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MEANDER GRAPHS AND FROBENIUS SEAWEED LIE

ALGEBRAS

VINCENT COLL, ANTHONY GIAQUINTO, AND COLTON MAGNANT

Abstract. The index of a seaweed Lie algebra can be computed
from its associated meander graph. We examine this graph in sev-
eral ways with a goal of determining families of Frobenius (in-
dex zero) seaweed algebras. Our analysis gives two new families of
Frobenius seaweed algebras as well as elementary proofs of known
families of such Lie algebras.

2000 MSC: 17B05, 17B08

1. Introduction

Let L be a Lie algebra over a field of characteristic zero. For any func-
tional F ∈ L∗ there is an associated skew bilinear form BF on L defined
by BF (x, y) = F ([x, y]) for x, y ∈ L. The index of L is defined to be

indL = min
F∈L∗

dim(ker(BF )).

The Lie algebra L is Frobenius if dim=0; equivalently, if there is a
functional F ∈ L∗ such that BF (−,−) is non-degenerate.

Frobenius Lie algebras were first studied by Ooms in [8] where he
proved that the universal enveloping algebra UL is primitive (i.e. ad-
mits a faithful simple module) provided that L is Frobenius and that
the converse holds when L is algebraic. The relevance of Frobenius
Lie algebras to deformation and quantum group theory stems from
their relation to the classical Yang-Baxter equation (CYBE). Suppose
BF (−,−) is non-degenerate and let M be the matrix of BF (−.−) rela-
tive to some basis {x1, . . . , xn} of L. Belavin and Drinfeld showed that
r =

∑

i,j(M
−1)ijxi ∧ xj is a (constant) solution of the CYBE, see [1].

Thus, each pair consisting of a Lie algebra L together with functional
F ∈ L∗ such that BF is non-degenerate provides a solution to the
CYBE, see [5] and [6] for examples.

The index of a semisimple Lie algebra g is equal to its rank and
thus such algebras can never be Frobenius. However, there always ex-
ist subalgebras of g which are Frobenius. In particular, many amongst
the class of biparabolic subalgebras of g are Frobenius. A biparabolic
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subalgebra is the intersection of two parabolic subalgebras whose sum
is g. They were first introduced in the case g = sl(n) by Dergachev and
Kirillov in [2] where they were called Lie algebras of seaweed type. As-
sociated to each seaweed algebra is a certain graph called the meander.
One of the main reults of [2] is that the algebra’s index is determined
by graph-theoretical properties of its meander, see Section 3 for details.

Using different methods, Panyushev developed an inductive proce-
dure for computing the index of seaweed subalgebras, see [9]. In the
same paper, he exhibits a closed form for the index of a biparabolic
subalgebra of sp(n).

Tauvel and Tu found in [10] an upper bound for the index of a
biparabolic subalgebra of an arbitrary semisimple Lie algebra, and they
conjectured that this was an equality. Joseph proved the Tauvel-Tu
conjecture in [7].

The methods of [2], [9], [10], and [7] are all combinatorial in na-
ture. Yet even with the this theory available, it is difficult in practice
to implement this theory to find families of Frobenius biparabolic Lie
algebras. In contrast, for many cases it is known explicitly which bi-
parabolic algebras have the maximum possible index. For example, the
only biparabolics in sl(n) and sp(n) which have maximal index are
the Levi subalgebras. In contrast, the problem of determining the bi-
parabolics of minimal index is an open question in all cases.

Our focus in this note is on the seaweed Lie algebras – these are the
biparabolic subalgebras of sl(n). The only known families of Frobenius
seaweed Lie algebras that seem to be in the literature will be outlined
in Section 4, although the unpublished preprint [3] may offer more
examples. We shall examine these families using the meander graphs
of Dergachev and Kirillov. Our methodology provides new proofs that
these algebras are indeed Frobenius. We shall also exhibit two new
infinite families of Frobenius seaweed Lie algebras in Sections 4.3 and
4.4.

2. Seaweed Lie algebras

In this section we introduce the seaweed Lie algebras of [2]. Recall
that a composition of a positive integer n is an unordered partition
x = (a1, . . . , am). That is, each ai ≥ 0 and

∑

ai = n.

