CHARACTERIZATIONS OF Γ -AG**-GROUPOIDS BY THEIR Γ -IDEALS

Madad Khan and Naveed Ahmad

COMSATS Institute of Information Technology Abbottabad Pakistan. madadmath@yahoo.com, naveed.maths@yahoo.com

Abstract. In this paper we have discusses Γ -left, Γ -right, Γ -bi-, Γ -quasi-, Γ -interior and Γ -ideals in Γ -AG**-groupoids and regular Γ -AG**-groupoids. Moreover we have proved that the set of Γ -ideals in a regular Γ -AG**-groupoid form a semilattice structure. Also we have characterized a regular Γ -AG**-groupoid in terms of left ideals.

1. Introduction

Kazim and Naseeruddin [4] have introduced the concept of an LA-semigroup. This structure is the generalization of a commutative semigroup. It is closely related with a commutative semigroup and commutative groups because if an LA-semigroup contains right identity then it becomes a commutative semigroup and if a new binary operation is defined on a commutative group which gives an LA-semigroup [9]. The connection of the class of LA-semigroups with the class of vector spaces over finite fields and fields has been given as: Let W be a sub-space of a vector space V over a field F of cardinal 2r such that r > 1. Many authors have generalized some useful results of semigroup theory.

In 1981, the notion of Γ -semigroups was introduced by M. K. Sen [6] and [7].

T. Shah and I. Rehman [14] defined Γ -AG-groupoids analogous to Γ -semigroups and then they introduce the notion of Γ -ideals and Γ -bi-ideals in Γ -AG-groupoids. It is easy to see that Γ -ideals and Γ -bi-ideals in Γ -AG-groupoids are infect a generalization of ideals and bi-ideals in AG-groupoids (for a suitable choice of Γ).

In this paper we define Γ -quasi-ideals and Γ -interior ideals in Γ -AG**-groupoids and generalize some results. Also we have proved that Γ -AG-groupoids with left identity and AG-groupoids with left identity coincide.

Let G and Γ be two non-empty sets. G is said to be a Γ -AG-groupoid if there exist a mapping $G \times \Gamma \times G \to G$, written (a, γ, b) as $a\gamma b$, such that G satisfies the identity $(a\gamma b) \, \delta c = (c\gamma b) \, \delta a$, for all $a, b, c \in G$ and $\gamma, \delta \in \Gamma$ [14].

Definition 1. An element $e \in S$ is called a left identity of Γ -AG-groupoid if $e\gamma a = a$ for all $a \in S$ and $\gamma \in \Gamma$.

Lemma 1. If a Γ -AG-groupoid contains left identity, then it becomes an AG-groupoid with left identity.

²⁰⁰⁰ Mathematics Subject Classification. 20M10 and 20N99.

Key words and phrases. Gamma-AG-groupoids, Gamma ideals, regular Gamma AG-groupoids.

Proof. Let G be a Γ -AG-groupoid and e be the left identity of G and let $a, b \in G$ and $\alpha, \beta \in \Gamma$ therefore we have

$$a\alpha b = a\alpha(e\beta b) = e\alpha(a\beta b) = a\beta b.$$

Hence Γ -AG-groupoid with left identity becomes and an AG-groupoid with left identity. \square

Remark 1. From Lemma 1, it is easy to see that all the results given in [14] and [15] for a Γ -AG-groupoid with left identity is identical to the results given in [10] and [11].

Definition 2. A Γ -AG-groupoid is called a Γ -AG**-groupoid if it satisfies the following law

$$a\alpha(b\beta c) = b\alpha(a\beta c)$$
, for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

The following results and definition from definition 3 to lemma 3 have been taken from [14].

Definition 3. Let G be a Γ -AG-groupoid, a non-empty subset S of G is called sub Γ -AG-groupoid if $a\gamma b \in S$ for all $a, b \in S$ and $\gamma \in \Gamma$ or S is called sub Γ -AG-groupoid if $S\Gamma S \subseteq S$.

Definition 4. A subset I of a Γ -AG-groupoid G is called left(right) Γ -ideal of G if $G\Gamma I \subseteq I$ ($I\Gamma G \subseteq I$) and I is called Γ -ideal of G if it is both left and right Γ -ideal.

