ Lp(Ω).

Proof. Let 0 < r ≤ d(Γ,Uc)/3. Write Γ as the juxtaposition of C1-curves Γ1, . . . ,ΓN of
length < r. Then for each j = 1, . . . , N , choose λj ∈ Γj and set

Cj = sup{‖ϕ(λ)‖ : λ ∈ D(λj, 2r)}.

Let

(3.1) ϕ(λ) =
∞∑

k=0

cjk (λ− λj)
k
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be the Taylor expansion of ϕ about λj . Then ‖cjk‖ ≤ Cj/(2r)
k by Cauchy’s inequalities.

Any λ ∈ Γj satisfies (3.1) hence we have

∥∥∥
(∫

Γj

∣∣ϕ(λ)x
∣∣2 |dλ|

)1

2

∥∥∥
p
≤

∞∑

k=0

∥∥∥
(∫

Γj

∣∣cjk(x) (λ− λj)
k
∣∣2 |dλ|

)1

2

∥∥∥
p
.

However for any k ≥ 0, we have

∥∥∥
(∫

Γj

∣∣cjk(x) (λ− λj)
k
∣∣2 |dλ|

)1

2

∥∥∥
p
=

∥∥cjk(x)
∥∥
p

(∫

Γj

|λ− λj |
2k |dλ|

)1

2

and |λ− λj| ≤ r for any λ ∈ Γj . Thus

∥∥∥
(∫

Γj

∣∣cjk(x) (λ− λj)
k
∣∣2 |dλ|

)1

2

∥∥∥
p
≤ ‖cjk‖ ‖x‖p |Γj|r

k ≤ ‖x‖p |Γj|
Cj

2k
.

Consequently,
∥∥∥
(∫

Γj

∣∣ϕ(λ)x
∣∣2 |dλ|

)1

2

∥∥∥
p
≤ 2Cj‖x‖p|Γj|.

Since
∥∥∥
(∫

Γ

∣∣ϕ(λ)x
∣∣2 |dλ|

)1

2

∥∥∥
p
=

N∑

j=1

∥∥∥
(∫

Γj

∣∣ϕ(λ)x
∣∣2 |dλ|

)1

2

∥∥∥
p
,

we obtain the result with C = 2max{C1, . . . , CN} |Γ|. �

For any γ ∈
(
0, π

2

)
, let

Bγ =
{
z ∈

(
1 + Σπ−γ

)c
: |z| ≤ sin γ or Re(z) ≥ sin2 γ

}
.

Alternatively, Bγ is the convex hull of 1 and the disc D(0, sin γ).

10

γBγ

Figure 1.
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Following usual terminology, these sets will be called ‘Stolz domains’ in the sequel. We
will use the fact that for any γ ∈

(
0, π

2

)
, there exists a constant Cγ such that

(3.2)
|1− z|

1− |z|
≤ Cγ , z ∈ Bγ.

Let N ≥ 1 be an integer and let [Fij ] be an N × N matrix of polynomials, that is, Fi,j

belongs to P for any 1 ≤ i, j ≤ N . Then for any γ ∈
(
0, π

2

)
, we set

∥∥[Fij ]
∥∥
γ
= sup

{∥∥[Fij(z)]
∥∥
MN

: z ∈ Bγ

}
.

Proposition 3.2. Let T : Lp(Ω) → Lp(Ω) be any analytic contractively regular operator.
Then there exists an angle γ ∈

(
0, π

2

)
and a constant C ≥ 1 satisfying the following property.

For any N ≥ 1, for any N ×N matrix [Fij ] of polynomials and for any x1, . . . , xN in Lp(Ω),
we have

(3.3)
∥∥∥
( N∑

i=1

∣∣∣
N∑

j=1

Fij(T )xj

∣∣∣
2) 1

2

∥∥∥
p
≤ C

∥∥[Fij ]
∥∥
γ

∥∥∥
( N∑

j=1

|xj|
2
) 1

2

∥∥∥
p
.

Proof. We let p′ = p/(p− 1) be the conjugate number of p. Let A = I −T and let (Tt)t≥0 be
the semigroup defined by (2.9), whose generator is −A. We noticed in Section 2 that this is
a bounded analytic semigroup. Furthermore for any t ≥ 0, we have

‖Tt‖r = e−t
∥∥etT

∥∥
r
≤ e−tet‖T‖r ≤ 1.

Hence by Proposition 2.2, A admits a bounded H∞(Σθ0) functional calculus for some θ0 <
π
2
.

By (2.7) and (2.8), there exists γ0 ∈
[
θ0,

π
2

)
such that σ(T ) ⊂ Bγ0 . Equivalently,

σ(A) = 1− σ(T ) ⊂ 1−Bγ0 .

We now fix γ ∈
(
γ0,

π
2

)
. Then we let Lγ be the boundary of 1−Bγ oriented counterclockwise.

0

γ

Lγ

σ(A)

cos(γ)eiγ

Figure 2.
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We claim that we have estimates

(3.4)
∥∥∥
(∫

Lγ

∣∣A 1

2 (λ−A)−1x
∣∣2 |dλ|

)1

2

∥∥∥
p
. ‖x‖p, x ∈ Lp(Ω),

and

(3.5)
∥∥∥
(∫

Lγ

∣∣A∗ 1

2 (λ+ A∗)−1y
∣∣2 |dλ|

)1

2

∥∥∥
p′

. ‖y‖p′, y ∈ Lp′(Ω).

Recall that we let Γγ denote the boundary of Σγ oriented counterclockwise. Thus the contour
Lγ is the juxtaposition of a part Lγ,1 of Γγ and the curve Lγ,2 going from cos(γ)e−iγ to
cos(γ)eiγ counterclockwise along the circle of center 1 and radius sin γ. Obviously we have

∥∥∥
(∫

Lγ

∣∣A 1

2 (λ−A)−1x
∣∣2 |dλ|

)1

2

∥∥∥
p
=

∥∥∥
(∫

Lγ,1

∣∣A 1

2 (λ−A)−1x
∣∣2 |dλ|

)1

2

∥∥∥
p

+
∥∥∥
(∫

Lγ,2

∣∣A 1

2 (λ−A)−1x
∣∣2 |dλ|

)1

2

∥∥∥
p

≤
∥∥∥
(∫

Γγ

∣∣A 1

2 (λ− A)−1x
∣∣2 |dλ|

)1

2

∥∥∥
p

+
∥∥∥
(∫

Lγ,2

∣∣A 1

2 (λ−A)−1x
∣∣2 |dλ|

)1

2

∥∥∥
p

Since Lγ,2∩σ(A) = ∅, Lemma 3.1 ensures that we can control the last integral by a constant
times ‖x‖p. Hence to prove (3.4), it suffices to prove an estimate

(3.6)
∥∥∥
(∫

Γγ

∣∣A 1

2 (λ−A)−1x
∣∣2 |dλ|

)1

2

∥∥∥
p
. ‖x‖p, x ∈ Lp(Ω).