Definition 2.1. Let V be an n-dimensional vector space with a basis
e1, . . . , en. Let x = (a1, . . . , am) and y = (b1, . . . , bt) be two composi-
tions of n and consider the flags

{0} ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Vm = V and V = W0 ⊃ W1 ⊃ · · · ⊃ Wt = {0}
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where Vi = span{e1, . . . , ea1+···+ai} and Wj = span{eb1+···+ebj+1
, . . . en}.

The subalgebra of sl(n) preserving these flags is called a seaweed Lie
algebra and is denoted p(x | y).

A basis-free definition is available but is not necessary for the present
discussion. The name seaweed Lie algebra was chosen due to their sug-
gestive shape when exhibited in matrix form. For example, the algebra
p(3, 1, 3, 2 | 4, 2, 3) consists of traceless matrices of the form



























∗ ∗ ∗ ∗ · · · · ·
∗ ∗ ∗ ∗ · · · · ·
∗ ∗ ∗ ∗ · · · ·
· · · ∗ ∗ ∗ · · ·
· · · · ∗ ∗ · · ·
· · · · ∗ ∗ · · ·
· · · · ∗ ∗ ∗ ∗ ∗
· · · · · · ∗ ∗ ∗
· · · · · · ∗ ∗ ∗



























where the entries marked by the dots are zero.

Many important subalgebras of sl(n) are of seaweed type, as illus-
trated in the following example.

Example 2.2. • The entire algebra sl(n) = p(n | n) has index
n− 1.

• The Cartan subalgebra of traceless diagonal matrices is p(1 | 1),
where 1 = (1, 1, . . . , 1) and has index n− 1.

• The Borel subalgebra is p(1 | n) and has index ⌊(n+ 1)/2⌋.
• Amaximal parabolic subalgebra is of the form p(a, b | n). Elashvili
proved in [4] that its index is gcd(a, n)− 1.

The only explicitly known Frobenius examples in the above list
are the maximal parabolic algebras p(a, b | n) with a and n relatively
prime. Of course, another infinite family of Frobenius seaweed algebras
occurs when a = (2, . . . , 2, 1), b = (1, 2, . . . 2), and n is odd. A simi-
lar case is a = (1, 2 . . . , 2, 1), b = (2, . . . , 2), and n is even. These two
families are detailed in [9].

A tantalizing question is how to classify which seaweed algebras are
Frobenius, especially given their importance in the general theory of
Lie algebras and applications to deformations and quantum groups.
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3. Meanders

As stated earlier, Dergachev and Kirillov have developed a combina-
torial algorithm to compute the index of an arbitrary p(x | y) from its
associated meander graph M(x | y) determined by the compositions x
and y. The vertices of M(x | y) consist of n ordered points on a hor-
izontal line, which can be called 1, 2, . . . , n. The edges are arcs above
and below the line connecting pairs of different vertices.

More specifically, the composition x = (a1, . . . , am) determines arcs
above the line which we will call the top edges. The component a1 of x
determines ⌊a1/2⌋ arcs above vertices 1, . . . , a1. The arcs are obtained
by connecting vertex 1 to vertex a1, vertex 2 to vertex a1−1, and so on.
If a1 is odd then vertex a⌈a1/2⌉ has no arc above it. For the component
a2 of a, we do the same procedure over vertices a1+1, . . . , a1+ a2, and
continue with the higher ai.

The arcs corresponding to y = (b1, . . . , bt) are drawn with the same
rule but are under the line containing the vertices. These are called the
bottom edges.

It is easy to see that every meander consists of a disjoint union of
cycles, paths, and isolated points, but not all of these are necessarily
present in any given meander.

Theorem 3.1 (Dergachev-Kirillov). The index of the Lie algebra of

seaweed type p(a | b) is equal to the number of connected components

in the meander plus the number of closed cycles minus 1.

Remark 3.2. The presence of the minus one in the theorem is due to
our use of seaweed subalgebras of sl(n) rather than of gl(n) as used by
Dergachev and Kirillov [2]. The index drops by one by the restriction
to sl(n) from gl(n).