Definition 5. An element a of a Γ -AG-groupoid G is called regular if there exist $x \in G$ and β , $\gamma \in \Gamma$ such that $a = (a\beta x)\gamma a$. G is called regular Γ -AG-groupoid if all elements of G are regular.

Definition 6. A sub Γ -AG-groupoid B of a Γ -AG-groupoid G is called Γ -bi-ideal of G if $(B\Gamma G)\Gamma B\subseteq B$.

Definition 7. Let G and Γ be any non-empty sets. If there exists a mapping $G \times \Gamma \times G \to G$, written (x, γ, y) as $x\gamma y$, G is called a Γ -medial if it satisfies $(x\alpha y) \beta(l\gamma m) = (x\alpha l) \beta(y\gamma m)$, and called Γ -paramedial if it satisfies $(x\alpha y) \beta(l\gamma m) = (m\alpha l) \beta(y\gamma x)$ for all $x, y, l, m \in G$ and $\alpha, \beta, \gamma \in \Gamma$.

Lemma 2. If A and B are any Γ -ideals of a regular Γ -AG-groupoid G then $A\Gamma B = B\Gamma A$.

Definition 8. A Γ -ideal P of a Γ -AG-groupoid G is called Γ -prime(Γ -semiprime) if for any Γ -ideals A and B, $A\Gamma B \subseteq P(A\Gamma A \subseteq P)$ implies either $A \subseteq P$ or $B \subseteq P(A \subseteq P)$.

Lemma 3. Any Γ -ideal A of a regular Γ -AG-groupoid is a Γ -idempotent that is $A\Gamma A = A$.

It is important to note that every Γ -AG-groupoid G is Γ -medial and every Γ -AG**-groupoid G is Γ -paramedial because for any $x, y, l, m \in G$ and $\alpha, \beta, \gamma \in \Gamma$, we have

$$(x\alpha y)\beta(l\gamma m) = ((l\gamma m)\alpha y)\beta x = ((y\gamma m)\alpha l)\beta x = (x\alpha l)\beta(y\gamma m).$$

We call it as Γ -medial law.

Theorem 1. If L and R are left and right Γ -ideals of a Γ -AG**-groupoid G then $L \cup L\Gamma G$ and $R \cup G\Gamma R$ are Γ -ideals of G.

Proof. Let L be a left Γ -ideal of G then we have

$$\begin{array}{rcl} (L \cup L\Gamma G) \, \Gamma G & = & (L\Gamma G) \cup (L\Gamma G) \, \Gamma G = (L\Gamma G) \cup (G\Gamma G) \, \Gamma L \\ & \subseteq & L\Gamma G \cup (G\Gamma L) \subseteq L\Gamma G \cup L = L \cup L\Gamma G \text{ and} \\ G\Gamma \, (L \cup L\Gamma G) & = & G\Gamma L \cup G\Gamma \, (L\Gamma G) \subseteq L \cup L\Gamma \, (G\Gamma G) = L \cup L\Gamma G. \end{array}$$

Again let R be a right Γ -ideal of G then we have

$$(R \cup G\Gamma R) \Gamma G = R\Gamma G \cup (G\Gamma R) \Gamma G \subseteq R \cup (G\Gamma R) \Gamma (G\Gamma G)$$

$$= R \cup (G\Gamma G) \Gamma (R\Gamma G) \subseteq R \cup G\Gamma R, \text{ and}$$

$$G\Gamma (R \cup G\Gamma R) = G\Gamma R \cup G\Gamma (G\Gamma R) = G\Gamma R \cup (G\Gamma G) \Gamma (G\Gamma R)$$

$$= G\Gamma R \cup (R\Gamma G) \Gamma (G\Gamma G) \subseteq G\Gamma R \cup R\Gamma G$$

$$\subseteq G\Gamma R \cup R = R \cup G\Gamma R.$$

Lemma 4. Right identity in a Γ -AG-groupoid G becomes identity of G and hence G becomes commutative Γ -semigroup.