Likewise, to prove (3.5), it suffices to prove an estimate

(3.7)
∥∥∥
(∫

Γγ

∣∣A∗ 1

2 (λ+ A∗)−1y
∣∣2 |dλ|

)1

2

∥∥∥
p′

. ‖y‖p′, y ∈ Lp′(Ω).

Consider θ0 < θ < γ < π
2
, and define two functions ϕ, ψ ∈ H∞

0 (Σθ) by letting

ϕ(z) =
z

1

2

eiγ − z
and ψ(z) =

z
1

2

e−iγ − z
.

For any x ∈ Lp(Ω), we have
∥∥∥
(∫ ∞

0

∣∣ϕ(tA)x
∣∣2 dt
t

) 1

2

∥∥∥
p
=

∥∥∥
(∫ ∞

0

∣∣A 1

2 (eiγ − tA)−1x
∣∣2 dt

) 1

2

∥∥∥
p

=
∥∥∥
(∫ ∞

0

∣∣A 1

2 (teiγ − A)−1x
∣∣2 dt

) 1

2

∥∥∥
p
.

Likewise,
∥∥∥
(∫ ∞

0

∣∣ψ(tA)x
∣∣2 dt
t

) 1

2

∥∥∥
p
=

∥∥∥
(∫ ∞

0

∣∣A 1

2 (te−iγ − A)−1x
∣∣2 dt

) 1

2

∥∥∥
p
.
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Hence
∥∥∥
(∫

Γγ

∣∣A 1

2 (λ−A)−1x
∣∣2 |dλ|

)1

2

∥∥∥
p
=

∥∥∥
(∫ ∞

0

∣∣ϕ(tA)x
∣∣2 dt
t

) 1

2

∥∥∥
p
+

∥∥∥
(∫ ∞

0

∣∣ψ(tA)x
∣∣2 dt
t

) 1

2

∥∥∥
p
.

Applying Proposition 2.1 to ϕ and ψ, we deduce the estimate (3.4). Now note that A∗

also admits a bounded H∞(Σθ0) functional calculus (see e.g. [11] for this duality principle).
Hence arguing as above with the two functions

z 7→
z

1

2

eiγ + z
and z 7→

z
1

2

e−iγ + z
,

we get (3.5).
The estimates (3.4) and (3.5) can be formally strengthened as follows. There is a constant

C ≥ 0 such that for any integer N ≥ 1, we have

(3.8)
∥∥∥
(∫

Lγ

N∑

j=1

∣∣A 1

2 (λ−A)−1xj
∣∣2 |dλ|

)1

2

∥∥∥
p
≤ C

∥∥∥
( N∑

j=1

|xj |
2
) 1

2

∥∥∥
p

for any x1, . . . , xN in Lp(Ω) and similarly,

(3.9)
∥∥∥
(∫

Lγ

N∑

j=1

∣∣A∗ 1

2 (λ+ A∗)−1yi
∣∣2 |dλ|

)1

2

∥∥∥
p′

≤ C
∥∥∥
( N∑

i=1

|yi|
2
) 1

2

∥∥∥
p′

for any y1, . . . , yN in Lp′(Ω). Indeed (3.8) (resp. (3.9)) can be deduced from (3.4) (resp.
(3.5)) by applying Khintchine’s inequality and Fubini’s Theorem. The argument is similar
to the one in the proof of [22, Lemma 5.4] so we omit it.

In the sequel, we let P0 ⊂ P be the space of polynomials vanishing at 0. The function
λ 7→ λ(λ − A)−1 is well-defined and bounded on Lγ \ {0}, and the same is true for λ 7→
f(λ)(λ− A)−1 whenever f ∈ P0. It therefore follows from the Dunford functional calculus
that

f(A) =
1

2πi

∫

Lγ

f(λ)(λ− A)−1 dλ

for any f ∈ P0. Likewise,

0 =
1

2πi

∫

Lγ

f(λ)(λ+ A)−1 dλ

for any f ∈ P0. Hence

f(A) =
1

2πi

∫

Lγ

f(λ)
(
(λ−A)−1 − (λ+ A)−1

)
dλ ,

that is,

(3.10) f(A) =
1

πi

∫

Lγ

f(λ)A(λ−A)−1(λ+ A)−1 dλ .

Let N ≥ 1 be an integer, let [Fij ] be an N ×N matrix of polynomials, and let x1, . . . , xN be
in Lp(Ω). For any i, j = 1, . . . , N , we set fij(λ) = Fij(1 − λ), so that Fij(T ) = fij(A). Also
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we assume that Fij(1) = 0, so that fij ∈ P0. For any y1, . . . , yN in Lp′(Ω), we have

∑

i,j

〈
fij(A)xj , yi

〉
=

1

πi

∫

Lγ

∑

i,j

fij(λ)
〈
A(λ− A)−1(λ+ A)−1xj , yi

〉
dλ

=
1

πi

∫

Lγ

∑

i,j

fij(λ)
〈
A

1

2 (λ− A)−1xj , A
∗ 1

2 (λ+ A∗)−1yi
〉
dλ

by (3.10). Applying Cauchy-Schwarz and Hölder’s inequalities, we deduce that

∣∣∣∣
∑

i,j

〈
fij(A)xj, yi

〉∣∣∣∣ ≤
1

π

∥∥∥
(∫

Lγ

∑

i

∣∣∣
∑

j

fij(λ)A
1

2 (λ− A)−1xj

∣∣∣
2

|dλ|
)1

2

∥∥∥
p

×
∥∥∥
(∫

Lγ

∑

i

∣∣A∗ 1

2 (λ+ A∗)−1yi
∣∣2 |dλ|

)1

2

∥∥∥
p′
.