Example 3.3. The following is the meander M(x | y) corresponding
to the compositions x = (5, 2, 2) and y = (2, 4, 3).

Figure 1. M(5, 2, 2 | 2, 4, 3).

We see that there is a single path and a single cycle. Using the
theorem above, the index is 2 + 1 − 1 = 2. Hence, p(5, 2, 2 | 2, 4, 3) is
not a Frobenius algebra.
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It is easy to see that to obtain a Frobenius algebra, the only possi-
bility for the meander is that it consist of a single path with no cycles
and no isolated points. The following illustrates this point.

Example 3.4. Consider the algebra p(3, 2, 2 | 2, 5). Its meander is
given in Figure 2.

Figure 2. M(3, 2, 2 | 2, 5).

Labeling the vertices with {1, 2, . . . , n} from left to right, notice that
M(3, 2, 2 | 2, 5) is the single path 2, 1, 3, 7, 6, 4, 5 (if we start with 2) or
its reversal 5, 4, 6, 7, 3, 1, 2 if we start with 5. In particular, the index is
1− 1 = 0 and so this is a Frobenius algebra.

Question 1. What are the conditions on the compositions x and y so
that the meander M(x | y) consists of a single path with no cycles or
isolated points?

As stated, this seems to be an elementary question involving nothing
more that the basics of graph theory. However, the apparent simplicity
of the question is misleading since an answer would provide a complete
classification of Frobenius seaweed algebras - a difficult problem. Even
so, it is easy to give some necessary conditions on x = (a1, . . . , am)
and y = (b1, . . . , bt) for M(x | y) to be a single path. For example,
exactly two elements of the set {a1, . . . , am, b1, . . . , bt) must be odd.
This is because a path must have a starting and ending point, and
these corresponds to vertices of degree one. A vertex of degree one is
either missing a top edge or bottom edge connecting to it, and this
happens only if some ai or bj is odd.

Another necessary condition for M(x | y) to be a single path is that
a1 6= b1. In this case,

p(x | y) ≃ sl(a1)
⊕

p(a2, . . . , am | b2, . . . , bt)

and thus p(x | y) is not Frobenius since the index is additive for direct

sums of Lie algebras. More generally, if
∑r

i=1 ai =
∑r

j=1 bj for some

r ≤ min{m, t} then the meander is not a single path. Other neces-
sary conditions can be given, but none seems to shed light on what is
sufficient.
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4. Families of Frobenius seaweed algebras

In this section we revisit some known families of Frobenius seaweed
algebras in terms of meanders. At the end we also provide two new
families.

First consider Panyushev’s example with x = (2, . . . , 2, 1), y =
(1, 2, . . . 2), and n is odd. Again, numbering as in Example 3.4, the top
edges connect 2 to 4, 4 to 6, etc. while the bottom edges connect 1 to 3,
3 to 5, etc. Hence, the meander consists of the single path 1, 2, . . . , n.
A similar argument verifies that the meander for x = (1, 2 . . . , 2, 1) and
y = (2, . . . , 2) with n even is also the path 1, 2, . . . , n.

To analyze some other cases it is convenient to modify the definition
of the meander M(x | y).

Definition 4.1. Suppose x and y are compositions of n. The modified
meander M ′(x | y) is the graph M(x | y) appended with a loop corre-
sponding to each odd ai and bj . Specifically, for all odd ai, add a loop
connecting a1 + · · · + ai−1 + ⌈ai/2⌉ to itself. Similarly, for all odd bj ,
add a bottom loop connecting b1 + · · ·+ bj−1 + ⌈bj/2⌉ to itself.

Note that in M ′(x | y) each vertex is incident with exactly one top
and one bottom edge or loop.

Example 4.2. Below is the modified meanderM ′(5, 2, 2 | 2, 4, 3). Com-
pare with the meander M(5, 2, 2 | 2, 4, 3) given in Example 3.3.

Figure 3. M(5, 2, 2 | 2, 4, 3) with loops.