Proof. Let e be the right identity of G, $g \in G$, α and $\beta \in \Gamma$, then

$$e\alpha g = (e\beta e) \alpha g = (g\beta e) \alpha e = g\alpha e = g.$$

Again for $a, b, c \in G$ and $\alpha, \beta \in \Gamma$ we have

$$a\gamma b = (e\alpha a)\gamma b = (e\alpha a)\gamma(e\alpha b) = (b\alpha e)\gamma(a\alpha e) = b\gamma a.$$

Now

$$(a\alpha b) \beta c = (a\alpha b) \beta (e\alpha c) = (a\alpha e) \beta (b\alpha c) = e\alpha ((a\alpha e) \beta (b\alpha c))$$
$$= (a\alpha e) \alpha (e\beta (b\alpha c)) = a\alpha (e\beta (b\alpha c)) = a\alpha (b\beta (e\alpha c))$$
$$= a\alpha (b\beta c).$$

Definition 9. A sub Γ -AG-groupoid Q of a Γ -AG-groupoid G is called a quasi-ideal of G if $G\Gamma Q \cap Q\Gamma G \subseteq Q$.

Definition 10. A sub Γ -AG-groupoid I of a Γ -AG-groupoid G is called a Γ -interior ideal of G if $(G\Gamma I)$ $\Gamma G \subseteq I$.

Lemma 5. Every one sided (left or right) Γ -ideal of a Γ -AG-groupoid G is a Γ -quasi ideal of G.

Proof. Let L be a left Γ -ideal of G then we have

$$L\Gamma G\cap G\Gamma L\subseteq G\Gamma L\subseteq L.$$

Which implies L is a Γ -quasi ideal of G. Similarly if R is a right Γ -ideal of G then it is a Γ -quasi ideal of G.

Lemma 6. Every right Γ -ideal and left Γ -ideal of a Γ -AG-groupoid G is a Γ -bi-ideal of G.

Proof. Let R be a right Γ -ideal of G then we have

$$(R\Gamma G)\Gamma R \subseteq R\Gamma R \subseteq R\Gamma G \subseteq R.$$

Again let L be a left Γ -ideal of G then we have

$$(L\Gamma G)\Gamma L\subseteq (G\Gamma G)\Gamma L\subseteq G\Gamma L\subseteq L.$$

Corollary 1. Every Γ -ideal of a Γ -AG-groupoid G is a Γ -bi-ideal of G.

Proof. It follows from lemma 6.

Lemma 7. If B_1 and B_2 are Γ -bi-ideals of a Γ - AG^{**} -groupoid G then $B_1\Gamma B_2$ is also a Γ -bi-ideals of G.

Proof. Let B_1 and B_2 be Γ -bi-ideals of G then we have

$$\begin{array}{ll} \left(\left(B_{1}\Gamma B_{2}\right)\Gamma G\right)\Gamma \left(B_{1}\Gamma B_{2}\right) & = & \left(\left(B_{1}\Gamma B_{2}\right)\Gamma \left(G\Gamma G\right)\right)\Gamma \left(B_{1}\Gamma B_{2}\right) \\ & = & \left(\left(B_{1}\Gamma G\right)\Gamma \left(B_{2}\Gamma G\right)\right)\Gamma \left(B_{1}\Gamma B_{2}\right) \\ & = & \left(\left(B_{1}\Gamma G\right)\Gamma B_{1}\right)\Gamma \left(\left(B_{2}\Gamma G\right)\Gamma B_{2}\right) \\ & \subseteq & B_{1}\Gamma B_{2}. \end{array}$$

Lemma 8. Every Γ -idempotent quasi-ideal of a Γ -AG-groupoid G is a Γ -bi-ideal of G.

Proof. Let Q be an Γ -idempotent quasi-ideal of G. Now

$$\begin{array}{rcl} (Q\Gamma G)\,\Gamma Q &\subseteq & (G\Gamma G)\,\Gamma Q\subseteq G\Gamma Q, \text{ and} \\ (Q\Gamma G)\,\Gamma Q &= & (Q\Gamma G)\,\Gamma\,(Q\Gamma Q) = (Q\Gamma Q)\,\Gamma\,(G\Gamma Q) = Q\Gamma\,(G\Gamma Q) \\ &\subseteq & Q\Gamma\,(G\Gamma G)\subseteq Q\Gamma G, \text{ which implies that} \\ (Q\Gamma G)\,\Gamma Q &\subseteq & G\Gamma Q\cap Q\Gamma G\subseteq Q. \end{array}$$

Lemma 9. Every Γ -ideal of a Γ -AG-groupoid G is a Γ -interior ideal of G.