Furthermore,

∥∥∥
(∫

Lγ

∑

i

∣∣∣
∑

j

fij(λ)A
1

2 (λ−A)−1xj

∣∣∣
2

|dλ|
)1

2

∥∥∥
p

is less than or equal to

∥∥∥
(∫

Lγ

∥∥[fij(λ)]
∥∥2

MN

∑

j

∣∣A 1

2 (λ− A)−1xj
∣∣2 |dλ|

) 1

2

∥∥∥
p
,

which in turn is less than or equal to

sup
{∥∥[fij(λ)]

∥∥
MN

: λ ∈ Lγ

}∥∥∥
(∫

Lγ

∑

j

∣∣A 1

2 (λ− A)−1xj
∣∣2 |dλ|

)1

2

∥∥∥
p
.

Now recall that Fij(T ) = fij(A) and note that sup
{
‖[fij(λ)]‖MN

: λ ∈ Lγ

}
is less than or

equal to ‖[Fij‖γ. Appealing to (3.8) and (3.9), we therefore obtain an estimate

∣∣∣∣
∑

i,j

〈
Fij(T )xj , yi

〉∣∣∣∣ .
∥∥[Fij

∥∥
γ

∥∥∥
(∑

j

|xj|
2
) 1

2

∥∥∥
p

∥∥∥
(∑

i

|yi|
2
) 1

2

∥∥∥
p′
.

Passing to the supremum over all y1, . . . , yN in Lp′(Ω) such that
∥∥(∑

i |yi|
2
) 1

2

∥∥
p′

≤ 1, we

finally obtain (3.3) in the case when all Fij ’s vanish at 1.
The general case follows at once. Indeed for an arbitrary matrix [Fij ] of polynomials, write

F̃ij = Fij − Fij(1). Then

∥∥[Fij(1)]
∥∥
MN

≤
∥∥[Fij]

∥∥
γ

and
∥∥[F̃ij ]

∥∥
γ
≤ 2

∥∥[Fij]
∥∥
γ
.



12 CHRISTIAN LE MERDY, QUANHUA XU

Thus if (3.3) holds true for [F̃ij ] and a certain constant C, we deduce that

∥∥∥
( N∑

i=1

∣∣∣
N∑

j=1

Fij(T )xj

∣∣∣
2) 1

2

∥∥∥
p
≤

∥∥∥
( N∑

i=1

∣∣∣
N∑

j=1

F̃ij(T )xj

∣∣∣
2) 1

2

∥∥∥
p
+

∥∥∥
( N∑

i=1

∣∣∣
N∑

j=1

Fij(1)xj

∣∣∣
2) 1

2

∥∥∥
p

≤
(
2C + 1

)∥∥[Fij ]
∥∥
γ

∥∥∥
( N∑

j=1

|xj |
2
) 1

2

∥∥∥
p
.

�

Theorem 3.3. Let T : Lp(Ω) → Lp(Ω) be an analytic contractively regular operator.

(1) There exists an angle γ ∈
(
0, π

2

)
and a constant C ≥ 1 such that for any sequence

(Fn)n≥1 of polynomials and any x ∈ Lp(Ω),

(3.11)
∥∥∥
( ∞∑

n=1

∣∣Fn(T )x
∣∣2
) 1

2

∥∥∥
p
≤ C ‖x‖p sup

{( ∞∑

n=1

∣∣Fn(z)
∣∣2
) 1

2

: z ∈ Bγ

}
.

(2) For any integer m ≥ 1, there is an estimate

(3.12)
∥∥∥
( ∞∑

n=0

(n+ 1)2m−1
∣∣T n(T − I)m(x)

∣∣2
) 1

2

∥∥∥
p
. ‖x‖p.

Proof. We apply Proposition 3.2 to T and we thus obtain γ ∈
(
0, π

2

)
for which (3.3) holds

true. Let (Fn)n≥1 be any sequence of polynomials. We get (3.11) by applying (3.3) to the
column matrix 


F1 0 · · · 0
...

...
...

FN 0 · · · 0





for any N ≥ 1 and then by passing to the limit when N → ∞.
To prove part (2), we fix m ≥ 1, we set

Fn(z) = nm− 1

2 zn−1(z − 1)m

for any n ≥ 1, and we aim at applying (3.11) to this sequence. For any z ∈ D, we have
∞∑

n=1

∣∣Fn(z)
∣∣2 =

∞∑

n=1

n2m−1|z|2(n−1)|z − 1|2m

≤ |1− z|2m
∞∑

n=0

(n+ 1)(n+ 2) · · · (n + 2m− 1)|z|2n

≤ |1− z|2m
1

(
1− |z|2

)2m

≤

(
|1− z|

1− |z|

)2m

.

This upper bound is bounded on Bγ by (3.2) hence (3.12) now follows from part (1). �
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Note that (1.4) corresponds to (3.12) for m = 1.

Remark 3.4. Consider T as in Theorem 3.3. We will establish additional estimates, which
are all consequences of the above theorem.

(1) By the Mean Ergodic Theorem, we have a direct sum decomposition

Lp(Ω) = N(I − T )⊕R(I − T ),

where N(· ) and R(· ) denote the kernel and the range, respectively. Let P : Lp(Ω) → Lp(Ω)

be the projection onto R(I − T ) with respect to this decomposition. Then for any m ≥ 1,
we have an estimate

(3.13) ‖P (x)‖p .
∥∥∥
( ∞∑

n=0

(n+ 1)2m−1
∣∣T n(T − I)m(x)

∣∣2
) 1

2

∥∥∥
p

on Lp(Ω). In other words, the estimate (3.12) can be reversed on R(I − T ).
Let us prove (3.13) for m = 1, the other cases being similar. We start from the identity

∞∑

n=0

(n+ 1)z2n(1− z2)2 = 1, z ∈ D.

It implies that for any 0 < r < 1, we have
∞∑

n=0

(n + 1)(rT )2n(rT + I)2(rT − I)2 = I.

Let x ∈ Lp(Ω) and y ∈ Lp′(Ω). Set yr = (rT ∗ + I)2y for any r. From the above identity, we
get

〈x, y〉 =

∞∑

n=0

(n+ 1)
〈
(rT )n(rT − I)x, (rT ∗)n(rT ∗ − I)yr

〉
.

