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CELL-LIKE EQUIVALENCES AND BOUNDARIES OF CAT(0) GROUPS

CRAIG GUILBAULT AND CHRISTOPHER MOONEY∗

Abstract. In 2000, Croke and Kleiner showed that a CAT(0) group G can admit more than one boundary.
This contrasted with the situation for δ-hyperbolic groups, where it was well-known that each such group
admitted a unique boundary—in a very stong sense. Prior to Croke and Kleiner’s discovery, it had been
observed by Geoghegan and Bestvina that a weaker sort of uniquness does hold for boundaries of torsion
free CAT(0) groups; in particular, any two such boundaries always have the same shape. Hence, the
boundary really does carry significant information about the group itself. In an attempt to strengthen the
correspondence between group and boundary, Bestvina asked whether boundaries of CAT(0) groups are
unique up to cell-like equivalence. For the types of space that arise as boundaries of CAT(0) groups, this is
a notion that is weaker than topological equivalence and stronger than shape equivalence.

In this paper we explore the Bestvina Cell-like Equivalence Question. We describe a straightforward
strategy with the potential for providing a fully general positive answer. We apply that strategy to a
number of test cases and show that it succeeds—often in unexpectedly interesting ways.

1. Introduction

One striking difference between the category of negatively curved groups and that of nonpositively curved
groups occurs at their ends; whereas a δ-hyperbolic group admits a topologically unique boundary, a CAT(0)
group can admit uncountably many distinct boundaries [5, 25, 15, 17]. On its surface, that observation might
lead one to believe that a boundary for a CAT(0) group is not a useful object, but that is not the case.
Many properties remain constant across the spectrum of boundaries of a given CAT(0) group, and thus may
be viewed as properties of the group itself. One substantial such property, which implies many others, is the
shape of the boundary. That observation was made indirectly by Geoghegan [8] and, specifically for CAT(0)
groups, by Bestvina [1]. The upshot is that all boundaries of a given CAT(0) group are topologically similar
in a manner made precise by shape theory—a classical branch of geometric topology developed specifically
for dealing with spaces with the sort of bad local properties that frequently occur in boundaries of groups.
Looking for an even stronger correlation between CAT(0) groups and their boundaries, Bestvina posed the
following:

Bestvina’s Cell-like Equivalence Question. For a given CAT(0) group G, are all boundaries cell-like
equivalent?

Precise formulations of the notion of ‘shape equivalence’ and ‘cell-like equivalence’ and their relationship
to one another will be given shortly. For now we give a quick description of the concept of cell-like equivalence
to aid in painting the big picture.

A pair of compacta X and Y are declared to be cell-like equivalent if there exists a third compactum

Z and a pair of cell-like maps X
f1←− Z

f2−→ Y . (The reader may temporarily think of a cell-like map as
a surjective map with contractible point preimages.) To obtain an equivalence relation we permit several
intermediate spaces: X and Y are declared to be cell-like equivalent if there exists a diagram of compacta
and cell-like maps of the form:

(1)
Z1 Z3 Z2n+1

ւ ց ւ ց ւ · · · ց ւ ց
X Z2 Z4 Z2n Y
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Clearly, cell-like equivalence is weaker than topological equivalence; moreover, if we require that all spaces
involved be finite-dimensional, cell-like equivalence is stronger than shape equivalence [21]. In addition to
lying between the notions of topological equivalence and shape equivalence, cell-like equivalence has the
advantage of allowing an easily understood equivariant variation. Compacta X and Y , each equipped with
a G-action, are declared to be ‘G-equivariantly cell-like equivalent’ if there exists a diagram of type (1)
for which each of the Zi also admits a G-action, and each of the cell-like maps respects the corresponding
actions. Bestvina has indicated an interest in the following:

Bestvina’s Equivariant Cell-like Equivalence Question. For a given CAT(0) group G, are all bound-
aries G-equivariantly cell-like equivalent?

In this paper we propose a general strategy for obtaining an affimative solution to the equivariant version
of Bestvina’s question. That strategy is straighforward; it is described at the end of this section. Thus far
we are unable to complete the program for arbitrary CAT(0) groups. Instead we present some specific cases
where our strategy works—sometimes in surprising ways. In addition we develop some potentially useful
generalizations of our approach.

In the remainder of this introduction we review some basic notions related to shape theory and cell-like
equivalences. We then discuss CAT(0) spaces and groups enough so we can go on to describe our standard
strategy for obtaining equivariant cell-like equivalences between pairs of boundaries. Lastly we outline the
main examples and results to be presented in the remainder of the paper.

By compactum we mean a compact metric space. There are a variety of ways of saying what it means

for compacta X and Y to be shape equivalent (denoted X
sh∼ Y ). One method, due to Chapman [4],

involves the Hilbert cube Q =
∏∞

i=1 [0, 1]. Embed X and Y in as Z-sets (for example, place X and Y in

{0} ×∏∞
i=2 [0, 1] ⊆ Q). Then X

sh∼ Y if and only if Q−X is homeomorphic to Q− Y . If X and Y are both
finite-dimensional one can avoid infinite dimensional topology by embedding X and Y nicely in R

n, where

n is large compared to the dimensions of X and Y . Then X
sh∼ Y if and only if Rn −X is homeomorphic to

R
n − Y . See [21] for details.
Another way to characterize shape is more complex, but often easier to apply. Given a compactum X ,

we first choose an associated inverse sequence of finite polyhedra and continuous maps

(2) K0
f1←− K1

f2←− K2
f2←− · · · .

If X happens to arise as an inverse limit of finite polyhedra, then that sequence may be chosen as the
associated inverse sequence. Another way to obtain an associated inverse sequence for X is to choose a
sequence of finite covers {Ui}∞i=0 of X by εi-balls such that εi → 0 and each Ui refines Ui−1; then, for each
i, let Ki be the nerve of Ui and fi be the corresponding simplicial map. Yet another way of obtaining an
associated inverse sequence can be applied when X is finite-dimensional: embed X in R

n and let {Ki}∞i=0

be a decreasing sequence of polyhedral neighborhoods of X with all bonding maps being inclusions.
Given an increasing sequence {ik}∞k=0 of natural numbers, there is a corresponding subsequence of (2)

Ki0

fi1,i0←− Ki1

fi2,i1←− Ki2

fi3,i2←− · · ·
where, for any integers n > m, fn,m is the obvious composition of the fj taking Kn to Km. Declare a pair
of inverse sequences {Ki, fi} and {Li, gi} to be pro-equivalent if they contain subsequences that fit into a
diagram of the form

(3)
Ki0

fi1,i0←− Ki1

fi2,i1←− Ki2

fi3,i2←− · · ·
տ ւ տ ւ տ ւ
Lj0

gj1 ,j0←− Lj1

gi2,i1←− Lj2 · · ·

where each triangle is only required to commute up to homotopy. Now X
sh∼ Y if and only if associated

inverse sequences are pro-equivalent.

Example 1.1. By using the inverse sequence approach, it is easy to see that the following examples each
has the shape of a circle.
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Figure 1. Ferry Spiral Figure 2. Warsaw Circle

Example 1.2. By repeated application of Borsuk’s homotopy extension property, one sees that every con-
tractible compactum has the same shape as a point; these are the prototypical comapcta with trivial shape.
An example of a non-contractible compactum with the shape of a point is the topologist’s sine curve:

Figure 3. Topologist’s Sine Curve

1.1. The notion of cell-like equivalence. A compactum is cell-like if it has the shape of a point. A map
f : X → Y between compacta is cell-like if f−1 (y) is cell-like for each y ∈ Y . Cell-like maps have been studied
extensively—they play a central role in manifold topology. Compacta X and Y are cell-like equivalent if
there exists a finite sequence of compacta Z1, · · · , Z2n+1 (n ≥ 0) and cell-like maps as described by diagram

(1); in this case we write X
CE∼ Y . When X and Y are finite-dimensional, the existence of a cell-like map

f : X → Y implies X
sh∼ Y ; thus, if X and Y are ‘cell-like equivalent through finite-dimensional compacta’

(there exists a diagram of type (1) for which all spaces are finite-dimensional), then X and Y have the
same shape. Since all boundaries of CAT(0) groups are finite-dimensional [24], as are all intermediate spaces
utilized in this paper, we generally think of ‘cell-like equivalence’ as being stronger than ‘shape equivalence’.

A famous counterintuitive example helps to illustrate the above definition.

Example 1.3. Let A = [0, 1]×{0} ⊆ R
2 and C ⊆ A be the middle-thirds Cantor set; let B ⊆ R

2 be the cone
over C with cone-point

(

1
2 , 1

)

. Let Z = A∪B. Since A and B are contractible the quotient maps Z → Z/A
and Z → Z/B are cell-like. The image of the latter is the standard Hawaiian earring with countably many
loops; call this space X . Notice that Z/A is homeomorphic to ΣC, the suspension of a Cantor set. By
crushing out a single suspension arc, we get a cell-like map ΣC → Y where Y is a ‘bigger Hawaiian earring’,
having a Cantor set’s worth of loops. Putting all of this together, we get that X and Y are cell-like and
shape equivalent (see Figure 4).

Example 1.4. An easy application of Example 1.2 shows that the Warsaw circle (see Figure 2) is cell-like
equivalent to an ordinary circle. In [7], it is shown that the Ferry Spiral (see Figure 1) is not cell-like
equivalent to a circle.
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X = Z/B Z/A Y

Figure 4. CE Hawaiian Earrings

As noted in the introduction, the notion of cell-like equivalence lends itself nicely to an equivariant version.
Suppose compacta X and Y each admit a G-action and suppose there exists a diagram of the form (1) where
each of the compacta Zi also admits a G-action and each of the maps in that diagram commutes with the

appropriate actions. We say that X and Y are G-equivariantly cell-like equivalent and we write X
G-CE∼ Y .