4.1. The top and bottom bijections. Each modified meander de-
termines two bijections of S = {1, 2, . . . , n} to itself. Define a “top”
bijection t of S by t(i) = i, where j is the unique vertex incident with
the same top edge as i. If i is joined to itself by a top loop, then t(i) = 1.
In a similar way, define a “bottom” bijection b of S by b(i) = j, where
j is the unique vertex incident with the same bottom edge as j. If i is
joined to itself by a bottom loop, then b(i) = 1. Clearly the maps t and
b are well-defined. For instance, in Example 4.2, we have t(3) = 3 and
b(3) = 6.
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Definition 4.3. Let x and y be compositions of n. The meander per-
mutation σx,y ∈ Sn is the permutation t ◦ b of S. That is, σx,y(i) =

t(b(i)).

Example 4.4. Consider the meander permutation σx,y with x and y
as in Example 4.2. We can write σx,y as a product of disjoint cycles in

Sn: (1, 4)(2, 5)(3, 7, 8, 9, 6) (note the different use of the term “cycle”).

Theorem 4.5. Suppose x and y are compositions of n. Then the me-

ander M(x | y) is a single path if and only if the meander permutation

σx,y is an n-cycle in Sn.

Proof. Suppose the meander M(x | y) is the single path a1, a2, . . . , an.
By switching x and y if necessary, we can assume that b(a1) = a2. Then
the meander permutation is the n-cycle (a1, a3, . . . an−1, an, an−2, . . . a2)
if n is even and if n is odd it is the n-cycle if (a1, a3, . . . , an, an−1, an−3, . . . , a2).

Conversely suppose σx,y is an n-cycle but M(x | y) is not a single

path. Then M(x | y) contains either an isolated point, a path of length
less than n, or a cycle. We shall show that each of these possibilities
leads to a contradiction.

If i is an isolated point of M(x | y), then it is a fixed point of σx,y

which therefore can not be an n-cycle.

If a1, . . . ak is a path in M(x | y) with k < n then, depending on
whether k is even or odd, either the (a1, a3, . . . ak−1, ak, ak−2, . . . a2) or
(a1, a3, . . . , ak, ak−1, ak−3, . . . , a2) appears in the cycle decomposition of
σx,y. Since k < n we conclude that σx,y is not an n-cycle.

Now if M(x | y) contains a cycle a1, a2, . . . , ak, a1, then the meander
permutation contains either the k/2 cycle (a1, a3, . . . , an−1) if n is even
or the k-cycle (a1, a3, . . . , an, a2, a4, . . . , an−1) if n is odd. If k < n then
σx,y is not an n-cycle. If k = n is even, then the same argument shows
that σx,y is not an n-cycle. The remaining case is that k = n is odd. If

this happens though, we must have M(x | y) = M ′(x | y), and conse-
quently all components ai and bj are even. Since

∑

ai = n we have a
contradiction. Thus, in all cases when M(x | y) is not a single path, the
meander permutation σx,y is not an n-cycle, which is a contradiction.
The proof is complete. �

4.2. Maximal Parabolic Subalgebras. To generate more examples
of Frobenius Lie algebras, we consider maximal parabolic seaweed sub-
algebras of sl(n) which are necessarily of the form p(a, b | n).
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Lemma 4.6. Consider the compositions x = (a, b) and y = n. The
meander permutation σx,y is the map sending i to i+ a mod n for all

i.

Proof. By definition of the top and bottom maps, we have

b(i) = n + 1− i and t(i) =

{

a+ 1 if 1 ≤ i ≤ a

n+ a+ 1− i if a + 1 ≤ i ≤ n

and thus

t(b(i)) =

{

a− n+ i if 1 ≤ b(i) ≤ a

a+ i if a+ 1 ≤ b(i) ≤ n
.

Therefore σx,y(i) = t(b(i)) = i+ a mod n. �

Recall Elashvili’s result asserting that the maximal parabolic alge-
bra p(a, b |n) is Frobenius if and only if gcd(a, n) = 1. An immediate
corollary of the previous lemma gives a new simple proof of Elashvili’s
result.

Corollary 4.7. The maximal parabolic algebra p(a, b | n) is Frobenius
if and only if gcd(a, n) = 1.