Proof. Let I be a Γ -ideal of G then we have

$$(G\Gamma I)\Gamma G\subseteq I\Gamma G=I.$$

Lemma 10. A subset I of a Γ -AG**-groupoid G is a Γ -interior ideal if and only if it is right Γ -ideal.

Proof. Let I be a right Γ -ideal G then it becomes a left Γ -ideal so is Γ -ideal and by lemma 9 it is Γ-interior ideal.

Conversely assume that I is a Γ -interior ideal of G. Using Γ -paramedial law, we have

$$\begin{split} I\Gamma G &= I\Gamma\left(G\Gamma G\right) = G\Gamma\left(I\Gamma G\right) = \left(G\Gamma G\right)\Gamma\left(I\Gamma G\right) \\ &= \left(G\Gamma I\right)\Gamma\left(G\Gamma G\right) \subseteq \left(G\Gamma I\right)\Gamma G \subseteq G. \end{split}$$

Which shows that I is a right Γ -ideal of G.

Example 1. Let $G = \{1, 2, 3, 4, 5\}$ with binary operation "·" given in the following Cayley's table, an AG-groupoid with left identity 4.

	1	2	3	4	5
1	4	5	1	2	3
2	3	4	5	1	2
3	2	3	4	5	1
4	1	2	3	4	5
5	5	5 4 3 2	2	3	4

It is easy to observe that G is a simple AG-groupoid that is there is no left or right ideal of G. Now let $\Gamma = \{\alpha, \beta, \gamma\}$ defined as

α						β	1	2	3	4	5	γ					
1						1	2	2	2	2	2	1					
2	1	1	1	1	1	2	2	2	2	2	2	2	1	1	1	1	1
3	1	1	1	1	1	3	2	2	2	2	2	3	1	1	1	1	1
4	1	1	1	1	1	4	2	2	2	2	2	4	1	1	1	1	1
5	1	1	1	1	1	5	2	2	2	2	2	5	1	1	1	3	3

It is easy to prove that G is a Γ -AG-groupoid because $(a\pi b) \psi c = (c\pi b) \psi a$ for all $a, b, c \in G$ and $\pi, \psi \in \Gamma$ also G is non-associative because $(1\alpha 2) \beta 3 \neq 1\alpha (2\beta 3)$. This Γ -AG-groupoid does not contain left identity because $4\alpha 5 \neq 5$, $4\beta 5 \neq 5$ and $4\gamma 5 \neq 5$. It is easy to see that every AG-groupoid with left identity not necessarily implies Γ -AG-groupoid with left identity. Clearly $A = \{1, 2, 3\}$ is a Γ -ideal of G. $B = \{1, 2, 3\}$ is a right Γ -ideal but is not a left Γ -ideal. A and B both are Γ -bi-ideals of G. $C = \{1, 2, 3, 4\}$ is a Γ -interior ideal of G.

Lemma 11. For a regular Γ -AG-groupoid G A $\Gamma G = A$ and $G\Gamma B = B$ for every right Γ -ideal A and for every left Γ -ideal B.

Proof. Let A be a right Γ - ideal of G then $A\Gamma G \subseteq A$. Let $a \in A$, since G is regular so there exist $x \in G$ and $\alpha, \gamma \in \Gamma$ such that

$$a = (a\alpha x) \gamma a \in (A\Gamma G) \Gamma A \subseteq (A\Gamma G) \Gamma G \subseteq A\Gamma G.$$

Now again let B be a left Γ -ideal of G then $G\Gamma B \subseteq B$. Let $b \in B$, also G is regular so there exist $t \in G$ and π , $\sigma \in \Gamma$ such that

$$b = (b\pi t) \sigma b \in (B\Gamma G) \Gamma B \subseteq (G\Gamma G) \Gamma B \subseteq G\Gamma B.$$

Lemma 12. If G is a Γ -AG**-groupoid then $g\Gamma G$ and $G\Gamma g$ are Γ -bi-ideals for all $g \in G$.