1.2. CAT(0) groups and their boundaries. A geodesic metric space X is called a CAT(0) space if each
of its triangles is at least as thin as the corresponding comparison triangle in the Euclidean plane. A group
G is called a CAT(0) group if it acts geometrically (properly and cocompactly via isometries) on a proper
CAT(0) space. Such a space X can be compactified by the addition of its visual boundary ∂X which may be
defined as the space of all equivalence classes of geodesic rays in X , where a pair of rays α, β : [0,∞)→ X
are equivalent if they are asymptotic, i.e., if {d (α (t) , β (t) | t ∈ [0,∞))} is bounded above. When G acts
geometrically on X we call ∂X a boundary for G. Clearly, the action of G on X induces an action by G
on ∂X . An alternative, but equivalent, approach to defining the visual boundary declares ∂X to be the
collection of all geodesic rays emanating from a fixed base point x0 ∈ X . This simplifies matters since no
equivalence relation is needed; we will use the latter approach when convenient. We put the cone topology
on ∂X which roughly says that two geodesic rays are close in ∂X if they track together for a long time before
they diverge. More details on CAT(0) spaces and their boundaries, including a discussion of the topology
on X = X ∪ ∂X , will be presented as necessary. In addition, the reader may wish to consult [3].

Nonuniqueness of the boundary of a CAT(0) group G is possible since G can act on more than one CAT(0)
space. When the action by G is free, covering space techniques and other topological tools allowed Bestvina
[1] to show that all boundaries of G are shape equivalent. Later, Ontaneda [18] extended that obsevation
to include all CAT(0) groups. In those cases where all CAT(0) boundaries of a given G are homeomorphic
we say that G is rigid. Clearly Bestvina’s Cell-like Equivalence Question has a positive answer for all such
groups. A positive answer has also been given for groups which split as products with infinite factors [16].

When a group G acts nicely on multiple spaces, a key relationship between those spaces is captured by
the notion of ‘quasi-isometry’. A function f : X → X ′ between metric spaces is called a quasi-isometric
embedding (QIE) if there exist positive constants λ and ε such that for all x, y ∈ X

1

λ
d (x, y)− ε ≤ d′ (f (x) , f (y)) ≤ λd (x, y) + ε.

If, in addition, there exists a C > 0 such that for every z ∈ X ′, there is some x ∈ X such that d′ (f (x) , z) ≤ C,
then we call f a quasi-isometry and declare X and X ′ to be quasi-isometric.
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By choosing a finite generating set and endowing it with the corresponding word metric, any finitely
generated group can be viewed as a metric space. It follows from the Švarc-Milnor Lemma that, up to
quasi-isometry, this metric space is independent of the choice of generating set; in fact if X is any length
space on which G acts geometrically, then for any base point x0 ∈ X the orbit map G→ X given by g 7→ gx0

is a quasi-isometry [23, 14].
Given a subset A of a CAT(0) space X , define the limset of A to be the collection of all limit points of A

lying in ∂X , in other words, limsetA = A −X where the closure is taken in X. Clearly any such limset is
a closed subset of ∂X . If G acts on a proper CAT(0) space properly discontinuously by isometries, then we
denote by limset(X,G) the limset of the image of G under the orbit map. This provides a compactification
G ∪ limset(X,G) for G. Note that if this action is geometric then limset(X,G) = ∂X . If G acts properly
discontinuously on two proper CAT(0) spaces X and Y , then it is natural to compare the two compactifi-
cations ∂X and ∂Y . If the identity map on G extends continuously to a map G ∪ ∂X → G ∪ ∂Y , then the
restriction ∂X → ∂Y is called a limset map. The existence of such a map is very strong. It means that
whenever an unbounded sequence of group elements converges in one compactification, it also converges in
the other (see Lemma 3.2). Two limsets are considered equivalent if there is a limset map between them
which is a homeomorphism.

We call G strongly rigid if whenever G acts geometrically on proper CAT(0) spaces X and Y , the bound-
aries ∂X an ∂Y are equivalent in the above sense. Examples of such groups include free abelian groups,
δ-hyperbolic CAT(0) groups (hereafter referred to as negatively curved groups), and others [12, 11]. Clearly
Bestvina’s Equivariant Cell-like Equvalence Question has a positive answer for all strongly rigid groups.

If G acts properly discontinuously by isometries on X , then so does any subgroup H ≤ G. If H has
infinite index, then it does not act geometrically, since cocompactness has been lost. Moreover, even when
H is finitely generated, it is not always the case that H →֒ G (or equivalently h 7→ hx0) is a QIE. An object
of special interest to us will be limsetH for certain subgroups H of CAT(0) groups.

Beyond the above mentioned examples of strongly rigid groups, the question of when two boundaries of
a CAT(0) group are equivalent has been studied by Croke and Kleiner for a class of groups including graph
manifold groups [6], and by Hosaka in more generality [10].

1.3. The standard strategy and our Main Conjecture. Suppose G acts geometrically on a pair of
proper CAT(0) spaces X1 and X2. Then the l2-metric d =

√

d21 + d22 makes X1 × X2 a proper CAT(0)
space on which G × G acts geometrically via the product action. It is a standard fact that ∂ (X1 ×X2) is
homeomorphic to the topological join of the original boundaries [3, Example II.8.11(6)]. To see this, first
choose a base point (x1, x2) ∈ X1 ×X2 and define slopes of segments and rays in X1 ×X2 based at (x1, x2)
in the obvious way. A ray α may be projected into X1 and X2 to obtain a pair of rays α1 and α2 —except
in those cases where the slope is 0 or ∞ which produce an αi that is constant. Assign to each α three
coordinates: α1, α2, and the slope of α. Keeping in mind the exceptional cases where α has slope 0 or ∞,
we get a correspondence between ∂ (X1 ×X2) and the quotient space

∂X1 ∗ ∂X2 = ∂X1 × ∂X2 × [0,∞] / ∼
where (α1, α2, 0) ∼ (α1, α

′
2, 0) for all α2, α

′
2 ∈ ∂X2 and (α1, α2,∞) ∼ (α′

1, α2,∞) for all α1, α
′
1 ∈ ∂X2. This

join contains a preferred copy of ∂X1 (all points with slope 0) and a preferred copy of ∂X2 (all points with
slope ∞) which may be identified with the boundaries of convex subspaces X1 × {x2} and {x1} × X2. A
more thorough development of the the notion of slope may be found in Section 4.

Now consider the diagonal subgroup G∆ = {(g, g) | g ∈ G} of G×G. Clearly, G∆ is isomorphic to G and
acts on X1 ×X2 properly by isometries. For g ∈ G, we will denote g∆ = (g, g). In Section 4.1, we make the
following observations:

(i) The map g 7−→ g∆ (x1, x2) is a QIE of G in X1 ×X2, and
(ii) limsetG∆ is a closed subset of ∂X1 ∗ ∂X2 that misses the preferred copies of ∂X1 and ∂X2.

We refer to limsetG∆ as a schmear of ∂X1 and ∂X2. Item (i) is used in proving (ii) and offers hope that Λ
resembles a boundary for G. Item (ii) allows us to restrict the projections of ∂X1 × ∂X2 × (0,∞) onto ∂X1

and ∂X2 to obtain a pair of G-equivariant schmear maps φ1 : Λ→ ∂X1 and φ2 : Λ→ ∂X2.
Our standard strategy is summed up by the following:
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Main Conjecture. Suppose G acts geometrically on a pair of CAT(0) spaces X1 and X2. Then both
schmear maps are cell-like; hence ∂X1 and ∂X2 are G-equivariantly cell-like equivalent.

1.4. The main results. As noted earlier, we are not yet able to make the above program work in full
generality. In this paper, we provide positive evidence for our approach by presenting an array of interesting
examples and proving the conjecture for a specific class of groups.

One simple, but revealing, example involves the negatively curved group F2 which has boundary home-
omorphic to a Cantor set C. By strong rigidity for δ-hyperbolic groups even the Equivariant Bestvina
Question is not in doubt here; one might even expect any schmear for F2 to be just another copy of C. On
the contrary, by choosing different CAT(0) spaces on which F2 acts, the resulting schmear is often not a
Cantor set, but rather, is homeomorphic to C × [0, 1]. In those cases, all point preimages are copies of [0, 1].
See Example 2.4. Indeed we can compute schmears of CAT(0) boundaries of negatively curved groups by
applying recent work of Link [13] (see Corollary 4).

In a rather different way the group F2 × Z admits an interesting schmear. Here we can construct a
nontrivial schmear for a pair of boundaries where the two boundaries are the boundary of the same space,
showing that the schmear depends not only on the underlying spaces themselves, but also on the action
chosen. In [2] Bowers and Ruane utilized a standard and a twisted action of F2×Z on T ×R, where T is the
standard valence four tree with edge lengths equal to 1, to show that this group is rigid but not strongly rigid.
Inserting those actions into our program produces a pair of schmear maps for which some point preimages
are intervals and the rest are singletons. In some sense the schmear and its corresponding maps provide a
missing link between the standard and twisted action. See Section 2.2.

Our first theorem proves the existence of schmears. Note that the statement applies to a broader class of
group actions on CAT(0) spaces than simply geometric actions.

Theorem 1. Assume an infinite group G acts on CAT(0) spaces X1 and X2 such that G→ X1 and G→ X2

are QIEs. Then there exists an action of G by isometries on a third CAT(0) space X such that G → X is
a QIE and there are natural limset maps limsetG → ∂Xi. If the action of G on both Xi is by semi-simple
isometries, then so is the action on X.