Hence

∣∣〈x, y〉
∣∣ ≤

∥∥∥
( ∞∑

n=0

(n+ 1)
∣∣(rT )n(rT − I)x

∣∣2
) 1

2

∥∥∥
p

∥∥∥
( ∞∑

n=0

(n+ 1)
∣∣(rT ∗)n(rT ∗ − I)yr

∣∣2
) 1

2

∥∥∥
p′
.

The operator T ∗ : Lp′(Ω) → Lp′(Ω) is analytic and contractively regular, hence satisfies the
first part of Theorem 3.3. Moreover ‖yr‖p′ ≤ 4‖y‖p′ for any r. Hence we can control the
second factor in the right handside of the above inequality by ‖y‖p′, up to a constant not
depending on r. We deduce that

∣∣〈x, y〉
∣∣ .

∥∥∥
( ∞∑

n=0

(n+ 1)
∣∣(rT )n(rT − I)x

∣∣2
) 1

2

∥∥∥
p
‖y‖p′

uniformly in r. Taking the supremum over all y ∈ Lp′(Ω) with ‖y‖p′ ≤ 1, we obtain a
uniform estimate

‖x‖p .
∥∥∥
( ∞∑

n=0

(n+ 1)r2n
∣∣T n(rT − I)x

∣∣2
) 1

2

∥∥∥
p
, x ∈ Lp(Ω), 0 < r < 1.
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Now assume that x ∈ R(I −T ), i.e. x = (T − I)x̃ for some x̃ in Lp(Ω). Applying (3.12) to x̃

(with m = 1), we see that the sequence
(
(n+1)

1

2T n(x)
)
n≥0

belongs to Lp(ℓ2). Consequently,

the sequence
(
(n + 1)

1

2 (rT − I)T n(x)
)
n≥0

belongs to Lp(ℓ2) as well for any 0 < r < 1 and

this family of sequences tends to
(
(n+ 1)

1

2 (T − I)T n(x)
)
n≥0

when r → 1. We deduce that

∥∥∥
( ∞∑

n=0

(n+ 1)
∣∣T n(rT − I)x

∣∣2
) 1

2

∥∥∥
p
−→

∥∥∥
( ∞∑

n=0

(n+ 1)
∣∣T n(T − I)x

∣∣2
) 1

2

∥∥∥
p

when r → 1, and hence that

(3.14) ‖x‖p .
∥∥∥
( ∞∑

n=0

(n+ 1)
∣∣T n(T − I)x

∣∣2
) 1

2

∥∥∥
p
.

This establishes (3.13) for the elements of R(I − T ).
To complete the proof, set

Λm =
1

m+ 1

m∑

k=1

(I − T k)

for any integer m ≥ 0. Then Λm → P pointwise when m → ∞. Let x be an arbitrary
element of Lp(Ω). Applying (3.14) with Λm(x) in the place of x and letting m → ∞, we
obtain the desired estimate (3.13).

(2) For any m ≥ 1, T satisfies the following estimate

(3.15)
∥∥∥
( ∞∑

n=1

n
∣∣(n+ 1)mT n(T − I)m(x) − nmT n−1(T − I)m(x)

∣∣2
) 1

2

∥∥∥
p
. ‖x‖p,

that we record here for further use in Section 4.
For its proof it will be convenient to set

(3.16) ∆m
n = T n(T − I)m and Bm

n = (n+ 1)m∆m
n

for any integers m,n ≥ 0. We fix some m ≥ 1 and x ∈ Lp(Ω). Then we have

Bm
n (x)−Bm

n−1(x) =
(
(n+ 1)mT − nm

)
T n−1(T − I)mx

= (n + 1)mT n−1(T − I)m+1x +
(
(n + 1)m − nm

)
T n−1(T − I)mx

for any n ≥ 1. Consequently,
∣∣Bm

n (x)−Bm
n−1(x)

∣∣2 ≤ 2
(
(n+ 1)2m

∣∣∆m+1
n−1 (x)

∣∣2 +
(
(n+ 1)m − nm

)2∣∣∆m
n−1(x)

∣∣2)

. n2m
∣∣∆m+1

n−1 (x)
∣∣2 + n2(m−1)

∣∣∆m
n−1(x)

∣∣2.
Summing up, we obtain that

∞∑

n=1

n
∣∣Bm

n (x)−Bm
n−1(x)

∣∣2 .

∞∑

n=1

n2m+1
∣∣∆m+1

n−1 (x)
∣∣2 +

∞∑

n=1

n2m−1
∣∣∆m

n−1(x)
∣∣2 .

Applying (3.12) twice, with m and m+ 1, we deduce the estimate (3.15).
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(3) Set

(3.17) Mn(T ) =
1

n+ 1

n∑

k=0

T k

for any n ≥ 0. Then we have

(3.18)
∥∥∥
( ∞∑

n=0

(n+ 1)
∣∣Mn+1(T )(x)−Mn(T )(x)

∣∣2
) 1

2

∥∥∥
p
. ‖x‖p

for x ∈ Lp(Ω). By an entirely classical averaging argument, one obtains this estimate as a
consequence of (3.12). We skip the details.

Inequality (3.18) plays a key role in [36, Section 5], where it is shown in the case when T
acts as a contraction Lq(Ω) → Lq(Ω) for any 1 ≤ q ≤ ∞ and its L2-realization is a positive
selfadjoint operator.

Remark 3.5. For any γ ∈
(
0, π

2

)
, let Pγ ⊂ C(Bγ) be the algebra P regarded as a subspace

of C(Bγ), the commutative C∗-algebra of all complex valued continuous functions on the
compact set Bγ . Let uγ : Pγ → B(Lp(Ω)) be the natural functional calculus map, defined by

uγ(F ) = F (T ).

(a) Proposition 3.2 means that for some γ ∈
(
0, π

2

)
, the map uγ is ℓ2-completely bounded

in the sense of [34] (see also [20, Section 4]). In the case p = 2, this means that uγ is
completely bounded.

(b) If we restrict (3.3) to diagonal matrices, we readily obtain that whenever (Fn)n≥1 is
a bounded sequence of Pγ , then the set {Fn(T ) : n ≥ 1} is R-bounded. Applying this
property to the two sequences

z 7→ zn and z 7→ n(zn − zn−1),

we deduce that any analytic contractively regular T : Lp(Ω) → Lp(Ω) is an R-analytic power
bounded operator (in the sense of Section 2). This result is due to Blunck (see [5, Thm. 1.1
and Thm. 1.2]).