Proof. Using the definition of Γ -AG**-groupoid we have

$$\begin{array}{ll} \left(\left(g\Gamma G\right)\Gamma G\right)\Gamma\left(g\Gamma G\right) & = & \left(\left(G\Gamma G\right)\Gamma g\right)\Gamma\left(g\Gamma G\right)\subseteq\left(G\Gamma g\right)\Gamma\left(g\Gamma G\right) \\ & = & g\Gamma\left(\left(G\Gamma g\right)\Gamma G\right)\subseteq g\Gamma\left(\left(G\Gamma G\right)\Gamma G\right)\subseteq g\Gamma\left(G\Gamma G\right) \\ & \subseteq & g\Gamma G. \end{array}$$

Again using Γ -paramedial law we have

$$\begin{split} \left(\left(G\Gamma g \right) \Gamma G \right) \Gamma \left(G\Gamma g \right) & = & \left(\left(\left(G\Gamma g \right) \Gamma G \right) \Gamma G \right) \Gamma G = \left(\left(\left(g\Gamma g \right) \Gamma G \right) \Gamma G \right) \Gamma G \\ & = & \left(\left(G\Gamma G \right) \Gamma G \right) \Gamma \left(g\Gamma g \right) \subseteq \left(G\Gamma G \right) \Gamma \left(g\Gamma g \right) \\ & = & \left(g\Gamma g \right) \Gamma \left(G\Gamma G \right) \subseteq \left(g\Gamma g \right) \Gamma G = \left(G\Gamma g \right) \Gamma g \\ & \subseteq & \left(G\Gamma G \right) \Gamma g \subseteq G\Gamma g. \end{split}$$

Corollary 2. If G is a regular Γ -AG**-groupoid then $a\Gamma G$ is a Γ -bi-ideal in G, for all $a \in G$.

Proof. Let G be a regular Γ -AG-groupoid then for every $a \in G$ there exist $x \in G$ and α , $\beta \in \Gamma$ such that $a = ((a\alpha x)\beta a)$ therefore we have

$$\begin{array}{ll} \left(\left(a\Gamma G\right)\Gamma G\right)\Gamma\left(a\Gamma G\right) & = & \left(\left(\left(\left(a\alpha x\right)\beta a\right)\Gamma G\right)\Gamma\left(a\Gamma G\right) \\ & = & \left(\left(G\Gamma G\right)\Gamma\left(\left(a\alpha x\right)\beta a\right)\right)\Gamma\left(a\Gamma G\right) \\ & \subseteq & \left(G\Gamma\left(\left(a\alpha x\right)\beta a\right)\right)\Gamma\left(a\Gamma G\right) = \left(\left(a\alpha x\right)\Gamma\left(G\beta a\right)\right)\Gamma\left(a\Gamma G\right) \\ & \subseteq & \left(\left(a\alpha x\right)\Gamma\left(G\beta G\right)\right)\Gamma\left(G\Gamma G\right) \subseteq \left(\left(a\alpha x\right)\Gamma G\right)\Gamma G \\ & = & \left(G\Gamma G\right)\Gamma\left(a\alpha x\right) \subseteq G\Gamma\left(a\alpha x\right) = a\Gamma\left(G\alpha x\right) \subseteq a\Gamma\left(G\Gamma G\right) \\ & \subseteq & a\Gamma G. \end{array}$$

Lemma 13. For a Γ -bi-ideal B in a regular Γ -AG-groupoid G, $(B\Gamma G)\Gamma B=B$.

Proof. Let B be a Γ -bi-ideal in G then $(B\Gamma G)\Gamma B \subset B$. Let $x \in B$, since G is a regular Γ -AG-groupoid therefore there exist $a \in G$ and $\alpha, \beta \in \Gamma$ such that

$$x = (x\alpha a) \beta x \in (B\Gamma G) \Gamma B.$$

Which implies that $B \subseteq (B\Gamma G)\Gamma B$.

Lemma 14. If G is a regular Γ -AG-groupoid then, $G\Gamma G = G$.