It follows from [2] that Bestvina’s Equivariant Cell-Like Equivalence Question has a positive answer for
products of negatively curved groups with free abelian groups. They prove that any pair of boundaries is
equivariantly homeomorphic. Since this equivariant homeomorphism does not come from the orbit map, this
next theorem, which verifies the Main Conjecture for a particular subclass of such groups, is stronger.

Theorem 2. Assume G = Fm × Z
d acts geometrically on two CAT(0) spaces X1 and X2 and Λ be the

schmear of the pair ∂X1,∂X2. Then point preimages for the schmear maps Λ→ ∂Xi are topological cells.

In other words, regardless of the CAT(0) spaces and geometric actions chosen, point preimages under the
schmear maps are homeomorphic to cells of various dimensions. This is somewhat surprising when compared
to recent work by Staley [22] who uses these same groups to realize some exotic limsets for images of geodesic
rays under equivariant quasi-isometries. The lesson learned from our theorem seems to be that “taking the
whole schmear” has a tendency to paint over oddities in the local behavior of limsets. Close examination of
the examples and results presented here will help make sense of this last comment.

Our final result addresses a natural question to this approach. We have constructed a single intermediate
compactum Z admitting an action by the group G in question by letting Z be the limset of G under some
non-cocompact action. One may ask “Can Z be realized as a boundary of G?” The answer is “No”. If
we seek to find equivariant cell-like equivalences between two boundaries of G by taking the extensions of
QIEs, then we must pass through limsets of non-cocompact actions which cannot themselves be realized as
boundaries of the group in question.

Theorem 3. Let F2 × Z act geometrically on two CAT(0) spaces X and Y . If there is a limset map
∂X → ∂Y , then that limset map is a homeomorphism.

Remark 1.5. If H ≤ G is a finite index subgroup of a group G, then information about G gives information
about H – if G is CAT(0), then so is H and every boundary of G is also a boundary of H . The reverse
direction is not understood. It is currently an open question whether H being CAT(0) implies that G is also
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CAT(0), and there are cases where H and G are both CAT(0), but G has fewer boundaries than H . One nice
aspect of the approach taken in this paper is that all of our results which apply to a given CAT(0) group H
are immediately valid for any CAT(0) group containing H as a finite index subgroup (see Proposition 3.12).

Acknowledgements. We thank Kim Ruane.

2. Examples

In this section we provide concrete examples of the interesting end behavior of some simple CAT(0) groups
as well as schmears.

2.1. Boundaries of F2 × Z. It was first observed by Bowers and Ruane in [2] that in contrast to the
situation for negatively curved and free abelian groups, equivariant quasi-isometries need not extend to
homeomorphisms of boundaries. This is true even for F2 × Z, which is perhaps the simplest example of
a CAT(0) group which is neither negatively curved nor free abelian. In this section we provide several
variations on this example.

The main theorem of [2] says that whenever F2 × Z acts geometrically on a CAT(0) space X , ∂X is
homeomorphic to the suspension of the Cantor set. By the Flat Torus Theorem, one can assume that X
splits as a product Y × R where Z is generated by a translation in the R-coordinate and the action of F2

projects to a geometric action on Y . The suspension points of ∂X are called poles. The subspace ∂Y , which
is homeomorphic to the Cantor set, is called the equator. The suspension arcs are called longitudes.

Typically longitudes are parameterized using angles. For us it will be convenient to parameterize them in
terms of slopes:

∂X = ∂Y × [−∞,∞]/ ∼
where ∼ collapses the sets Y × {∞} and Y × {−∞} to the poles. Take a geodesic ray α based at a point
(y0, 0) ∈ Y × R which does not go to a pole. Let αY be its projection onto Y × {0}; αY (∞) is a point of
the equator. Then α lives in the half-plane F = αY × R and has a slope M(α) defined in terms of these
coordinates. The boundary of F is the longitude containing α(∞). Given ζ ∈ ∂X , we will denote by l(ζ)
the longitude containing ζ and by l(ζ,M) the point of l(ζ) corresponding to a ray of slope M . So l(ζ,±∞)
are the poles and l(ζ, 0) lies in the equator.

Example 2.1 (Twisting). Let a and b generate F2 and c denote the generator of Z. Let Γ denote the Cayley
graph of F2, an infinite 4-valent tree with v ∈ Γ a vertex. Then we have a natural product action of F2 × Z

on X = Γ×R by letting c translate R one unit. We will denote the action of an element g on a point x ∈ X
by g · x. In coordinates, we have

a · (v, t) = (av, t),

b · (v, t) = (bv, t),

and c · (v, t) = (v, t+ 1).

Now we consider another action on the same space by “twisting” one of the generators. Specifically, we
change the action by letting the action of b on the R-coordinate be the same translation as c. We denote the
resulting action by ∗. So we now have

a ∗ (v, t) = (av, t),

b ∗ (v, t) = (bv, t+ 1),

and c ∗ (v, t) = (v, t+ 1).

Now if the identity map G → G is to extend to a continuous function between these two boundaries, it
must be the case that if a sequnce of group elements converges to a point of ∂X in the first action, then it
also converges to a point of ∂X in the second action. We claim that this is not the case.

Our first observation is that in Γ, the sequences (anv) and (anbn
2

v) converge to the same point of ∂Γ; we

will call this point a∞. In X it follows that the sequences (an · x) and (anbn
2 · x) have their limit point in

l(a∞). In fact they converge to the same point – since they both only act in the Γ-coordinate, they both
converge to l(a∞, 0).
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Now consider the second action G ∗X . The sequence (an ∗ x0) also converges to l(a∞, 0). But this time

(anbn
2 ∗ x0) converges to a ray of slope 1. For, the slope of the line segment [x0, a

nbn
2 ∗ x0] is

n2

n+ n2
→ 1.

This means that the sequences (an) and (anbn
2

) converge to the same boundary point in one action and two
different points in the other action. So there is no limset map ∂X → ∂X which respects the group actions.

Given ζ ∈ ∂X , let Λ(ζ) denote the subset of ∂X consisting of points ζ′ for which there is a sequence (gn)
such that gn · x→ ζ and gn ∗ x→ ζ′. Then Λ(a∞) is an interval in the longitude of a∞ stretching between
l(a∞, 1) and l(a∞,−1). The sequences in F2 converging to a∞ in the action G · X are those of the form
aknwn where kn → ∞. But under the action G ∗X , such sequences have varying slope depending on the
asymptotic ratio of b’s to a’s.

Finally we note that the image of the map F2 → X under the twisted action is not quasi-convex, even
though it is a QIE. To see that the F2-orbit of a point is not quasi-convex under ∗, observe that the geodesic
[bn ∗ x0, ab

n ∗ x0] strays farther and farther from x0 as n gets large. But it is a QIE because

l(w) ≤ dX(x0, w ∗ x0) ≤
√
2l(w)

where w ∈ F2 and l denotes wordlength in F2 with respect to the generating set {a, b}. This stands in contrast
to the situation for δ-hyperbolic spaces, where the concepts of quasi-convexity and QIE are equiavlent [3,
Corollary III.Γ.3.6].

Example 2.2 (Stretching). Here is a different type of phenomenon. Let Γ′ be a homeomorphic copy of Γ
in which the edges corresponding to a have length 1 (as before) and edges corresponding to b have length 2.
Let X ′ = Γ′ × R and G act on X ′ via the product action. We will denote this action by ⊙. Let x′

0 ∈ X ′

be the preferred basepoint (y′0, 0) where y′0 ∈ Γ′ is the vertex corresponding to y0. Since F2 acts only in the
Γ′-coordinate, the quasi-isometry F2 · x0 → F2 ⊙ x′

0 extends to a map between the equators. However the
quasi-isometry

(F2 × Z) · x0 → (F2 × Z)⊙ x′
0

does not extend. In X , the sequences (ancn · x0) and (anbn
2

cn
2 · x0) both converge to l(a∞, 1). In X ′,

(ancn⊙x′
0) also converges to l(a∞, 1), but (anbn

2

cn
2⊙x0) converges to l(a∞, 1/2). With ζ = l(a∞, 1), define

Λ′(ζ) as before, but replacing G ∗X with G⊙X ′. Then again we see that Λ′(ζ) is an interval in ∂X ′.

In fact, it follows from Theorem 2 that whenever F2×Z acts geometrically on two CAT(0) spaces X and
X ′ and ζ ∈ ∂X , then Λ(ζ) is either a point or an interval. In the above examples, one moves between the
endpoints of this interval by controlling the ratio of b’s to a’s in the sequence (gn). Our final example shows
that moving between the endpoints of this interval need not be so simple in general.