4. Maximal theorems on Lp(Ω).

The general maximal theorem we aim at proving is the following. The case m = 0, which
gives (1.2), is of particular interest.

Theorem 4.1. Let T : Lp(Ω) → Lp(Ω) be an analytic contractively regular operator. Then
for any integer m ≥ 0, there is a constant C ≥ 0 such that

(4.1)
∥∥∥sup
n≥0

(n+ 1)m
∣∣T n(T − I)m(x)

∣∣
∥∥∥
p
≤ C ‖x‖p, x ∈ Lp(Ω).
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Proof. We will use classical ‘integration by parts’ arguments and induction. Recall the
notation from (3.16). For any m ≥ 1, let us consider the estimate

(4.2)
∥∥∥sup
n≥0

1

n + 1

∣∣∣
n∑

k=0

Bm
k (x)

∣∣∣
∥∥∥
p
. ‖x‖p, x ∈ Lp(Ω).

This is clearly weaker than (4.1), however we will need to use it explicitly later on. For
clarity we will write (4.1)m and (4.2)m instead of (4.1) and (4.2) in this proof.

For any n ≥ 1, we have

n∑

k=1

k
(
T k − T k−1

)
=

n∑

k=1

kT k −
n−1∑

k=0

(k + 1)T k = nT n −
n−1∑

k=0

T k ,

hence

(4.3) T n =
1

n

n−1∑

k=0

T k +
1

n

n∑

k=1

k
(
T k − T k−1

)
.

By Cauchy-Schwarz, we deduce that for any x ∈ Lp(Ω),

∣∣T n(x)
∣∣ ≤

1

n

∣∣∣
n−1∑

k=0

T k(x)
∣∣∣ +

( n∑

k=1

k
∣∣T k(x)− T k−1(x)

∣∣2
) 1

2

.

According to [31] or [8] (which generalized Akcoglu’s Theorem to contractively regular op-
erators), T satisfies (1.1). Hence applying (3.12) with m = 1, we obtain (4.1)0. Appealing
to (4.3) again, we immediatly deduce that (4.2)1 holds true as well.

Now let m ≥ 1. Arguing as above we have

(4.4) Bm
n =

1

n

n−1∑

k=0

Bm
k +

1

n

n∑

k=1

k
(
Bm

k −Bm
k−1

)
.

Also we have
n∑

k=0

Bm+1
k = (T − I)m

n∑

k=0

(k + 1)m+1
(
T k+1 − T k

)

= (T − I)m
(
(n + 1)m+1T n+1 −

n∑

k=0

(
(k + 1)m+1 − km+1

)
T k

)
,

hence

(4.5)
1

n+ 1

n∑

k=0

Bm+1
k =

(n + 1

n + 2

)m+1

Bm
n+1 −

1

n+ 1

n∑

k=0

(
(k + 1)m+1 − km+1

)
∆m

k .

By Cauchy-Schwarz,

1

n

∣∣∣
n∑

k=1

k
(
Bm

k (x)− Bm
k−1(x)

)∣∣∣ ≤
( n∑

k=1

k
∣∣Bm

k (x)− Bm
k−1(x)

∣∣2
) 1

2

,
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hence (4.2)m implies (4.1)m by (4.4) and Remark 3.4. Likewise,

1

n+ 1

∣∣∣
n∑

k=0

(
(k + 1)m+1 − km+1

)
∆m

k (x)
∣∣∣

≤
1

n+ 1

( n∑

k=0

(
(k + 1)m+1 − km+1

)2

(k + 1)2m−1

) 1

2
( n∑

k=0

(k + 1)2m−1
∣∣∆m

k (x)
∣∣2
) 1

2

.
( n∑

k=0

(k + 1)2m−1
∣∣∆m

k (x)
∣∣2
) 1

2

,

hence (4.2)m+1 and (4.1)m are equivalent by (4.5) and (3.12). Thus (4.1)m holds true for any
m ≥ 0 by induction. �

Theorem 4.1 is a generalization of [35]. In that paper, (4.1) is established for an operator
T which is a positive contraction Lq(Ω) → Lq(Ω) for any 1 ≤ q ≤ ∞ whose L2-realization
is a positive selfadjoint operator. Clearly the Lp-realization of such an operator satisfies the
assumptions of Theorem 4.1. Indeed if T : L2(Ω) → L2(Ω) is a positive selfadjoint operator,
then it is analytic by spectral representation. Hence T : Lp(Ω) → Lp(Ω) is analytic for any
1 < p <∞ by [6, Thm 1.1].

The following is an analog of Theorem 4.1 for continuous semigroups.

Corollary 4.2. Let (Tt)t≥0 be a bounded analytic semigroup on Lp(Ω), and assume that
‖Tt‖r ≤ 1 for any t ≥ 0. Then for any integer m ≥ 0, we have an estimate

(4.6)

∥∥∥∥sup
t>0

tm
∣∣∣
∂m

∂tm
(
Tt(x)

)∣∣∣
∥∥∥∥
p

. C‖x‖p, x ∈ Lp(Ω).

Proof. Let −A be the generator of (Tt)t≥0. According to Proposition 2.2, it admits a bounded
H∞(Σθ0) functional calculus for some θ0 <

π
2
. Let θ ∈

(
θ0,

π
2

)
. Arguing as in Proposition

3.2 and Theorem 3.3 (1), we obtain the existence of a constant C ≥ 1 such that for any
sequence (fn)n≥1 of functions in H∞

0 (Σθ0) and any x ∈ Lp(Ω), we have
∥∥∥
( ∞∑

n=1

∣∣fn(A)x
∣∣2
) 1

2

∥∥∥
p
≤ C ‖x‖p sup

{( ∞∑

n=1

∣∣fn(z)
∣∣2
) 1

2

: z ∈ Σθ

}
.

Then arguing as in Theorem 3.3 (2), we deduce that for any m ≥ 1, there is a constant
Cm ≥ 1 such that for any t > 0 and for any x ∈ Lp(Ω),

∥∥∥
( ∞∑

n=0

(n+ 1)2m−1
∣∣T n

t (Tt − I)m(x)
∣∣2
) 1

2

∥∥∥
p
≤ Cm ‖x‖p.