Proof. By Theorem 4.5 it suffices to show that the meander permu-
tation is an n-cycle. According to Lemma 4.6, σx,y(i) = i + a mod n
for all i. Thus, the meander permutation is an n-cycle if and only if
the sequence i, i+ a, i + 2a, . . . , i + (n− 1)a forms a complete residue
system modulo n. This occurs precisely when gcd(a, n) = 1. The proof
is complete. �

4.3. Opposite maximal parabolic subalgebras. We now use the
same ideas to present a new family of Frobenius seaweed algebras each
of which is an intersection of a positive and negative maximal para-
bolic algebra. Such algebras are of the form p(a, b | c, d) and are called
opposite maximal parabolic subalgebras.

Lemma 4.8. Let x = (a, b) and y = (c, d) be compositions of n. The
permutation meander σx,y is the map sending i to a− c mod n for all

i.

Proof. The bottom and top maps are given by

b(i) =

{

c+ 1− i if 1 ≤ i ≤ c

n+ c + 1− i if c+ 1 ≤ i ≤ n
,
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and

t(i) =

{

a+ 1− i if 1 ≤ i ≤ a

n+ a+ 1− i if a + 1 ≤ i ≤ n
.

There are four possible compositions t(b(i)), depending on and whether
i ≤ c or i > c and whether b(i) ≤ a or b(i) > a. It is an easy calculation
to see that in each case t(b(i)) = a− c+ i mod n. �

An immediate consequence is the following result.

Corollary 4.9. The opposite maximal parabolic seaweed algebra p(a, b | c, d)
is Frobenius if and only if gcd(a− c, n) = 1.

Proof. The argument is exactly as that used in Corollary 4.7. Namely,
that the meander permutation is an n-cycle if and only if the sequence
i, i+(a−c), i+2(a−c), . . . , i+(n−1)(a−c) is a complete residue system
modulo n, and this is the case if and only if gcd(a− c, n) = 1. �

The corollary produces a hitherto undiscovered infinite family of sea-
weed algebras. For example, the Lie algebra p(2, 3 | 4, 1) is Frobenius
since 2− 4 = −2 is relatively prime to 7.

At this time, the above line of reasoning does not easily extend to
compositions x and y with more than two components. However, some
calculations offer hope of producing more families of Frobenius Lie
algebras using methods similar to those above.

4.4. Submaximal parabolic algebras. We conclude with another
new family of Frobenius algebras. These are of the form p(a, b, c | n),
so they are parabolic algebras omitting exactly two simple roots. We use
a different technique than for maximal or opposite maximal algebras to
analyze this family. Our result is the following classification theorem.

Theorem 4.10. The submaximal parabolic algebra p(a, b, c | n) is Frobe-
nius if and only if gcd(a+ b, b+ c) = 1.

We first establish some conditions on the degrees of the vertices
{v1, v2, . . . , vn} of the meander M = M(a, b, c | n). Since the vertices
of M are viewed as the numbers {1, 2, . . . , n} on a line the interval

between vertices vi and vi+1 makes sense.

Lemma 4.11. Suppose gcd(a + b, b + c) = 1. Then there are exactly

two vertices of degree 1 in M and all other vertices have degree 2.

Proof. Suppose for a moment that there exists a vertex v of degree 0.
This vertex must have no bottom edge, meaning that n is odd and
v = v(n+1)/2. We also know v has no top edge so b is odd and v is
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halfway between va+1 and va+b. This implies that a = c so a+b = b+c,
a contradiction. Hence, we get exactly one vertex of degree 1 for each
integer in {a, b, c, n} which is odd.

If n is odd, the vertex v(n+1)/2 has degree 1. If all three of a, b and
c are odd, then a + b and b + c are both even, meaning they have a
common factor of 2, a contradiction. This implies that exactly one of
a, b or c must be odd. Then there is exactly one other vertex of degree
one as desired.

If n is even, the bottom edges form a perfect matching. If all three of
a, b and c are even, then a+b and b+c are again even, a contradiction.
This implies that exactly two of a, b or c are odd, meaning there are
two vertices of degree 1 as desired. �

By Lemma 4.11, one component of M must be a path and there are
possibly more components which are all cycles. Let P be this path and
suppose P has a′ ≤ a vertices in the first part of the partition, and
b′ ≤ b and c′ ≤ c vertices in the other parts respectively. Note that one
of a′, b′ or c′ may be zero. Label the vertices of P with u1, u2, . . . , un′

where n′ = |P | following the inherited order (the order of the labels
vi) of the vertices. Notice that the path P forms a meander graph on
its own. This means that, by the proof of Lemma 4.11, we know that
exactly two of the integers in {a′, b′, c′, n′} are even and two are odd.