Example 2.3 (Diamonds). Begin with the diamond in E
2 with vertices {(1, 0), (0,−1), (−1, 0), (0, 1)} (that

is, the convex hull of these four points). Let Q be the space formed by gluing opposite vertices: (0, 1) to
(0,−1) and (1, 0) to (−1, 0). Then π1(Q) = F2. Its universal cover Q consists of diamonds glued vertex to
vertex with its fundamental group, F2, acting geometrically by deck transformations. The generators of F2

are represented by the 2 geodesic loops based at (0, 0) of length 2 which pass through the glued points.
We will use the symbol ⋄ for our action. Let q0 ∈ Q be a preimage of the origin in Q. In this space, a and

b both translate q0 a distance of 2. But the geodesic [q0, ab ⋄ q0] is shorter than expected. More generally:

d(q0, (ab)
nq0) = (2n− 1)

√
2 + 2 ∼ n2

√
2

Let G act on X ′′ = Q × R via the corresponding product action, and let x′′
0 = (q0, 0). In G · X , the

sequences (ancn · x0), (anbn
2

cn
2 · x0), and (an(ab)n

2

c2n
2 · x0) all converge to l(a∞, 1). But in X ′′, the

sequences (ancn ⋄ x′′
0 ) and (anbn

2

cn
2 ⋄ x′′

0 ) converge to l(a∞, 1/2) whereas the sequence (an(ab)n
2

c2n
2 ⋄ x′′

0 )

converges to l(a∞, 1/
√
2). Again Λ(a∞) ⊂ ∂X ′′ is an interval. But we do not move between the endpoints

by controlling the ratio of a’s to b’s – we move by controlling the number of subwords of the form ab which
appear. In other words, it is by “shuffling” the a’s and b’s that we maximize slope.
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Figure 5. Q

2.2. Examples of Schmears. Assume G acts geometrically on two CAT(0) spaces X1 and X2 with base-
points x1 ∈ X1 and x2 ∈ X2. Take X = X1 ×X2 and G∆ to be the “diagonal subgroup” described above.
Given a group element g ∈ G, we denote the slope of the line segment [x0, g

∆x0] in this splitting by M(g).
Then ∂X is the join of ∂X1 with ∂X2. Λ = limset(X,G∆) lives in the interiors of the join arcs. The schmear
maps Λ→ ∂Xi come from collapsing the join arcs onto ∂Xi.

Interestingly, even though all boundaries of a negatively curved group G are equivalent and the schmears
of these boundaries are typically homeomorphic to ∂G× I for some interval I, these schmears need not be
equivalent themselves. In fact there need not exist limset maps going in either direction, as exhibited here:

Example 2.4 (Two Schmears for Boundaries of F2). Using the notation given in Example 2.2 (the stretching
example), take G = F2, X1 = Γ, and X2 = Γ′. Then the schmear of the pair ∂X1, ∂X2 is Λ⊙ = ∂F2 × [1, 2].
For instance,

lim
n→∞

M⊙(a
n) = 1

whereas

lim
n→∞

M⊙(a
nbn

2

) = 2,

even though in F2 ∪ ∂F2, both sequences converge to a∞. The fact that F2 is strongly rigid means that the
maps Λ⊙ → ∂Xi simply collapse the interval factors.

Now take G = F2 and X1 = Γ but X2 = Q from Example 2.3 (the diamonds example). Here the schmear

is Λ⋄ = ∂F2 × [1/
√
2, 1/2]. It is homeomorphic to Λ⊙, but not equivalent to it. In fact there are no limset

maps going in either direction. For, in G∆ ∪ Λ⊙, the sequences (an)∆ and (anbn
2

)∆ converge to different
points, whereas in G∆ ∪ Λ⋄ they converge to the same point:

lim
n→∞

M⋄(a
n) = lim

n→∞
M⋄(a

nbn
2

) =
1

2
.

On the other hand, the pair of sequences (an+n2

bn
2

)∆ and (an(ab)n
2

)∆ converge to different points of Λ⋄;

the first has slope 1/2, the second 1/
√
2. But they converge to the same point of Λ⊙, since they are written

using the exact same letters and shuffling of letters does not change M⊙.

There is a bound on the Lebesgue convering dimension of a schmear in terms of the covering dimension
of a boundary. Extending work of Bestvina [1], Geoghegan and Ontaneda have proven that the dimension
of a group boundary is one less than the cohomological dimension of the group [9]. So if the cohomological
dimension of a CAT(0) group G is d+ 1 (so that all of its boundaries have dimension d), then whenever Λ
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is a schmear for a pair of boundaries ∂X , ∂Y , it lives in the space ∂X × ∂Y × (0,∞), which has dimension
bounded by 2d+ 1.

The schmear maps φi : Λ → ∂Xi can be taken to be the projection maps to the respective coordinates.
So point preimages live in subspaces of the form

{ζ1} × ∂X2 × (0,∞)(4)

which has dimension d+ 1. For F2 × Z, the bound on the dimension of the schmear is 3, and the preimage
of every point has dimension no more than 2. The schmears of the pairs of boundaries for F2 × Z described
in the previous subsection all have dimension 2. The following schmear has full dimension.

Example 2.5 (A 3-Dimensional Schmear for Boundaries of F2 × Z). Let · denote the untwisted product
action of F2×Z on X1 = Γ×R first described in Example 2.1 with x1 ∈ X1 the preferred basepoint. Let also
⋄ denote the action of F2 on Q first described in Example 2.3. Take X2 = Q×R, v = (0, 0), and x2 = (v, 0)
but with the following action by F2 × Z obtained by adding a twist to the product action:

a ⋆ (v, t) = (a ⋄ v, t),
b ⋆ (v, t) = (b ⋄ v, t+ 1),

and c ⋆ (v, t) = (v, t+ 1).

Here are four sequences which converge to a∞ ∈ ∂X1 but which “fan out” in both the ∂X2 direction and
the (0,∞) direction of the ambient space containing the schmear.

(gn) limn→∞(gn ⋆ x2) limn→∞ M(gn)

xn = anb−n2

l(a∞,− 1
2 )

√
5

yn = anbn
2

l(a∞, 1
2 )

√
5

x′
n = an(ab−1)n

2

l
(

a∞,− 1√
2

)

3

y′n = an(ab)n
2

l
(

a∞, 1√
2

)

3

It follows from Theorem 2 that the preimage of a∞ under the schmear map Λ → ∂X1 contains the convex
hull of these four points and is a 2-disk D2. The entire schmear is homeomorphic to the suspension of C×D2

3. Preliminaries

A compactification of a Hausdorff space X is a topological embedding X →֒ X into a compact Hausdorff
space whose image is dense. We will refer to X −X as a limset for X . Let Λ,Λ′ be limsets of a noncompact
space X . We write Λ ≥ Λ′ if the identity function X → X extends continuously to a map X ∪Λ→ X ∪ Λ′.
The restriction of this map to Λ → Λ′ is called a limset map. As mentioned above, if this map is a
homeomorphism, then Λ and Λ′ are considered equivalent. Let X be a noncompact space and L(X) denote
the collection of equivalence classes of limsets.

Remark 3.1. The reader should note that homeomorphic or even isometric limsets may represent different
elements of L(X). When we refer to Λ as an element of L(X), a particular compactification (informally, the
way Λ is glued to X) is assumed.

The following statements are easily verified.

Lemma 3.2. Let X be a noncompact Hausdorff space X. For Λ,Λ′ ∈ L(X), Λ ≥ Λ′ iff the following rule
holds: Given any sequence (xn) ⊂ X converging to a point of Λ, (xn) also converges to a point of Λ′.

Lemma 3.3. Let X be a noncompact Hausdorff space. Then

(1) Limset maps between elements of L(X) are unique and surjective (when they exist)

(2) ≥ is a partial ordering on L(X)

(3) Every diagram of limset maps commutes
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Remark 3.4. If X is a noncompact Hausdorff space, then L(X) has a unique maximum, namely βX −X
where βX is the Stone-Čech compactification of X .

Lemma 3.5. Let Y ⊂ X be a subspace, Λ ≥ Λ′ be limsets of X. Let Λ(Y ) = Y ∩ Λ and Λ′(Y ) = Y ∩ Λ′.
Then Λ(Y ) ≥ Λ′(Y ) via the restriction of the limset map Λ→ Λ′ to Λ(Y ).

3.1. Notes on CAT(0) Spaces and Groups. Let (X, d) be a CAT(0) space. Given two geodesics α, β :
[0, 1]→ X parameterized to have constant speed, the distance metric satisfies

d
(

α(t), β(t)
)

≤ td
(

α(1), β(1)
)

+ (1− t)d
(

α(0), β(0)
)

.

for all t ∈ [0, 1]. This property is known as convexity of the metric.
For the most part we will consider the visual boundary as the set of all geodesic rays emanating from

a common basepoint x0 ∈ X . With the cone topology, X = X ∪ ∂X is a compactification of X . X can
be identified with the space of geodesic segments and rays emanating from x0 parameterized to have unit
speed. Then the topology on X is the same as the compact-open topology on this function space.

Here is how we can tell if a sequence of points (xn) in X converges to a point ζ ∈ ∂X . Let γn and α be
the geodesics based at x0 determining xn and ζ respectively, and δ > 0 be arbitrary. Then xn → ζ iff for any
K ≥ 0, there is an N ≥ 0 such that for all n ≥ N , either xn ∈ ∂X or d(x0, xn) ≥ N , and d(α(K), γn(K)) ≤ δ.
Convexity of the metric then guarantees that γn → α uniformly on compact subsets of R.

Let G be a group acting on a proper CAT(0) space X by isometries. The translation length of g ∈ G is
defined by |g| = infx∈X d(x, gx). If this value is realized then we call g semi-simple. Proposition II.6.10 in
[3] tells us that whenever a group acts geometrically on a proper CAT(0) space X , all of its elements are
semi-simple. The set of all points on which this minimum is attained is called the minset of g:

MinX(g) = Min(g) =
{

x ∈ X
∣

∣d(x, gx) = |g|
}

.

If |g| > 0, then g is called hyperbolic. Whenever x is in the minset of a hyperbolic element g, then there is
a geodesic line A passing through x which is g invariant. This line is called an axis of g. For a subgroup
H ≤ G of isometries of a CAT(0) space X the minset of H is defined as

MinX(H) = Min(H) =
⋂

g∈H

Min(g).

By [3, Proposition II.6.2], minsets of isometries and minsets of groups of isometries are always closed and
convex. If the ambient space is complete (as we will always assume), then minsets are themselves complete
CAT(0) spaces.