In other words, the operators Tt satisfy (3.12) uniformly. The above proof of Theorem 4.1
therefore shows that they satisfy (4.1) uniformly.

Let t1, t2, . . . , tN be positive real numbers. For any j = 1, . . . , N and k ≥ 1, let njk be the
integral part of ktj + 1 and let tjk = njk/k, so that tkj ≥ tj and tkj → tj when k → ∞. It
follows from above that we have an estimate∥∥∥

(
(njk + 1)mT

njk

1

k

(
T 1

k
− I

)m
(x)

)

1≤j≤N

∥∥∥
Lp(Ω;ℓ∞

N
)
≤ K‖x‖p,
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for some constant K ≥ 1 neither depending on x, k or the tj ’s. Letting k → ∞, we deduce
that ∥∥∥

(
tmj (−A)

mTj(x)
)
1≤j≤N

∥∥∥
Lp(Ω;ℓ∞

N
)
≤ K‖x‖p.

Clearly this uniform estimate implies (4.6). �

Remark 4.3. Here is an alternative proof of Corollary 4.2 not using the discrete case. For
any real t > 0, consider the average operator Mt ∈ B(Lp(Ω)) defined by letting

Mt(x) =
1

t

∫ t

0

Tu(x) du

for any x ∈ Lp(Ω). Since ‖Tt‖r ≤ 1 for any t ≥ 1, it follows from [14] that we have an
estimate

(4.7)
∥∥sup

t>0

∣∣Mt(x)
∣∣∥∥

p
. ‖x‖p, x ∈ Lp(Ω).

For any integer m ≥ 1, let ϕm be the analytic function defined by ϕm(z) = zme−z. Then
ϕm belongs to H∞

0 (Σθ) for any θ ∈
(
0, π

2

)
. Hence according to Propositions 2.1 and 2.2, the

square function estimate (2.3) holds for ϕ = ϕm. For any real t > 0, we have

ϕm(tA)(x) = tmAme−tA(x) = (−1)mtm
∂m

∂tm
(
Tt(x)

)
.

Hence we obtain estimates
∥∥∥
(∫ ∞

0

t2m−1
∣∣∣
∂m

∂tm
(
Tt(x)

)∣∣∣
2 dt

t

) 1

2

∥∥∥
p
. ‖x‖p

for any m ≥ 1. Then Stein’s arguments in [36, pp. 73-76] show that (4.7) together with
these estimates imply that (4.6) holds true for any m ≥ 0.

5. Maximal theorems on noncommutative Lp-spaces

In this section we will partly extend the results established in the previous one, in the light
of the recent work [17]. We start with a few preliminaries on semifinite noncommutative Lp-
spaces.

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace τ . Let
M+ be the set of all positive elements of M and let S+ be the set of all x in M+ such that
τ(x) <∞. Then let S be the linear span of S+. For any 1 ≤ p <∞, define

‖x‖p =
(
τ(|x|p)

) 1

p , x ∈ S,

where |x| = (x∗x)
1

2 is the modulus of x. Then (S, ‖ ‖p) is a normed space. The cor-
responding completion is the noncommutative Lp-space associated with (M, τ) and is de-
noted by Lp(M). By convention we set L∞(M) = M , equipped with the operator norm.
The elements of Lp(M) can also be described as measurable operators with respect to
(M, τ). Further multiplication of measurable operators leads to contractive bilinear maps
Lp(M) × Lq(M) → Lr(M) for any p, q, r such that p−1 + q−1 = r−1 (noncommutative
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Hölder’s inequality). Using trace duality, we then have Lp(M)∗ = Lp′(M) isometrically for
any 1 ≤ p <∞. Moreover, complex interpolation yields

(5.1) Lp(M) = [L∞(M), L1(M)] 1
p

for any 1 ≤ p <∞. We refer the reader to [33] for details and complements.
Maximal functions in the noncommutative setting require a specific definition. Indeed,

supn |xn| does not make any sense for a sequence (xn)n of operators. This difficulty is
overcome by considering the spaces Lp(M ; ℓ∞), which are the noncommutative analogs of
the usual Bochner spaces Lp(Ω; ℓ∞). Given 1 ≤ p <∞, Lp(M ; ℓ∞) is defined as the space of
all sequences (xn)n≥0 in L

p(M) for which there exist a, b ∈ L2p(M) and a bounded sequence
(zn)n≥0 in M such that

(5.2) xn = aznb, n ≥ 0.

For such a sequence, set
∥∥(xn)n≥0

∥∥
Lp(M ;ℓ∞)

= inf
{
‖a‖2p sup

n

‖zn‖‖b‖2p},

where the infimum runs over all possible factorizations of (xn)n≥0 in the form (5.2). This is
a norm and Lp(M ; ℓ∞) is a Banach space. These spaces were first introduced by Pisier [32]
in the case when M is hyperfinite and by Junge [16] in the general case. We will adopt the
convention in [17] that the norm ‖(xn)n≥0‖Lp(M ;ℓ∞) is denoted by

(5.3)
∥∥sup
n≥0

+xn
∥∥
p
.

We warn the reader that this suggestive notation should be treated with care. It is used for
possibly non positive operators and

∥∥sup
n≥0

+xn
∥∥
p
6=

∥∥sup
n≥0

+|xn|
∥∥
p
in general. However it has

an intuitive description in the positive case, as observed in [17, p. 392]: a positive sequence
(xn)n≥0 of L

p(M) belongs to Lp(M ; ℓ∞) if and only if there exists a positive a ∈ Lp(M) such
that xn ≤ a for any n ≥ 0 and in this case,

(5.4)
∥∥sup
n≥0

+xn
∥∥
p
= inf

{
‖a‖p : a ∈ Lp(M), a ≥ 0 and xn ≤ a for any n ≥ 0

}
.

Let T : M →M be a contraction We say that it is an absolute contraction if its restriction
to L1(M) ∩ M extends to a contraction L1(M) → L1(M). In this case, it extends (by
interpolation) to a contraction on Lp(M) for any 1 ≤ p ≤ ∞. We let Tp : L

p(M) → Lp(M)
denote the resulting operator.

Lemma 5.1. Let 1 < p, q <∞. The operator Tp is analytic if and only if Tq is analytic.

Proof. This result was proved by Blunck in the commutative setting [6, Thm. 1.1], using
interpolation. His arguments apply as well to the noncommutative setting, using (5.1). �

In accordance with this lemma we will say that an absolute contraction T : M → M is
analytic if Tp is analytic for one (equivalently for all) 1 < p <∞.