Now suppose there exists at least one component ofM that is a cycle.
Let C be the set of all vertices in cycles of M . Suppose C has d vertices
in the interval between ui and ui+1. For the moment, let us suppose
that i 6= n′

2
. Following the bottom edges, this means that C must also

have d vertices in the interval between un′−i and un′−i+1. Using this
argument, we will show that C has d vertices in almost every interval.

Define a dead end in M to be an interval ui to ui+1 such that M
contains an edge joining ui and ui+1. In particular, if n′ is even, then
the interval between un′/2 and un′/2+1 is a dead end.

Lemma 4.12. Suppose gcd(a + b, b + c) = 1. Then there are exactly

two dead ends in M .

Proof. A dead end is formed by two consecutive vertices of P which are
adjacent. Each occurrence of a dead end coincides with one of a′, b′, c′

or n′ being even, and we know that exactly two of these are even. Thus,
there are exactly two dead ends and the proof is complete. �

Proof of Theorem 4.10. Call an interval a partition interval if it is the
meeting point of two parts of our partition. Namely, the partition in-
tervals are from ua′ to ua′+1 and from ua′+b′ to ua′+b′+1. Now suppose C
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has d vertices in the interval from ui to ui+1. For the moment we sup-
pose this interval is not a dead end. As mentioned before, this means
that, by following bottom edges, C must also have d vertices in the in-
terval from un′−i to un′−i+1. Also, by following top edges, C must have
d vertices in another interval (depending where the top edges go).

If the interval from ui to ui+1 happens to be one of the two partition
intervals (for example suppose i = a′) then this means C must have d1
vertices in the interval outside u1 and at least d2 vertices in the interval
from ua′+b′ to ua′+b′+1 where d1+d2 = d. This then implies that C has d1
vertices in the interval beyond un (following bottom edges) and another
d1 vertices in the interval from ua′+b′ to ua′+b′+1 (following top edges)
for a total of d vertices in the interval ua′+b′ to ua′+b′+1. See Figure 4 for
an example. In this figure, the dark lines represent the edges of P while
light lines represent edges of C. The unlabeled light lines represent d
edges each. Here n′ = 7, a′ = 2, b′ = 2 and c′ = 3.

d d d d d dd1 d1

d1 d2

d1

d1

Figure 4. M(2, 2, 3 | 7) with inserted cycle.

Alternating following top and bottom edges, we see that the cycle C
has exactly d vertices in every interval between vertices and possibly
d1 ≤ d vertices on each end beyond u1 and beyond un′. Carefully count-
ing, we see that the first part of our partition has a = a′+2d1+(a′−1)d
vertices. Similarly, the second part has b = b′ + 2d2 + (b′ − 1)d and the
third part has c = c′ + 2d1 + (c′ − 1)d. This means that a + b =
(a′ + b′)(d + 1) and b + c = (b′ + c′)(d + 1) and these have a common
factor of d + 1, a contradiction. This shows that C must be empty so
G is simply the path P . �

The following is an example to show that this argument does not
work when we break n into more pieces. Consider the meander M =
M(3, 2, 2, 2 | 9) pictured in Figure 5.
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Figure 5. M(3, 2, 2, 2 | 9) with inserted cycle.

Here we have broken the top into 4 pieces while leaving the bottom in
one piece. Notice that we can add a cycle to this structure which does
not pass through all the intervals. This happens because, as the number
of pieces we have increases, the number of dead ends also increases,
allowing more flexibility in the placement of the cycles.

The above illustrates the complexity of the meander graphsM(x | y)
as the number of parts of x and y grow. At the moment, the problem
of classifying all Frobenius seaweed Lie algebras seems to be out of
reach. Of late, there has been a great deal of interest in Frobenius Lie
algebras. Perhaps these recent developments will be instrumental in
the development of a classification theory.
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