A key ingredient in Theorem 2 is the Flat Torus Theorem [3, Theorem II.7.1]. Recall that an isometry
g of a product X1 × X2 is said to respect the product decomposition if g can be written in coordinates as
g = (g1, g2) where g1 and g2 are isometries of X1 and X2.

Theorem (Flat Torus Theorem). Let A = Z
d act properly discontinuously by semi-simple isometries on a

proper CAT(0) space X. Then:

(1) Min(A) is nonempty and splits as a product Y × E
d.

(2) Every c ∈ A leaves Min(A) invariant and respects the product decomposition; c acts as the identity
on Y and as a translation on E

d.

(3) The quotient of each flat {y} × E
d by the action of A is an n-torus.

(4) If an isometry of X normalizes A, then it leaves Min(A) invariant and preserves the product decom-
position.

Another fact about minsets which will come in handy is [3, Proposition II.6.9]:
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Proposition 3.6. Let X1 and X2 be proper CAT(0) spaces and gi be isometries of Xi, and consider the
isometry g = (g1, g2) of X = X1 ×X2. Then

MinX g = MinX1
(g1)×MinX2

(g2)

In particular, g is semi-simple iff both g1 and g2 are.

3.2. A Category of CAT(0) Limsets. If a group G acts by isometries on a CAT(0) space X in such a way
that G → X is a QIE, we will say that G acts pseudo-geometrically on X . The key way in which psuedo-
geometric actions arise in this paper is as follows: Whenever a group G acts geometrically on a CAT(0)
space X and H ≤ G is a quasi-isometrically embedded subgroup, then the action of H as a subgroup is
pseudo-geometric.

We denote by LCAT(0)(G) the subcollection of L(G) consisting of limsets which come from pseudo-
geometric actions. Formally,

LCAT(0)(G) =
{

limset(X,G)
∣

∣G acts pseudo-geometrically on a CAT(0) space X
}

/ ∼
where ∼ denotes the equivalence relation described above.

Remark 3.7. By Theorem 1, LCAT(0)(G) is a directed poset which means that it has the structure of an
inverse system.

Example 3.8 (Limset Maps for Zd). Whenever Zd acts properly discontinuously by semi-simple isometries
on a CAT(0) space X , the Flat Torus Theorem guarantees that it acts cocompactly on the convex hull of the
orbit of a point. The point can be chosen so that this convex hull is E

d, and limset(X,Zd) = ∂Ed = Sd−1.
It follows that all limsets in LCAT(0)(Zd) which come from semi-simple isometries are equivalent.

This line of reasoning also gives

Corollary 3.9 (Corollary to the Flat Torus Theorem). Let Zd act by semi-simple isometries on two CAT(0)
spaces X1 and X2. Then there is a limset map limset(X1,Z

d)→ limset(X2,Z
d) which is a homeomorphism.

Lemma 3.10. Let Λ ≥ Λ′ ∈ LCAT(0)(G) and H ≤ G be quasi-isometrically embedded subgroup. Denote by
Λ(H),Λ′(H) the corresponding subsets which are the limsets of H. Then the limset map φ : Λ→ Λ′ restricts
to a limset map φH : Λ(H)→ Λ′(H).

In general, the preimage of Λ′(H) under the unrestricted map φ can be larger than Λ(H).

Example 3.11. Consider Example 2.1. We have F2 acting on Γ×R in two ways; letX1 denote Γ×R with the
twisted action, X2 = Γ with the standard action, and H = 〈a〉. There is a limset map φ : limset(X1,F2)→
limset(X2,F2). But limset(X1, H) is just the two points l({a±∞}, 0) whereas φ−1(limset(X2, H)) consists of
two intervals.

All CAT(0) boundaries of F2 are equivalent in LCAT(0)(F2), since it is negatively curved. They are
homeomorphic to the Cantor set C. But unless the actions chosen on the spaces X1 and X2 are very close,
the schmears constructed will be homeomorphic to C × [0, 1]. But as mentioned in Example 2.4, these
schmears need not themselves even be comparable in LCAT(0)(F2).

The following proposition tells us that all of the major results in this paper hold if they hold for a subgroup
of finite index.

Proposition 3.12. Let H be a finite index subgroup of a CAT(0) group G. Assume G acts pseudo-
geometrically on CAT(0) spaces X and Y with limsets Λ and Λ′ respectively. Then Λ = limset(X,H),
Λ′ = limset(Y,H), and Λ ≥ Λ′ in LCAT(0)(G) iff Λ ≥ Λ′ in LCAT(0)(H). If so, then the limset map Λ→ Λ′

which comes from G is the same as that which comes from H.

Proof. Choose basepoints x ∈ X and y ∈ Y . Since H has finite index in G, inclusion H → G is a quasi-
isometry, and hence H → X and H → Y are QIEs. Let K ≥ 0 be a constant such that given g ∈ G,
there is an h ∈ H such that dX(gx, hx) and dY (gy, hy) are both bounded by K. Then in particular, if
(gn) ⊂ G converges to a point of ∂X , there is a sequence (hn) ⊂ H such that dX(gnx, hnx) ≤ K, so that
(hnx) converges to the same point of ∂X . Since dY (gny, hny) ≤ K as well, we know that the sequence (gny)
converges iff (hny) converges, and if they do, then they converge to the same point of ∂Y . �
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4. The Schmear

We begin this section with a more formal treatment of slopes in products of CAT(0) spaces. Let X =
X1 × X2 be a product of two proper CAT(0) spaces. A path is a map of an interval I ⊂ R into a space,
where I may either be a closed interval [0, D] or a half-open interval [0,∞). Given a path α : I → X , we
will write α = (α1, α2) to mean that for every t in the domain of α, α(t) =

(

α1(t), α2(t)
)

. For us a path α
will be called a geodesic if there is a number σ ≥ 0 such that for every s 6= t in the domain of α, we have

d
(

α(s), α(t)
)

|s− t| = σ.

σ is called the speed of α. This may mean that α is a geodesic segment (a geodesic with domain of the form
[0, D]), a geodesic ray (a geodesic with domain of the form [0,∞)), or even perhaps a constant geodesic (a
geodesic whose image is a point). If σ = 1, we say that the geodesic has unit speed.

Let α = (α1, α2) be a nonconstant geodesic in X . We define the slope of α by

M(α) =
d2
(

α2(s), α2(t)
)

d1
(

α1(s), α1(t)
)

for some s 6= t in the domain of α. By the following lemma M(α) is well-defined and independent of choice
of parameterization. As before, we allow ∞ as a value for M.

Lemma 4.1. Let α = (α1, α2) be a path in X1 ×X2. Then α is a geodesic iff α1 and α2 are. If σ1 and σ2

are the speeds of α1 and α2, then M(α) = σ2/σ1 and the speed of α is
√

σ2
1 + σ2

2 .

Proof. The fact that α is a geodesic iff each αi is [3, Proposition I.5.3(3)]. Once this is established, we know
that every geodesic α lives in a subspace isometric to a flat quadrant or square, where the equations relating
speeds and slope are easily verified. �

In the current setup if α1 is constant (its image is just a point), then it is natural to say that M(α) =∞.
If we fix a basepoint x0 ∈ X and identify points of X ∪ ∂X with the collection of unit speed geodesics
emanating from x0, then this gives a function

M : (X − {x0}) ∪ ∂X → [0,∞].

Proposition 4.2. M is continuous.

Proof. Fix ǫ > 0 and let πǫ denote the geodesic retraction based at x0

X ∪ ∂X −Bǫ(x0)→ Sǫ(x0)

where Sǫ denotes the sphere of radius ǫ; this is a continuous function by convexity of the metric. Let ρi
denote coordinate projection X → Xi, which is also continuous. Finally, let δi(x) = di(ρi(xi), ρi(x0)). Then
on X ∪ ∂X −Bǫ(x0),

M =
δ2 ◦ πǫ

δ1 ◦ πǫ

.

Therefore M is continuous on X ∪ ∂X −Bǫ(x0) for every ǫ > 0. �

If G acts properly discontinuously on X , then for g ∈ G not stabilizing x0, we may define M(g) =
M([x0, gx0]). Since the stabilizer of x0 is finite and we are interested in what happens at infinity, we will
make the arbitrary definition M(g) = 0 when gx0 = x0. M extends continuously to Λ = limset(X,G).

4.1. The Construction. This subsection completes the proof of Theorem 1. Assume that G acts pseudo-
geometrically on two CAT(0) spacesX1 and X2. Consider the inclusion G →֒ G×G as the diagonal subgroup
G∆ = {(g, g)|g ∈ G}. We define

Λ = Λ(G∆, X1, X2) = limset(X,G∆).

Choose basepoints xi ∈ Xi and set x = (x1, x2) ∈ X = X1 ×X2.

Lemma 4.3. The map G∆ → X is a QIE. If in addition the action of G on each Xi is semi-simple, then
so is the action of G∆ on X.
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Proof. Since G×G acts on X geometricaly, we know that G×G→ X is a QIE by the Švarc-Milnor Lemma.
To see that G∆ → X is a QIE it suffices to check that the isomorphic embedding G→ G×G which takes G
to G∆ is a QIE. Let l be a length metric on G with respect to some finite generating set S. Let S1 = S ×{1}
and S2 = {1} × S which generate G× {1} and {1} ×G respectively. Then S1 ∪ S2 is a finite generating set
for G×G inducing the length metric l′(g, h) = l(g) + l(h). In particular, l′(g, g) = 2l(g). To get the second
statement, simply apply Proposition 3.6. �

Assume G acts pseudo-geometrically on CAT(0) spaces X1 and X2 and consider the action of G∆ on
X = X1 ×X2 with Λ = limset(X,G∆).

Lemma 4.4. Λ misses ∂X1 ∪ ∂X2.