We say that T : M → M is positive if T (x) ≥ 0 for any x ∈ M+. If T is an absolute
contraction, then Tp(x) ≥ 0 for any x ∈ Lp(M)+ and any p.
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Theorem 5.2. Let T be a positive analytic absolute contraction. Then for any 1 < p < ∞
and any integer m ≥ 0, we have an estimate

(5.5)
∥∥∥sup
n≥0

+(n+ 1)mT n(T − I)m(x)
∥∥∥
p
. ‖x‖p, x ∈ Lp(M).

In particular we obtain a maximal inequality
∥∥∥sup
n≥0

+T n(x)
∥∥∥
p
. ‖x‖p

for any T as above.
These maximal theorems were proved in [17] under the assumption that the Hilbertian

operator T2 : L
2(M) → L2(M) is selfadoint and positive in the sense that σ(T2) ⊂ [0, 1]. This

was recently extended by Bekjan [3] to the case when the numerical range of T2 is included
in a Stolz domain Bγ for some γ ∈

(
0, π

2

)
. These results are covered by Theorem 5.2. Indeed

it is easy to see that the latter numerical range condition implies that T2 is analytic.
A key step in proving Theorem 5.2 is the following series of square function estimates.

Proposition 5.3. Let T : M → M be an analytic absolute contraction. Then for any integer
m ≥ 1, we have an estimate

(5.6)
( ∞∑

n=0

(n+ 1)2m−1
∥∥T n(T − I)m(x)

∥∥2

2

) 1

2

. ‖x‖2, x ∈ L2(M).

Proof. The argument is entirely similar to the one devised to prove (3.12). We use the as-
sumption that T2 is analytic. We let A = I−T2 and we let (Tt)≥0 be the semigroup generated
by −A on L2(M). This is a bounded analytic semigroup and since T2 is a contraction, we
have ‖Tt‖ ≤ 1 for any t ≥ 0. Hence by [26] (see also [24]), A admits a bounded H∞(Σθ0)
for some θ0 <

π
2
and hence, for every θ ∈

(
θ0,

π
2

)
and for any ϕ ∈ H∞

0 (Σθ), there exists a
constant C ≥ 0 such that

(5.7)
(∫ ∞

0

∥∥ϕ(tA)x
∥∥2

2

dt

t

) 1

2

≤ C‖x‖2, x ∈ L2(M).

Arguing as in the proof of Proposition 3.2 and using (5.7) in place of Proposition 2.1, we
obtain that there exists an angle γ ∈

(
0, π

2

)
such that the natutal functional calculus

uγ : Pγ −→ B(L2(M)), uγ(F ) = F (T2),

is completely bounded. That is, there exists a constant C ≥ 0 such that for any N ≥ 1, for
any N ×N matrix [Fij] of polynomials and for any x1, . . . , xN in L2(M),

( N∑

i=1

∥∥∥
N∑

j=1

Fij(T )xj

∥∥∥
2

2

) 1

2

≤ C
∥∥[Fij ]

∥∥
γ

( N∑

j=1

‖xj‖
2
2

) 1

2

.

Then the argument in the proof of Theorem 3.3 yields the result. �

Proof of Theorem 5.2. Once we have the estimates (5.6) in hands, one can deduce Theorem
5.2 by repeating the arguments of [17, Section 5] (see also [3]). �
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Remark 5.4. Let T be as in Theorem 5.2 and for any complex number α, let Mα
n (T ) be

defined as in [17, p. 409]. (M1
n(· ) is equal to the average Mn(· ) given by (3.17).) Then

the argument in [17, Section 5] shows that for any α ∈ C and any 1 < p < ∞, there is an
estimate ∥∥∥sup

n≥0

+Mα
n (T )x

∥∥∥
p
. ‖x‖p, x ∈ Lp(M).

The estimate (5.5) corresponds to α = −m.
A similar comment applies to Theorem 4.1.

Following [17, Rem. 2.4], the definition of Lp(M, ℓ∞) can be extended to arbitrary index
sets. For any set I and any 1 ≤ p < ∞, Lp(M ; ℓ∞I ) is defined as the space of all families
(xi)i∈I of Lp(M) which can be factorized as xi = azib, where a, b ∈ L2p(M) and (zi)i∈I
belongs to ℓ∞I (M). Moreover the norm of (xi)i∈I in Lp(M ; ℓ∞I ) is defined as the infimum of
all ‖a‖2p supi ‖zi‖‖b‖2p running over all such factorizations. We let

∥∥sup
i

+xi
∥∥
p
denote the

norm of an element (xi)i∈I of Lp(M ; ℓ∞I ). The analog of (5.4) holds in this general case,
that is, a positive family (xi)i∈I belongs to Lp(M ; ℓ∞I ) if and only if there exists a positive
a ∈ Lp(M) such that xi ≤ a for any i ∈ I and moreover,

(5.8)
∥∥sup

i

+xi
∥∥
p
= inf

{
‖a‖p : a ∈ Lp(M), a ≥ 0 and xi ≤ a for any i ∈ I

}
.

In the sequel we will deal with semigroups and apply the above facts with I = R+.
Let (Tt)t≥0 be a semigroup of operators onM . Assume that for any t ≥ 0, Tt is an absolute

contraction and that for any 1 < p < ∞, (Tt)t≥0 is strongly continuous on Lp(M). (By [12,
Prop. 1.23], this holds true for example if for any x ∈ M , Tt(x) → x in the w∗-topology of
M when t→ 0+.) We let −Ap denote the generator of (Tt)t≥0 acting on Lp(M).

Given any two indices 1 < p, q <∞, Ap is sectotial of type <
π
2
if and only if Aq is sectotial

of type < π
2
. In other words (Tt)t≥0 being a bounded analytic semigroup on Lp(M) does not

depend on 1 < p < ∞. This is a continuous analog of Lemma 5.1, whose proof is identical
to the one of [18, Prop. 5.4]. We skip the details.

Theorem 5.5. Let (Tt)t≥1 be a semigroup on M as above. Assume that for any t ≥ 0, Tt
is positive and that for one 1 < p <∞ (equivalently, for all 1 < p <∞), (Tt)t≥1 is analytic
on Lp(M). Then for any 1 < p <∞ and any integer m ≥ 0, we have an estimate

∥∥∥∥sup
t>0

+tm
∂m

∂tm
(
Tt(x)

)∥∥∥∥
p

. ‖x‖p, x ∈ Lp(M).