Proof. Since $G\Gamma G \subseteq G$. Let $x \in G$, since G is a regular Γ -AG-groupoid therefore there exist $a \in G$ and $\alpha, \beta \in \Gamma$ such that

$$x = (x\alpha a) \beta x \in (G\Gamma G) \Gamma G \subseteq G\Gamma G.$$

Which implies that $G \subseteq G\Gamma G$.

Lemma 15. A subset I of a regular Γ -AG**-groupoid G is a left Γ -ideal if and only if it is a right Γ -ideal of G.

Proof. Let I be a left Γ -ideal of G then $G\Gamma I \subseteq I$. Let $i\gamma g \in I\Gamma G$ for $g \in G$, $i \in I$ and $\gamma \in \Gamma$, also G is a regular Γ -AG-groupoid therefore there exist $x, y \in G$ and α , $\beta, \gamma, \delta, \pi \in \Gamma$ such that

$$\begin{split} i\gamma g &= \left(\left(i\alpha x \right)\beta i \right)\gamma \left(\left(g\delta y \right)\pi g \right) = \left(\left(i\alpha x \right)\beta \left(g\delta y \right) \right)\gamma \left(i\pi g \right) \\ &= \left(\left(\left(\left(i\alpha x \right)\beta i \right)\alpha x \right)\beta \left(g\delta y \right) \right)\gamma \left(i\pi g \right) = \left(\left(y\alpha g \right)\beta \left(\left(i\beta \left(i\alpha x \right) \right)\delta x \right) \right)\gamma \left(i\pi g \right) \\ &= \left(i\beta \left(\left(\left(y\alpha g \right)\beta \left(i\alpha x \right) \right)\delta x \right) \right)\gamma \left(i\pi g \right) = \left(\left(i\pi g \right)\beta \left(\left(\left(y\alpha g \right)\beta \left(i\alpha x \right) \right)\delta x \right) \right)\gamma i \\ &\in \left(G\Gamma I \right) \subseteq I. \end{split}$$

Conversely let I be a right Γ -ideal then there exist $x \in G$ and $\alpha, \beta \in \Gamma$ such that $g\gamma i = ((g\alpha x)\beta g)\gamma i = (i\beta g)\gamma (g\alpha x) \in (I\Gamma G)\Gamma G \subseteq I\Gamma G \subseteq I.$

Theorem 2. for a Γ -AG**-groupoid G, following statements are equivalent.

- (i) G is regular Γ -AG-groupoid.
- (ii) Every left Γ -ideal of G is Γ -idempotent.

Proof.
$$(i) \Rightarrow (ii)$$

Let G be a regular Γ -AG-groupoid then by lemma 3 every Γ -ideal of G is Γ -idempotent.

$$(ii) \Rightarrow (i)$$

Let every left Γ -ideal of a Γ -AG**-groupoid G is Γ -idempotent, since $G\Gamma a$ is a left Γ -ideal of G for all $a \in G$ [14], so is Γ -idempotent and by Γ -paramedial law, lemma ?? and Γ -medial law, we have, $a \in G\Gamma a$ implies

$$\begin{array}{ll} a & \in & (G\Gamma a) \ \Gamma \left(G\Gamma a \right) = \left(\left(G\Gamma a \right) \Gamma a \right) \Gamma G = \left(\left(a\Gamma a \right) \Gamma G \right) \Gamma G \\ & = & \left(\left(a\Gamma a \right) \Gamma \left(G\Gamma G \right) \right) \Gamma G = \left(\left(G\Gamma G \right) \Gamma \left(a\Gamma a \right) \right) \Gamma G \\ & = & \left(a\Gamma \left(\left(G\Gamma G \right) \Gamma a \right) \right) \Gamma G = \left(G\Gamma \left(\left(G\Gamma G \right) \Gamma a \right) \right) \Gamma a \\ & = & \left(G\Gamma \left(G\Gamma a \right) \right) \Gamma a = \left(G\Gamma \left(\left(G\Gamma a \right) \Gamma \left(G\Gamma a \right) \right) \right) \Gamma a \\ & = & \left(G\Gamma \left(\left(a\Gamma G \right) \Gamma \left(a\Gamma G \right) \right) \right) \Gamma a = \left(\left(G\Gamma G \right) \Gamma \left(\left(a\Gamma G \right) \Gamma \left(a\Gamma G \right) \right) \right) \Gamma a \\ & = & \left(\left(G\Gamma \left(a\Gamma G \right) \right) \Gamma \left(G\Gamma \left(a\Gamma G \right) \right) \right) \Gamma a = \left(\left(\left(\left(a\Gamma G \right) \Gamma G \right) \Gamma \left(a\Gamma G \right) \right) \Gamma a \\ & = & \left(\left(\left(\left(a\Gamma G \right) \Gamma G \\ & \subseteq & \left(a\Gamma G \right) \Gamma a. \end{array}$$

Which shows that G is a regular Γ -AG**-groupoid.