Proof. We use the fact that the map Gx1 → Gx2 is a QIE to prove that M(Λ) is bounded away from 0 and
∞. Let λ ≥ 1 and ǫ ≥ 0 be constants such that for g ∈ G,

1

λ
d1(x1, gx1)− ǫ ≤ d2(x2, gx2) ≤ λd1(x1, gx1) + ǫ.

Then whenever we have a sequence (gn) ⊂ G such that g∆n x → ζ ∈ ∂X , it follows that d1(x1, gnx1) → ∞.
So

1
λ
d1(x1, gnx1)− ǫ

d1(x1, gnx1)
≤ M(g∆n ) ≤ λd1(x1, gnx1) + ǫ

d1(x1, gnx1)
.

Letting n→∞, we get
1

λ
≤ M(ζ) ≤ λ.

�

Consider the maps ei : ∂X − (∂X1 ∪ ∂X2) → ∂Xi which collapse the join arcs. Specifically, take a ray
α = (α1, α2) in X based at x. To say that α(∞) lies interior to a join arc means that M(α) is not 0 or ∞.
Then ei(α(∞)) = αi(∞). This extends the projection map X → Xi to an (open) subset of ∂X . We take
φi = ei|Λ. The following lemma completes the proof of Theorem 1:

Lemma 4.5. φ1 and φ2 are limset maps.

Proof. Assume we have (gn) ⊂ G such that g∆n x → ζ ∈ ∂X . Let α = (α1, α2) be the unit speed geodesic
ray with α(∞) = ζ. Then φi(ζ) = αi(∞). Let γn = (γ1

n, γ
2
n) be a unit speed parameterization of [x, g∆n x].

Since projections do not increase distance, we have for all t ≥ 0 and n large enough so that d(x, g∆n x) ≥ t,
d
(

γi
n(t), αi(t)

)

≤ d
(

γn(t), α(t)
)

. Therefore, γn(t)→ α(t) implies that γi
n(t)→ αi(t). �

Recent work by Link on lattices in certain CAT(0) groups allows us to understand schmears of negatively
curved groups [13]. Although Link’s work applies to a wider class of CAT(0) groups, the following argument
requires strong rigidity, which is is only known for a handful of types of groups.

Corollary 4. Let G be a negatively curved group acting gometrically on two CAT(0) spaces X1 and X2,
and Λ be the schmear of the (equivalent) pair ∂X1,∂X2. Then Λ is homeomorphic to ∂G × I where I is a
closed possibly degenerate interval. The limset maps Λ→ ∂X1 simply collapse the I coordinate.

Proof. If G is elementary, then G∆ is an infinite virtually cyclic group acting by semi-simple isometries on
the CAT(0) space X = X1 ×X2. Its limit set Λ is just two points, namely the endpoints of the axis of the
finite index infinite cyclic subgroup. Assume G is non-elementary. Then, in the language of [13], it contains
two independent regular axial isometries. By Lemma 4.4, we have Λ ⊂ ∂X1 × ∂X2 × (0,∞) and the maps
φ1 and φ2 collapse the third coordinate. If we reparameterize the third coordinate according to angles made
with X1 instead of slopes, then Λ ⊂ ∂X1 × ∂X2 × (0, π/2).

By [13, Theorem B], Λ splits as a product FG × PG where FG ⊂ ∂X1 × ∂X2 and PG ⊂ (0, π/2). Since G
is strongly rigid, the two boundaries ∂X1 and ∂X2 are equivalent. By commutativity of the diagram

Λ
ւ ց

∂X1 ≈ ∂X2

it follows that FG is the graph of the homeomorphism. By [13, Theorem C], PG is a closed interval. �
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Recall that the Tits metric on the boundary of a CAT(0) space is the length metric associated to the Tits
angle metric and generates a finer topology than the cone topology. In fact, there is a choice of I ⊂ (0, π/2)
such that when ∂G is given the Tits metric (giving it the topology of an uncountable discrete space) and Λ
is given the subspace metric corresponding to the Tits metric on ∂(X1 ×X2) (giving it the structure of a
spherical join), then I may be chosen so that the homeomorphism ∂G× I → Λ is an isometry with respect
to this metric.

Link’s results apply in a much more general context then the negatively curved setting. For instance, the
proof of this Corollary can be extended to groups G acting geometrically on CAT(0) spaces with isolated
flats. If they are not virtually abelian, then they have infinite Tits diameter by a theorem of Hruska and
Kleiner in [11]. Then we apply a theorem of Papasoglu and Swenson to find a pair of independent regular
axial isometries [19].

5. Geometric Actions of G = H × Z
d

Let H be a CAT(0) group and G = H ×Z
d. We will write the coordinates of elements of G in this direct

product using the notation 〈w, c〉. Assume G acts geometrically on a CAT(0) space X . Applying the Flat
Torus Theorem, the minset Min(Zd) of Zd is closed, convex, G-invariant, and splits as Y ×E where E is an
isometric copy of En. The fact that Min(Zd) is convex and G-invariant means that limset(X,G) ⊂ ∂Min(Zd);
for if we choose x ∈Min(Zd), then Gx ⊂ Min(Zd). We will assume that X = Y ×E. Furthermore, the action
of G preserves this splitting in the following sense: Every isometry g ∈ G can be written coordinate-wise
as (gY , gE) where gY and gE are isometries of Y and E. For clarity, the two notations are related by the
rules 〈w, c〉Y = wY and 〈w, c〉E = wEcE . The factor Zd acts only in the E-coordinate; that is, for c ∈ Z

d,
cY = idY . The action of Zd on E is geometric which means that ∂E = limset(X,Zd). In addition, the
projected action of H on Y by the rule h 7→ hY is also geometric.

Choose a basepoint y0 ∈ Y and let x0 = (y0, 0) be the specified basepoint in X where 0 is the origin in E.

Lemma 5.1. The action of H on E is by translations.

Proof. Any isometry of E which does not fix a point is a translation. Choose any w ∈ H . By hypothesis, Zd

centralizes wE , and by (4) from the Flat Torus Theorem, MinwE is Zd-invariant. Since MinwE is convex,
it follows that MinwE = E. This means that if wE fixes a point, then wE = idE . �

5.1. A Slope Vector Function. For g ∈ G, we define the vertical translation of g in X to be the vector
−→
t (g) = gE0 ∈ E.

We also define the horizontal displacement of g by

D(g) = dY (y0, gY y0).

Since Zd acts only in the E-coordinate, D(〈w, c〉) = D(w). Let M denote the slope function based at x0 with
respect to the splitting Y × E and write X0 = M

−1([0,∞)). This is just the complement of E ∪ ∂E in X .
We define the slope vector map −→m : X0 → E as follows. Identify X0 with the collection of nonvertical unit
speed geodesics emanating from x0. For such a geodesic γ = (α, β) in the domain, we define

−→
m(γ) =

β(t)− β(s)

dY
(

α(t), α(s)
)

where s < t are in the domain of α.

Lemma 5.2. −→m is independent of which s and t are chosen and is continuous.

Proof. Let σα and σβ denote the speeds of α and β. Observe that

β(t) − β(s) = (t− s)−→u σβ

where −→u ∈ E is unit vector in the direction of β. Thus −→m(γ) = σβ
−→
u /σα, which is independent of s and t.

The proof that −→m is continuous is the same as the proof of Proposition 4.2 but we replace δ2 with idE . �

Note that ‖−→m‖ is the same as the slope M described earlier with respect to the current splitting where
‖ · ‖ denotes the standard Euclidean norm on E.
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Lemma 5.3. −→m extends to a continuous map (X −{x0})∪ ∂X → E ∪ ∂E. Specifically, for v ∈ E, −→m(y0, v)
is the geodesic ray emanating from 0 passing through v, and −→m is the identity on ∂E.

Proof. For a point x ∈ X ∪ ∂X not in E ∪ ∂E, define −→u (x) = −→m(x)/M(x). This is the unit vector in the
direction of −→m(x). If a sequence of points (xn) ⊂ X0 converges to a point z ∈ (E − 0)∪ ∂E, then eventually
(xn) misses the subspace Y ∪ ∂Y . Then −→u (xn) → −→u (z) and M(xn) → ∞. So −→m(xn) = M(xn)

−→
u (xn)

converges to the geodesic ray in the direction of −→u (z). �

As before, −→m can be thought of as a continuous function of G using the map G→ Gx0 provided we make
the arbitrary definition −→m(g) = 0 ∈ E for g stabilizing x0. Note that for g = 〈w, c〉 ∈ G such that D(g) > 0,
we have

−→
m(g) =

−→
t (g)

D(w)
=

−→
t (w) +

−→
t (c)

D(w)
.

Ruane proves in [20] that whenever a CAT(0) group of the form H × Z acts geometrically on a CAT(0)
space, then the limset of H is bounded away from the limset of Z. Here is an analogous result in this setting.

Proposition 5.4. −→m is bounded on H.

Proof. Choose any finite generating set for H and let l be the corresponding length metric. Let λ ≥ 1 and
ǫ ≥ 0 be such that for all w ∈ H , D(w) ≥ l(w)/λ− ǫ. Let M be the maximum of ‖−→t ‖ on a finite generating

set for H . Then for w ∈ H , ‖−→t (w)‖ ≤Ml(w) and ‖−→m(w)‖ ≤Mλ+ 1 when l(w) is sufficiently large. �

We close this section by recording for later use a technical lemma which describes sequences converging
to points of ∂E.

Lemma 5.5. Let (gn) ⊂ G be a sequence such that gnx0 converges to a point of ∂E, say gn = 〈wn, cn〉.
Then

lim
n→∞

d
(

x0, 〈1, cn〉x0

)

d
(

x0, 〈wn, 1〉x0

) =∞.