Proof. Fix p and m ≥ 0. According to [17, Prop. 2.1 and Rem. 2.4], it suffices to find a
constant C ≥ 0 such that for any finite family t1, . . . , tN of positive real numbers,

∥∥∥∥sup
k

+tmk
∂m

∂tm
(
Tt(x)

)∣∣t=tk

∥∥∥∥
p

≤ C ‖x‖p

for any x ∈ Lp(M). This follows from Theorem 5.2, using the same approximation argument
as in the proof of Corollary 4.2. �

We end this section with applications to R-analyticity (see Section 2 for terminology and
background). We recall Weis’s Theorem [38] that if (Tt)t≥0 is a bounded analytic semigroup
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on some commutative Lp-space (with 1 < p <∞) such that each Tt is contractively regular,
then (Tt)t≥0 is actually an R-bounded analytic semigroup. (This result was used in the proof
of Proposition 2.2 in the present paper.) The next corollary is an analog of that result in
our noncommutative setting. In the selfadjoint case, it was established in [18, Thm. 5.6].
The proof in the analytic case follows a similar scheme so we will be brief.

Corollary 5.6. Let (Tt)t≥1 be as in Theorem 5.5. Then for any 1 < p <∞, the realization
of (Tt)t≥0 on Lp(M) is an R-bounded analytic semigroup.

Proof. We first observe that the dual semigroup (T ∗
t )t≥0 satisfies the assumptions of Theorem

5.5. Let 1 < r < ∞. Applying the latter theorem for m = 0 and (5.8), we find a constant
Cr > 0 such that for any y ∈ Lr(M)+, there exists a ∈ Lr(M)+ such that

‖a‖r ≤ Cr‖y‖r and T ∗
t (y) ≤ a for any t ≥ 0.

Then the argument in the proof of [18, Thm. 5.6] shows that for any 2 ≤ q <∞, the set

(5.9) Fq =
{
Tt : L

q(M) −→ Lq(M) : t ≥ 0
}

is R-bounded.
The analyticity assumption ensures the existence of an angle ν ∈

(
0, π

2

)
such that the

realization of (Tt)t≥0 on L
2(M) extends to a bounded family (Tz)z∈Σν

of opertors on L2(M),
whose restriction to Σν is analytic. Since boundedness is equivalent to R-boundedness on
Hilbert spaces, this immediately implies that the sets

(5.10)
{
Tteiν : L

2(M) → L2(M) : t ≥ 0
}

and
{
Tte−iν : L2(M) → L2(M) : t ≥ 0

}

are R-bounded.
Let 2 < p <∞, let q > p be a finite number and let α = 2(q− 2)−1

(
q

p
− 1

)
. In accordance

with (5.1), this number is chosen so that Lp(M) = [Lq(M), L2(M)]α. As is well-known, this
implies that

Rad
(
Lp(M)

)
=

[
Rad

(
Lq(M)

)
,Rad

(
L2(M)

)]
α

isomorphically. Applying Stein’s interpolation principle as in the proof of [18, Thm. 5.6]
and the R-boundedness of the sets in (5.10), we deduce that

{
Tz : L

p(M) −→ Lp(M) : z ∈ Σαν

}

is R-bounded. This shows that (Tt)t≥0 is an R-bounded analytic semigroup on Lp(M).
The case 1 < p < 2 easily follows by duality. �

Let us finally come back to the discrete case. Blunck [5, Thm. 1.1 and Thm. 1.2]
showed that any analytic contractively regular operator on a commutative Lp-space (with
1 < p < ∞) is an R-analytic power bounded operator (see Remark 3.5 (b) in the present
paper for a proof of this result). This is a discrete analog of Weis’s Theorem. Here is a
noncommutative version.

Proposition 5.7. Let T : M →M be an absolute contraction and assume that T is positive.
Let 1 < p <∞. If T is analytic, then Tp : L

p(M) → Lp(M) is an R-analytic power bounded
operator for any 1 < p <∞.
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Proof. Let (Tt)t≥0 be defined by (2.9). Then for any t ≥ 0, Tt is a positive absolute con-
traction. Moreover for any 1 < p < ∞, (Tt)t≥0 is analytic on Lp(M). Hence by Proposition
5.6, (Tt)t≥0 is actually an R-bounded analytic semigoup on Lp(M). By [5, Thm. 1.1], this
implies that Tp is an R-analytic power bounded operator. �

Remark 5.8. Consider the notions of column boundedness and row boundedness as defined
in [18, Section 4.A] and let us state Col-bounded and Row-bounded versions of Theorem 5.5
and Proposition 5.7. Let T : Lp(M) → Lp(M) and let us say that T is Col-analytic (resp.
Row-analytic) power bounded it the two sets PT and AT from (2.4) and (2.5) are both
Col-bounded (resp. Row-bounded). Likewise, let us say that a semigroup (Tt)t≥0 on Lp(M)
is a Col-bounded (resp. Row-bounded) analytic semigroup if the two sets {Tt : t > 0} and
{tATt : t > 0} are both Col-bounded (resp. Row-bounded).

Let (Tt)t≥0 be a semigroup on M as in Theorem 5.5 and assume that Tt : M → M is
2-positive for any t ≥ 0. Then as in [18, Thm. 5.6], one can show that for any 1 < p < ∞,
the realization of (Tt)t≥0 on Lp(M) is both a Col-bounded and a Row-bounded analytic
semigroup.

Likewise, if T : M → M is a 2-positive and analytic absolute contraction, then for any
1 < p <∞, Tp : L

p(M) → Lp(M) is both a Col-analytic and a Row-analytic power bounded
operator. More concretely, this implies in particular that we have estimates

∥∥∥
(∑

n

T n(xn)
∗T n(xn)

) 1

2

∥∥∥
p
.

∥∥∥
(∑

n

x∗nxn

) 1

2

∥∥∥
p

and ∥∥∥
(∑

n

T n(xn)T
n(xn)

∗
) 1

2

∥∥∥
p
.

∥∥∥
(∑

n

xnx
∗
n

) 1

2

∥∥∥
p

for any 1 < p <∞.
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