Lemma 16. Any Γ -ideal of a regular Γ -AG-groupoid G is Γ -semiprime.

Proof. It is an easy consequence of lemma 3.

Theorem 3. Set of all Γ -ideals in a regular Γ -AG-groupoid G with forms a semilattice (G, \circ) where $A \circ B = A\Gamma B$, for all Γ -ideals A and B of G.

Proof. Let A and B be any Γ -ideals in G, then by Γ -medial law we have

$$(A\Gamma B)\Gamma G = (A\Gamma B)\Gamma(G\Gamma G) = (A\Gamma G)\Gamma(B\Gamma G) \subseteq A\Gamma B$$
. And $G\Gamma(A\Gamma B) = (G\Gamma G)\Gamma(A\Gamma B) = (G\Gamma A)\Gamma(G\Gamma B) \subseteq A\Gamma B$.

Also by lemma 2, we have $A\Gamma B = B\Gamma A$ which implies that

$$(A\Gamma B)\Gamma C = C\Gamma (A\Gamma B) = A\Gamma (C\Gamma B) = A\Gamma (B\Gamma C).$$

And by lemma 3, $A\Gamma A = A$.

References

- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, John Wiley & Sons, (vol.1)1961.
- [2] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Stud., 1-4, 61(1992), 101-106.
- [3] J. Ježek and T. Kepka, A note on medial division groupoids, Proc. Amer. Math. Soc., 2,119(1993), 423 – 426.
- [4] M. A. Kazim and M. Naseeruddin, On almost semigroups, The Alig. Bull. Math., 2(1972), 1-7
- [5] M. Khan and Naveed Ahmad, Characterizations of left almost semigroups by their ideals, Journal of Advanced Research in Pure Mathematics, 2, 3. (2010), 61 73.
- [6] M. K. Sen, On Γ-semigroups, Proceeding of International Symposium on Algebra and Its Applications, Decker Publication, New York, (1981), 301 – 308.
- [7] M. K. Sen and N. K. Saha, On Γ-semigroups I, Bull. Cal. Math. Soc., 78(1986), 180-186.
- [8] Q. Mushtaq and S. M. Yousuf, On LA-semigroups, The Alig. Bull. Math., 8(1978), 65 70.
- [9] Q. Mushtaq and S. M. Yousuf, On LA-semigroup defined by a commutative inverse semigroup, Math. Bech., 40(1988), 59-62.
- [10] Q., Mushtaq and Madad Khan, M-Systems in LA-Semigroups, Southeast Asian Bulletin of Mathematics 33(2009), 321-327.
- [11] Q., Mushtaq and Madad Khan, Ideals in Left Almost Semigroups, http://arxiv.org/abs/0904.1635v1.
- [12] Naseeruddin, N., Some studies in almost semigroups and flocks, Ph.D., thesis, Aligarh Muslim University, Aligarh, India, 1970.
- [13] P. V. Protić and N. Stevanović, AG-test and some general properties of Abel-Grassmann's groupoids, PU. M. A., 4., 6 (1995), 371 383.
- [14] T. Shah and I. Rehman, On Γ-Ideals and Γ-Bi-Ideals in Γ-AG-groupoids, International Journal of Algebra, 4,6 (2010), 267-276.
- [15] T. Shah and I. Rehman, On M-systems in Γ -AG-groupoids, Proc. Pakistan Acad. Sci., 47(1) : 33-39.2010.
- [16] O. Steinfeld, Quasi-ideals in ring and semigroups, Akademiaikiado, Budapest, 1978.
- [17] N. Stevanović and P. V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad, J. Math., 2, 34(2004).