Proof. The triangle inequality gives

‖−→t (cn)‖
D(wn)

≥ ‖−→m(gn)‖ − ‖−→m(wn)‖

The previous two results tell us that ‖−→m(gn)‖ → ∞ and that ‖−→m(wn)‖ is bounded. Therefore

d
(

x0, 〈1, cn〉x0

)2

d
(

x0, 〈wn, 1〉x0

)2 =
‖−→t (cn)‖2
D(wn)2

· 1

‖−→m(wn)‖2 + 1
→∞.

�

6. Cell-Like Limset Maps

Let G = Fm×Z
d where Fm is the free group on m generators where m ≥ 2. Assume G acts geometrically

on a proper CAT(0) space X . The standard generating set for G is the union of the standard basis for Zd

along with m generators for Fm. The corresponding length metric on G satisfies lG(〈w, c〉) = lFm
(w)+ lZd(c).

Our proof of Theorem 2 here relies heavily on the fact that Fm is negatively curved.

6.1. Straight Elements. Denote l = lFm
. An element w ∈ Fm is called straight if it satisfies l(w2) = 2l(w).

Let Γ denote the Cayley graph of Fm with respect to the standard generating set, an infinite 2m-valent tree.
Recall that a subspace A of a metric space B is called quasi-dense or C-dense if there is a C ≥ 0 such that
B is contained in the C-neighborhood of A.

Lemma 6.1. The following are equivalent for w ∈ Fm:

(1) w is straight.

(2) If a1...an is the unique reduced spelling for w, then an 6= a−1
1 .
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(3) In the action of Fm on Γ, w has an axis passing through the identity.

The set of straight elements is 1-dense in Fm and powers of straight elements are straight.

Proof. Choose w ∈ Fm and let a1...an be the reduced spelling for w. Saying that w is straight means that
the word a1...ana1...an has no reductions. Since Fm is free, this means that an 6= a−1

1 . Thus (1) and (2) are
equivalent. To see that (1) and (3) are equivalent simply note that Γ is CAT(0) and the identity is in the
minset of w iff w is straight.

Now we show that the set of straight elements is 1-dense. Suppose w is not straight. Let w = a1...an be
a spelling in terms of the generating set. Since we assumed m > 1, there is a letter ǫ which is neither a1 nor
its inverse. Since a1 = a−1

n , wǫ is straight. �

Elements 〈w, c〉 ∈ G will be called straight if w is straight. The reason for considering straight elements
is the following.

Lemma 6.2. There is a compact set D ⊂ X such that every straight element of G has an axis in X which
passes through D.

Recall that quasi-geodesics in negatively curved spaces behave well [3, Theorem III.H.1.7]:

Theorem (Stability of Quasi-Geodesics). For all δ > 0, λ ≥ 1, ǫ ≥ 0 there exists a constant R = R(δ, λ, ǫ)
with the following property:

If X is a δ-hyperbolic space, c is a (λ, ǫ)-quasi-geodesic in X and [p, q] is a geodesic segment joining the
endpoints of c, then the Hausdorff distance between [p, q] and the image of c is less than R.

Proof of Lemma 6.2. Let f : Γ→ Y denote the QIE. By the Stability of Quasi-Geodesics Theorem, there is
an R ≥ 0 such that for every geodesic γ in Γ, f(γ) tracks within a Hausdorff distance of R from the geodesic
in Y between its endpoints. In particular, if γ begins at a vertex w and ends at a vertex w′, then f(γ) is
within a Hausdorff distance of R from [y0, wy0]. Now if w is straight, then for every n the geodesic in Γ from
w−n to wn passes through the identity. It follows that the geodesic [w−ny0, w

ny0] passes within a distance

of R from y0. Letting n→∞, we see that every axis for w passes through K = BR(y0). By Proposition 3.6,
if z ∈ K is in the minset of w, then (z, 0) is in the minset of 〈w, c〉 for any c ∈ Z

d. Therefore every straight
element of G has an axis passing through K × {0}. �

Recall that two sequences of real numbers (xn) and (yn) are called asymptotic if their ratio xn/yn converges
to 1 as n→∞ and is written xn ∼ yn.

Lemma 6.3. Let (gn) ⊂ G be a sequence of straight elements such that gnx0 → ζ ∈ ∂X and (kn) be any
sequence of positive integers. Then gkn

n x0 → ζ as well, and d(x0, g
kn
n x0) ∼ knd(x0, gnx0).

Proof. Let α be the geodesic ray based at x0 going out to ζ and R > 0 be large enough so that every straight
element of G has an axis passing through BR(x0). For each n, let xn ∈ Bn(x0, R) lie in the axis of gn. Then
the geodesics [x0, g

kn
n x0] and [x0, gnx0] both stay inside the R-tubular neighborhood of the axis of gn passing

through xn. It follows that gnx0 lies inside in the 2R-neighborhood of [x0, g
kn
n x0]. Thus if [x0, gnx0] stays

inside the 1-neighborhood of α up to time T , then [x0, g
kn
n x0] stays inside the (2R + 1)-neighborhood of α

up to time T . It follows that gkn
n → ζ.

Now denote an = d(x0, gnx0), a′n = d(x0, g
kn
n x0), bn = d(xn, gnxn), and b′n = d(xn, g

kn
n xn). Then

bn ≤ an ≤ bn + 2R, b′n ≤ a′n ≤ b′n + 2R, b′n = knbn, and hence

a′n
an
∼ b′n

bn
= kn.

Therefore a′n ∼ knan as desired. �

6.2. Averaging Sequences. Let G = Fm × Z
d act geometrically on CAT(0) spaces X1 and X2. If m = 1,

then G is free abelian and Theorem 2 follows from Corollary 3.9. So we will assume m > 1. As before we
may assume each space splits as Xi = Yi × Ei where Ei is an isometric copy of Ed. Let

−→
t i and

−→
m i denote

the vertical translation and slope vector functions for each Xi. We will denote horizontal displacement in Yi

using Di. Let yi be chosen basepoints in Yi, xi = (yi, 0), and x0 = (x1, x2). Given g ∈ G, we will let M(g)
denote the slope of the line segment [x0, g

∆x0] in terms of the splitting X = X1 ×X2.
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A fourth piece of information we will need regards slopes in the product Y1×Y2. Given g ∈ G we consider
the geodesic [x0, g

∆x0] as living in X = Y1 × E1 × Y2 × E2 and take its coordinate projection γ to Y1 × Y2.
If γ is nonconstant, it has a well defined slope which we denote by N(g). In other words,

N(g) =
D2(g)

D1(g)
.

This makes sense as long as g does not act only in the E1 ×E2 coordinates. Since Fm is torsion free, this is
the same as saying that when g = 〈w, c〉, then w 6= 1. Then N(g) = N(w) which, by Lemma 4.4, is bounded
away from 0 and ∞. N extends continuously to ∂X − ∂(E1 × E2).

Denote Λ = limset(X,G∆) and Σ = limset(X, (Zd)∆) and let φi : Λ → limset(Xi, G) denote the limset
maps constructed in Section 4. The following lemma is needed in light of Example 3.11.

Lemma 6.4. For each i, φ−1
i (∂Ei) = Σ and φi|∂Ei

is a homeomorphism.

Proof. By Lemma 3.10, it suffices to prove that φ−1
i (∂Ei) ⊂ Σ for each i. We will prove this for i = 1.

Choose ζ1 ∈ ∂E1, and ζ ∈ φ−1
1 (ζ1). This means that there is a sequence (gn) ⊂ G such that g∆n x0 → ζ and

gnx1 → ζ1. Write gn = 〈wn, cn〉. Let λ ≥ 1 and ǫ ≥ 0 be such that the map Gx1 → Gx0 is a (λ, ǫ)-QIE.
Then

d
(

x0, 〈1, cn〉∆ x0

)

d
(

x0, 〈wn, 1〉∆ x0

)
≥

1
λ
d1
(

x1, 〈1, cn〉x1

)

− ǫ

λd1
(

x1, 〈wn, 1〉x1

)

+ ǫ
→∞

by Lemma 5.5. Apply convexity of the metric to the geodesics [x0, 〈1, cn〉∆ x0] and [x0, 〈wn, cn〉∆ x0] to see

that 〈1, cn〉∆ x0 also converges to ζ. So ζ ∈ Σ, as desired. The second fact is Corollary 3.9 �

This lemma tells us that preimages of points in ∂Ei are singletons, and therefore cell-like. Next we turn
our attention to preimages of points not in ∂Ei. Now,

∂X − ∂X1 ≈ (Co∂X1)× ∂X2

where Co∂X1 denotes the open cone on ∂X1: C
o∂X1 = ∂X1 ∗ {x0} − ∂X1. So for each i, we have

∂Xi − ∂Ei ≈ ∂Yi × Co∂Ei

≈ ∂Yi × Ei.

The first coordinate of this homeomorphism is the extension of the projection map and the second coordinate
is−→m i◦φi. Define Λ0 = Λ−Σ, which, by the above reasoning, can be thought of as living in ∂Y1×E1×∂Y2×E2.

Proposition 6.5. The following diagram commutes:

Λ0

ւ ց
∂Y1 × E1 ∂Y2 × E2

↓ ↓
∂Y1 ∂Y2

ց ւ
∂Fm

Proof. Suppose we have a sequence (〈wn, cn〉) ⊂ G such that 〈wn, cn〉∆ x0 → ζ0 ∈ Λ0. Following the maps,
we see that for both i, the sequences (wnyi) converge to points ζi ∈ ∂Yi. By strong rigidity, the sequence
(wn) converges to a point ζ0 ∈ ∂Fm. So for either i, ζ0 ∈ Λ0 gets mapped to ζi ∈ ∂Yi which in turn gets
mapped to ζ0 ∈ ∂Fm. �

We now abuse notation by considering −→m i also as functions of Λ0; that is, we write −→m i =
−→
m iφi. Given

η ∈ ∂Fm, let Λη denote its preimage in Λ0 according to the diagram in the previous proposition.

Proposition 6.6. The map Λη → E1 × E2 × (0,∞) given by (−→m1,
−→
m2, 1/N) is an embedding and for each

i, we have a commuting diagram

Λη →֒ E1 × E2 × (0,∞)
φi ↓ ↓

{η} × Ei ≈ Ei
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where the map down the right hand side is coordinate projection.

Proof. Since Λ misses ∂X1 ∪ ∂X2, it lives in ∂X1× ∂X2× (0,∞). The last coordinate here is parameterized
by M. Since the φi map Σ homeomorphically onto ∂Ei, φi(Λ

0) lives in ∂Fm×Ei where Ei is parameterized
by −→m i. This means that Λ0 lives in

∂Fm × E1 × ∂Fm × E2 × (0,∞)

Now by the previous proposition, the projection to each ∂Fm is just {η}. This means that the map

Λη → E1 × E2 × (0,∞)

given by (−→m1,
−→
m2,M) is an embedding.

To change the third coordinate map to 1/N, we just need to know that M can be written as a continuous
function of −→m1,

−→
m2, and N. Assume (gn) ⊂ G is a sequence such that g∆n x0 → ζ ∈ Λ0. Then Di(gn) > 0 for

large n and we can write

M
2(gn) =

d2(x2, gnx2)
2

d1(x1, gnx1)2
= N(gn)

2 ‖−→m2(gn)‖2 + 1

‖−→m1(gn)‖2 + 1

Letting n→∞, we get that

M(ζ) = N(ζ)

√

‖−→m2(ζ)‖2 + 1

‖−→m1(ζ)‖2 + 1

�

Lemma 6.7 (Sequence Averaging). Choose any ζ, ζ′ ∈ Λη with the property that −→m1(ζ) = −→m1(ζ
′). Then

there are sequences (an), (bn), (cn) ⊂ G such that a∆n x0 → ζ, b∆n x0 → ζ′ and all of the following hold:

limset(X,{cn}) ⊂ Λη(0)

D1(an) + D1(bn) ∼ D1(cn)(1)

D2(an) + D2(bn) ∼ D2(cn)(2)

D2(an) ∼ D2(bn)(3)

−→
m1(cn)→ −→m1(ζ)(4)

−→
m2(cn)→

−→
m2(ζ) +

−→
m2(ζ

′)

2
(5)

N(cn)
−1 → N(ζ)−1 + N(ζ′)−1

2
(6)

Proof. Since the collection of straight elements is quasi-dense in G and G∆ → X is a QIE, we can get
sequences of straight elements gn = 〈vn, ρn〉 and hn = 〈wn, σn〉 such that g∆n x0 → ζ and h∆

n x0 → ζ′. Since
ζ, ζ′ /∈ Σ, D2(wn) and D2(vn) both go to infinity. Define sn and tn to be the floors of D2(wn) and D2(vn).

We will take an = gsnn , bn = htn
n , and cn = anbn = 〈vsnn wtn

n , ρsnn σtn
n 〉. The first two converge to ζ and ζ′

by Lemma 6.3. Now, since vn and wn both converge to η ∈ ∂Fm, reduced spellings for vn and wn share the
same first letter ǫ when n is large. Since they are straight, they do not end in ǫ−1. Using the fact that Fm is
free, a geodesic edge path γn from 1 to vsnn wtn

n in Γ passes through vn. Since vn → η, so does vsnn wtn
n . This

gives (0).
By the same reasoning, γn also passes through the vertex vsnn . Since the Yi are δ-hyperbolic, it follows

from the Stability of Quasi-Geodesics Theorem that there is an R such that for both i, vsnn yi is inside the
R-neighborhood of [yi, v

sn
n wtn

n yi]. By convexity of the CAT(0) metric, we get (1) and (2).
For (3), we apply Lemma 6.3:

D2(v
sn
n )

D2(w
tn
n )
∼ snD2(vn)

tnD2(wn)
→ 1.

For (4) and (5) we will use the following equation which is easy to check:

(†) −→
m i(cn) =

−→
m i(an)

Di(an)

Di(cn)
+−→m i(bn)

Di(bn)

Di(cn)
.
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If i = 1, we use (†) to compute

∣

∣

−→
m1(cn)−−→m1(bn)

∣

∣ =
∣

∣

∣

−→
m1(an)

D1(an)
D1(cn)

+−→m1(bn)
(

D1(bn)
D1(cn)

− 1
)∣

∣

∣

≤
∣

∣

∣

−→
m1(an)

D1(an)
D1(cn)

−−→m1(bn)
D1(an)
D1(cn)

∣

∣

∣
+
∣

∣

∣

−→
m1(bn)

D1(an)
D1(cn)

+−→m1(bn)
(

D1(bn)
D1(cn)

− 1
)∣

∣

∣

= D1(an)
D1(cn)

∣

∣

−→
m1(an)−−→m1(bn)

∣

∣+−→m1(bn)
∣

∣

∣

D1(an)+D1(bn)
D1(cn)

− 1
∣

∣

∣
.

Using (1) and the facts that 0 ≤ D1(an) ≤ D1(cn) and −→m1(an) and
−→
m1(bn) both converge to −→m1(ζ) < ∞,

this all goes to zero as n→∞ giving (4).
Using (2) and (3) we get

D2(an)

D2(cn)
∼ D2(bn)

D2(cn)
→ 1

2
.

Apply (†) and let n→∞ to get (5).
Finally, we use (1), (2), and (3) to compute (6):

N(cn)
−1 ∼

D2(an)
D2(bn)

N(an)
−1 + N(bn)

−1

D2(an)
D2(bn)

+ 1

→ N(ζ)−1 + N(ζ′)−1

2
.

�

Proof of Theorem 2. By Lemma 6.4 we know that preimages of points of ∂E1 are just points. It remains
to consider preimages of points of ∂X1 − ∂E1. Choose η ∈ ∂Fm. Proposition 6.6 provided an embedding
Λη →֒ E1 × E2 × (0,∞) ⊂ E

2d+1 by the map (−→m1,
−→
m2,N

−1). Choose any ζ1 ∈ φ1(Λη) and ζ, ζ′ ∈ φ−1
1 (ζ1).

This means that −→m1(ζ) =
−→
m1(ζ

′) = −→m1(ζ1).
Get sequences (an), (bn), (cn) ⊂ G such that a∆n x0 → ζ and b∆n x0 → ζ′, as prescribed by the previous

lemma. From (0), (4), (5), and (6) it follows that (cn) converges to a point ζ′′ ∈ Λη. (4) tells us that

ζ′′ ∈ φ−1
1 (ζ1) and (5) and (6) tell us that ζ′′ is actually the midpoint of the line segment [ζ, ζ′]. By applying

this averaging process repeatedly, we see that a dense subset of [ζ, ζ′] is contained in φ−1
1 (ζ1). But of course

φ−1
1 (ζ1) is closed, which means that [ζ, ζ′] ⊂ φ−1

1 (ζ1). This proves that φ−1
1 (ζ1) is a convex subspace of

E
2d+1. Convex subspaces of euclidean spaces are disks. The proof for φ2 is the same. �

Proof of Theorem 3. We need to prove that the only limset maps between boundaries of F2 × Z are home-
omorphisms. Assume G = F2 × Z acts geometrically on two CAT(0) spaces X1 and X2 with specified
basepoints x1 and x2 and that we have a limset map ρ : ∂X1 → ∂X2 which is not a homeomorphism. If ρ
were injective, then by Lemma 3.2, ρ would be a homeomorphism, giving us a contradiction.

So ρ must not be injective. It follows from Lemma 6.4 that ρ takes the poles of ∂X1 to the poles of
∂X2, and from Proposition 6.5 that ρ takes longitudes to longitudes. So there are distinct ζ1, ζ

′
1 ∈ ∂X1

lying in the same longitude such that ρ(ζ1) = ρ(ζ′1); call this point ζ2. Let c be the generator of Z and

assume our coordinate system has been taken so that
−→
t 1(c) and

−→
t 2(c) are both positive. Choose sequences

(gn), (g
′
n) ⊂ G such that (gnx1) and (g′nx1) converge to ζ1 and ζ′1, say gn =

〈

wn, c
kn
〉

and g′n =
〈

w′
n, c

k′

n

〉

.

Now the slopes and vertical displacements here are 1-dimensional vectors and, on these sequences, real-
valued. To emphasize this, we will drop the vector notation and call them simply m1, m2, t1, and t2. If
m1(g

′
n) ∼ m1(wn), then set g′′n = 〈wn, 1〉. Otherwise choose positive integers in such that

in ∼
[

m1(g
′
n)−m1(wn)

]D1(wn)

t1(c)
.

and take g′′n =
〈

wn, c
in
〉

. Either way, m1(g
′′
n) ∼ m1(g

′
n), which means that g′′nx1 → ζ′1. By hypothesis,

∂X2 < ∂X1, so g′′nx2 → ζ2, and limn→∞ m2(g
′′
n) = limn→∞ m2(gn). So

m1(g
′′
n)−m1(gn) ∼

[

m2(g
′′
n)−m2(gn)

] t1(c)

t2(c)

D2(wn)

D1(wn)
→ 0
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because Lemma 4.4 guarantees the ratio of the Di’s remains bounded. But this of course means that
m1(gn)→ ζ′1 contradicting the fact that ζ′1 6= ζ1. �
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